
International Journal of Analysis and Applications

Volume 17, Number 2 (2019), 260-274

URL: https://doi.org/10.28924/2291-8639

DOI: 10.28924/2291-8639-17-2019-260

DYNAMICAL BEHAVIOR OF FRACTIONAL ORDER SVIR EPIDEMIC MODEL

AQEEL AHMAD∗, NOUMAN JAVEED, MUHAMMAD FARMAN, M.O. AHMAD,

AMNA HAFEEZ AND ALI RAZA

Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

∗Corresponding author: aqeelahmad.740@gmmail.com

Abstract. In this Paper, we proposed a fractional order SVIR epidemic model is incorporated to investigate

its dynamical behavior in random environments. S, V, I, R are known as variables and these variables

represent the number of susceptible, vaccinated, infected and recovered cells from viruses in the body. The

Caputo fractional derivative operator of order α ε (0,1] is employed to obtain the system of fractional

differential equations. The basic reproductive number is derived for a general viral production rate which

determines the local stability of the infection free equilibrium. The stability and sensitivity analysis of

fractional order has been made and verify the non-negative unique solution. The solution of the time

fractional model has been procured by employing Laplace Adomian decomposition method (LADM) and

the accuracy of the scheme is presented by convergence analysis. Finally numerical solutions are also

established to investigate the influence of system parameter on the spread of disease and which show the

effect of fractional parameter on our obtained solution.

1. Introduction

It is evident that science subjects such as physics and chemistry are associated with mathematics. How-

ever, biology is the subject which is not usually associated with mathematics. But with the help of technology,

relevant research suggests that there are quantifiable aspects of life science as well which can be measured

with the help of mathematics. Mathematics plays a very crucial role in understanding and exploring the

natural world in this regard. The combination of mathematics and biology gave birth to new field that is
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mathematical biology. Mathematical biology is defined as a field of research and inquiry that investigates

and explores mathematical representations of biological systems.

The scope of mathematics includes mathematical modeling and esoteric mathematics. The flow of work,

process, predictions and outcomes can easily be measured with the help of mathematical concepts and theory.

Therefore, biologists are now extremely dependent on mathematics. Mathematical modeling of biological

sciences is done by many brilliant scientist [1-3]. The relationship between simple mathematical modeling

involves biological system, integer order differential equations that show their dynamics and complex system

which describes their changing of structure. The nonlinearity and multi-scale behaviors in mathematical

modeling describe the mutual relationship between parameters [4]. In last few decades, many biological

models were studied in detail by using classical derivatives, few of them are [5-9].

Mathematics has always beneficial and play important role in the rising science. Mathematics and physical

sciences each had important effects on the development of each other. Mathematics has been playing a

significant role in the progress of life and social sciences, and these sciences has started to influence the

development of mathematics. Biomedical science is one of the most important fields of science and expected

well growing future. Biology is concern with the subject of mathematician for improvement. The mostly use

of mathematics in biology become more qualitative to quantitative. Mathematical biology is the study of bio

informatics and its relevant fields. The earlier stages of mathematical biology were dominated by physical

systems, often involving specific mathematical models of bio systems and there components or compartments.

Mathematical modeling and analysis is use to recognize biology and biomedical system[10,11]. Examine

the Dynamical transmission and effect of smoking in society [18]. The distinguished features of fractional

differential equations are that it outlines memory and transmitted properties of numerous mathematical

models. As a fact, that fractional order models are more realistic and practical than the classical integer

order models. Fractional order derivative produces greater degree of freedom in these models. Arbitrary

order derivatives are powerful tools for the discretion of the dynamical behavior of various biomaterial and

systems [19, 20].

It is expected that biomedical science will be the foremost field of research in future. For the development

of the health of their subject, Mathematicians should get involved in the field of biology. There are lots

of examples that suggest how mathematics has benefited from physics. It is clear that if mathematicians

do not take genuine interest in the field of biosciences they will miss the opportunity to be a part of

the most vital and interesting scientific Enterprises of all times. Mathematical biology is an emerging,

well-recognized subject. Moreover, in my opinion it is considered the most exciting modern application of

mathematics. The burgeoning use of mathematics in biology is likely to happen since the field of biology

became more significant. The intricacy of the biological sciences makes integrative involvement crucial. For

the mathematician, biology has opened up new avenues and windows for further research. Similarly for the
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biologist, mathematical modelling offers another research tool Proportionate with new powerful laboratory

proficiency. However, it will be fruitful only if it is used relevantly recognizing its limitations.

