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1. Introduction and preliminaries

One of the most important tools in fixed point theory is Banach contraction principle. A lot of authors

have extended or generalized this contraction and proved the existence of fixed and common fixed point

theorems (for example see [19]- [28]). In this sequel, Bakhtin [7] and Czerwik [10] introduced b-metric spaces

as a generalization of metric spaces. They proved the contraction mapping principle in b−metric spaces

that generalized the famous Banach contraction principle in such spaces. After that, several papers have

dealt with fixed point theory for single-valued and multi-valued operators in b-metric spaces (for example

see [11], [27], [29], [32]).

On the other hand, Matthews [21] introduced the notion of partial metric space as a part of the study

of denotational semantics of dataflow networks, showing that the contraction mapping principle [8] can be

generalized to the partial metric context for applications in program verifications.

b−metric spaces [7] and Partial metric spaces [21] are two well known generalizations of usual metric

spaces. Also, the Banach contraction principle is a fundamental result in the fixed point theory, which has

been used and extended in many different directions. Recently, Shukla [35] introduced a generalization and

unification of partial metric and b-metric spaces as the concept of partial b-metric space.

In this section, we recall some useful definitions and auxiliary results that will be needed in the sequel.

Throughout this paper, N