One of the important roles mathematics plays in the field of biology is the formation and creation of

mathematical models. These equations, models or formulas can anticipate or illustrate natural happenings,

for example behavioral patterns of an organism and measurement of population with the passage of time.

As far as mathematical models are concerned it makes easier for scientist to analyze and describe a

measurable phenomenon. It has been observed that Most of the fields of medicine are also dependent

upon mathematical models. Mathematical models helps the scientist especially in the frequencies of gene

expression and the rates of spreading of diseases.

For the sake of argument lets suppose that a scientist is interested in studying butterfly migrations. The

biologist simply entrees into that field and count a sample population of a specific area. After that, he

multiplies his sample numbers by the total geographical range to find out a population estimate. He will

then return to his lab and review and read other researcher’s reports and literature on butterflies. He will

observe their migration pattern over the span. He will further employ the technique of vector calculations

to predict and for see their future path. Finally, he will investigate previous years’ data on the butterfly

numbers and location to formulate a likely error margin for his prediction. At every step of this process, the

biologist has to focus on mathematics to gauge, predict, analyze and understand natural phenomena.

2. Mathematical Model

In this chapter, we proposed a fractional order SVIR epidemic model is incorporated to investigate its

dynamical behavior in random environments. S, V, I, R are known as variables and these variables represent

the number of susceptible, vaccinated,infected and recovered cells from viruses in the body. The Caputo

fractional derivative operator of order α ε (0,1] is employed to obtain the system of fractional differential

equations. The basic reproductive number is derived for a general viral production rate which determines

the local stability of the infection free equilibrium. The stability and sensitivity analysis of fractional order

has been made and verify the non-negative unique solution.The solution of the time fractional model has

been procured by employing Laplace Adomian decomposition method (LADM) and the accuracy of the

scheme is presented by convergence analysis. Finally numerical solutions are also established to investigate

the influence of system parameter on the spread of disease and which show the effect of fractional parameter

on our obtained solution.

Thus, the mathematical model is represented by the following four differentials equations:

This model is the basic compartmental model in epidemiology. Since then,many compartmental models such

as SIR or SIRS models have been established to predict the various properties of the diseases spreading.Hence

vaccination can also be considered by adding some compartment naturally into the basic epidemic models



Int. J. Anal. Appl. 17 (2) (2019) 263

for certain diseases.

In formulation of SVIR epidamic model, Here we uses four different variables here S represents the compart-

ment of susceptible cells (i.e., the compartment of those individuals which are not infected an able to catch

the disease), V compartment represents the vaccinated cells, I compartment represents the already infected

cells and R represents the recovered cells from viruses in the body. This model has the following form:

dS

dt
= µ− µS − βSI − αS, (2.1)

dV

dt
= αS − β1V I − γ1V − µV, (2.2)

dI

dt
= βSI + β1V I − γI − µI, (2.3)

dR

dt
= γ1V + γI − µR. (2.4)

Here S(t),I(t) and R(t) denote the densities of susceptible, infected and recovered individuals,respectively.

V(t) denotes the density of vaccinees who have begun the vaccination prodess.From [12] it follows that all

the parameters in the model are positive and have the following features, µ is the recruitment rate and

natural death rate of the population, β denotes the transmission coefficient between compartments S and I,

α is the rate at which susceptible individuals are moved into the vaccination process, β1 denotes the disease

transmission rate when the vaccinees contact with infected individuals before obtaining immunity, γ1 is the

average rate for the vaccinees move into recovered population, γ is the recovery rate of infected individuals.

We assume thatβ1 is less than β because the vaccinating may have some partial immunity during the process.

The fractional order extension for the ordinary differential equations of the model have been first studied

in [13,14]. The new system of differential equation is represented by the fractional system of differential

equations (FDEs) is given as follows.

Dα1(S) = µ− µS − βSI − αI (2.5)

Dα2(V ) = αS − β1V I − λ1V − µV (2.6)

Dα3(I) = βSI + β1V I − γI − µI (2.7)

Dα4(R) = λ1V + λI − µR (2.8)

with the initial conditions

S(0) = n1 = 0.4, V (0) = n2 = 0.4, I(0) = n3 = 0.2, R(0) = n4 = 0.1 (2.9)
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3. Qualitative Analysis

To evaluate the equilibrium point ,we take

Dα1(S) = 0, Dα2(V ) = 0, Dα3(I) = 0, Dα4(R) = 0

above model becomes

µ− µS − βSI − αS = 0 (3.1)

αS − β1V I − γ1V − µV = 0 (3.2)

βSI + β1V I − γI − µI = 0 (3.3)

γ1V + γI − µR = 0 (3.4)

After simplifications (2.1),(2.2),(2.3) and (2.4) we get

S = µ
α+µ , V = αµ

(α+µ)(µ+γ1)
, I = 0, R = αγ1

(α+µ)(µ+γ1)

after parametric values

µ = 1, β = 15, α = 15, β1 = 10, γ = 2, γ1 = 4

we get

(S, V, I, R)=(0.0625, 0.1875, 0, 0.75)

3.1. Reproductive Number. Consider the jacobian matrix to find the reproductive number by using next

generation technique

J =


−µ− βI − α 0 −βS 0

α β1I − γ1 − µ β1V 0

βI β1I βS + β1V − γ − µ 0

0 γ1 γ −µ

 . (3.5)

we take J = F - V,

where

F =


0 0 0 0

0 β1I β1V 0

0 β1I β1V 0

0 0 0 0

 . (3.6)
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and

V =


µ+ βI + α 0 +βS 0

−α γ1 + µ 0 0

−βI 0 −βS + γ + µ 0

0 −γ1 −γ µ

 . (3.7)

By using the relation |K − λI|=0, where K = FV −1 and

S = µ
α+µ , V = αµ

(α+µ)(µ+γ1)
and I=0

we get eigen value

λ =
αµβ1(µ+ γ1)

α(γ + µ) + µ(−β + γ + µ)

which represents the reproductive number

R0 =
αµβ1(µ+ γ1)

α(γ + µ) + µ(−β + γ + µ)

Which is

R0 = 1.2 > 1

4. Stability Analysis

Theorem 4.1. The endemic equilibrium state E1 = (S, V, I, R) of the model (1.1)-(1.4) is locally asymptot-

ically stable, if R0 > 1, otherwise unstable.

To prove this theorem, we have to show that the Re(λ) < 0. Consider the jacobian matrix as

J =


−µ− βI − α 0 −βS 0

α −β1I − γ1 − µ −β1V 0

βI β1I βS + β1V − γ − µ 0

0 γ1 γ −µ

 (4.1)
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Take I=0 (As infected component), we get

J0 =


−µ− α 0 −βS 0

α −γ1 − µ −β1V 0

0 0 βS + β1V − γ − µ 0

0 γ1 γ −µ

 (4.2)

By using the relation |J0 − λI|=0 we get the result

λ1 = −α− µ < 0

λ2 = −µ < 0

λ3 = −µ− γ1 < 0

λ4 = −γ − µ+ βµ
α+µ + β1αµ

(α+µ)(µ+γ1)
< 0

All the real values of λ are negative. So,our system for endemic equilibrium is locally asymptotically stable.

5. Preliminaries

In this section, we give some fundamental results and definitions from fractional calculus. For detailed

over view of the topic readers are referred to [15,16].

Definition 4.1 The Riemann-liouville fractional integration of order α ∈ (0, 1) of the function f ∈ L1([0, T ], R)

is defined as as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

The Riemann-Liouville derivative has certain disadvantages such that the fractional derivative of a constant

is not zero. Therefore, we will make use of Caputo’s definition owing to its convenience for initial conditions

of the fractional differential equations.

Definition 4.2 The definitions of Laplace transform of Caputo’s derivative is written as

L{cDαy(t)} = sαh(s)− Σn−1k=0s
α−i−1y(k)(0), n− 1 < α ≤ n; ‘ n ∈ N.

for arbitrary ci ∈ R, i = 0, 1, 2, ..., n− 1, where n = [α] + 1 and [α] shows the integer part of α.

6. The Laplace-Adomian Decomposition Method

Consider the fractional-order epidemic model (1.5)-(1.8) subject to the initial condition (1.9). The non-

linear term in this model is SI and V I For φ1 = φ2 = φ3 = φ4 = φ5 = 1 the fractional order model converts
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to the classical epidemic model. by using Laplace transform on the system given in equations (1.5)-(1.8), we

get

L {Dα1
t S} = µL {1} − µL {S} − βL {SI} − αL {S}

L {Dα2
t V } = αL {S} − β1L {V I} − λ1L {V } − µL {V }

L {Dα3
t I} = βL {SI} − β1L {V I} − γL {I} − µL {I}

L {Dα4
t R} = λ1L {V } − λL {I} − µL {R}

By the defination laplace transform, we get

Sα1L {S} − Sα1−1S(0) = µL {1} − µL {S} − βL {SI} − αL {S}

Sα2L {V } − Sα2−1V (0) = αL {S} − β1L {V I} − λ1L {V } − µL {V }

Sα3L {I} − Sα3−1I(0) = βL {SI} − β1L {V I} − γL {I} − µL {I}

Sα4L {R} − Sα4−1R(0) = λ1L {V } − λL {I} − µL {R}

By using the initial condition

L {S} =
n1
S

+
µ

Sα1+1
− µ

Sα1
L {S} − β

Sα1
L {SI} − α

Sα1
L {S} (6.1)

L {V } =
n2
S

+
α

Sα2
L {S} − β1

Sα2
L {V I} − λ1

Sα2
L {V } − µ

Sα2
L {V } (6.2)

L {I} =
n3
S

+
β

Sα3
L {SI} − β1

Sα3
L {V I} − γ

Sα3
L {I} − µ

Sα3
L {I} (6.3)

L {R} =
n4
S

+
λ1
Sα4

L {V }+
λ

Sα4
L {I} − µ

Sα4
L {R} (6.4)

It should be assumed that method gives the solution as an infinite series

S =

∞∑
k=0

Sk, V =

∞∑
k=0

Vk, I =

∞∑
k=0

Ik, R =

∞∑
k=0

Rk (6.5)

The nonlinearity SI and V Ican be written as

I =

∞∑
k=0

Ak, V I =

∞∑
k=0

Bk (6.6)
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where Ak and Bk is called the Adomian polynomials given as

Ak =
1

k!

dk

dλk
[

k∑
j=0

λjSj

k∑
j=0

λjIj ]|λ=0 (6.7)

Bk =
1

k!

dk

dλk
[

k∑
j=0

λjVj

k∑
j=0

λjIj ]|λ=0 (6.8)

From equations 3.1, 3.2, 3.3 and 3.4, we have the followings results

L {S0} =
n1
S

+
µ

Sα1+1
,L {V0} =

n2
S
,L {I0} =

n3
S
,L {R0} =

n4
S

(6.9)

similarly, we have

L {S1} = − µ

Sα1
L {S0} −

β

Sα1
L {A0} −

α

Sα1
L {S0} (6.10)

.

.

.

L {Sk+1} = − µ

Sα1
L {Sk} −

β

Sα1
L {Ak} −

α

Sα1
L {Sk} (6.11)

L {V1} =
α

Sα2
L {S0} −

β1
Sα2

L {B0} −
λ1
Sα2

L {V0} −
µ

Sα2
L {V0} (6.12)

.

.

.

L {Vk+1} =
α

Sα2
L {Sk} −

β1
Sα2

L {Bk} −
λ1
Sα2

L {Vk} −
µ

Sα2
L {Vk} (6.13)

L {I1} =
β

Sα3
L {A0}+

β1
Sα3

L {B0} −
γ

Sα3
L {I0} −

µ

Sα3
L {I0} (6.14)

.

.

.

L {Ik+1} =
β

Sα3
L {Ak}+

β1
Sα3

L {Bk} −
γ

Sα3
L {Ik} −

µ

Sα3
L {Ik} (6.15)
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L {R1} =
λ1
Sα4

L {V0}+
λ

Sα4
L {I0} −

µ

Sα4
L {R0} (6.16)

.

.

.

L {Rk+1} =
λ1
Sα4

L {Vk}+
λ

Sα4
L {Ik} −

µ

Sα4
L {Rk} (6.17)

The purpose of the work is to analysis the mathematical behavior of the solution S(t), V (t), I(t), R(t)

for the different values of φ. By applying the inverse laplace transform to both sides of the equation (3.9),

we get the values of S0, V0, I0, R0 and used for further process. Putting the values of S0, V0, I0, R0 and

A0, B0 into the equations (3.12-3.16) and get the values of S1, V1, I1, R1. Similarly we find the remaining

term S2, S3, S4, ...., V2, V3, V4, .... , I2, I3, I4, ...., R2, R3, R4, .... and in the same manners. We have the series

solution in the form

S(t) = S0 + S1 + S2 + S3 + S4 + .... (6.18)

V (t) = V0 + V1 + V2 + V3 + V4 + .... (6.19)

I(t) = I0 + I1 + I2 + I3 + I4 + ... (6.20)

R(t) = R0 +R1 +R2 +R3 +R4 + .... (6.21)

The Laplace Adomian decomposition method is an analytical approximate solution in terms of infinite power

series. For numerical results, we used the followings table values of parameters are considered from

Table 1. Values of physical parameters used in SVIR model when R0 > 1

Parameter Value Parameter Value

α 15 β 15

γ 2 µ 1

β1 10 γ1 4

By applying Laplace inverse property on equation (3.18-3.21)as describes above, we can find the solution

of fractional model in series form is written as

S(t) = 0.4− 6.6
tα1

α1!
+ 125.4

t2α1

2α1!
+ 361

t3α1

3α1!
− 9

tα1+α3

(α1 + α3)!
− 18

t2α1+α3

(2α1 + α3)!
,

−21
(α1 + α3)!t2α1+α3

α1α3(2α1 + α3)!
− 45

(2α1 + α3)!t3α1+α3

α1!(α1 + α3)!(3α1 + α3)!
+ ..... (6.22)
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V (t) = 0.4 + 3.2
tα2

α2!
− 99

tα1+α2

(α1 + α2)!
− 285

t2α1+α2

(2α1 + α2)!
− 6

tα2+α3

(α2 + α3)!
,

−12
tα1+α2+α3

(α1 + α2 + α3)!
− 22.4

t2α2

2α2!
− 105

tα1+2α2

(α1 + 2α2)!
+ ...... (6.23)

I(t) = 0.2 + 1.5
tα3

α3!
+ 3

tα1+α3

(α1 + α3)!
+ 91.8

t2α3

2α3!
+ 21

tα1+2α3

(α1 + 2α3)!
+ 21

(α1 + α3)!tα1+2α3

α1!α3!(α1 + 2α3)!
,

+45
(2α1 + α3)!tα1+2α3

α1!(α1 + α3)!(α1 + 2α3)!
− 22.8

tα1+α3

(α1 + α3)!
− 57

t2α1+α3

(2α1 + α3)!
+ 6.4

tα2+α3

(α2 + α3)!
,

+30
tα1+α2+α3

(α1 + α2 + α3)!
+ ...... (6.24)

R(t) = 0.1 + 1.9
tα4

α4!
+ 12.8

tα2+α4

(α2 + α4)!
+ 60

tα1+α2+α4

(α1 + α2 + α4)!
+ 2.28

tα3+α4

(α3 + α4)!
,

+6
tα1+α3+α4

(α1 + α3 + α4)!
− 1.9

t2α4

2α4!
+ ..... (6.25)

7. Numerical Results and Discussion

The mathematical analysis of SVIR epidemic model with nonlinear system of fractional differential equa-

tion has been presented. The numerical results of susceptible, Vaccinated, infected and recovered population

for different values of α are established in tables 2-5 by using LADM. For the reliable investigation, evalua-

tion is made for different values of α and can be seen from Figure 1-4. we observe that fractional order SVIR

epidamic model has more degree of freedom as compared to ordinary derivatives. By taking non-integer val-

ues of fractional parameter, remarkable responses of the compartments of the proposed model are obtained.

For different values of α solution converges to steady state and gives the better convergence by decreasing

the fractional values of α.
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Figure 1. Numerical Solutions for susceptible S(t) population in a time t (months) at

different values of α.
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Figure 2. Numerical Solutions for vaccination V (t) population in a time t (months) at

different values of α.
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Figure 3. Numerical Solutions for infected I(t) population in a time t (months) at different

values of α.
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Figure 4. Numerical Solutions for recovered R(t) population in a time t (months) at

different values of α.

8. Conclusion

It is important to note that Laplace adomian decomposition method for mathematical models based

on system of fractional order differential equations is more powerful approach to compute the convergent

solutions.We developed a scheme for analytical solution of epidemic fractional SVIR model by using Laplace



Int. J. Anal. Appl. 17 (2) (2019) 273

Adomian decomposition method. The well-known epidemic model namely Susceptible-Vaccination-Infected-

Recovered (SVIR) is considered with and without demographic effects. The model represents population

dynamics during the disease as a set of non-linear coupled ordinary differential equations. There is no exact

solution available in the literature for this model up to the best of authors knowledge. It is observed that

the infection rate and reproductive numbers play a key role for an epidemic to occur and the epidemic

can be controlled by vaccination. It is also observed that to eliminate the disease, it is not necessary to

vaccinate whole of the population.The effect of fractional parameter on our obtained solutions is presented

through Tables and graphs. It is worthy to observe that fractional derivatives show significant changes and

memory effects as compared to ordinary derivatives. Finally, we estimated the parameter that characterize

the behavior of disease and present numerical simulations. The disease free equilibrium state is carried out

by presenting Re(λ) < 0, i.e. the population is viable.
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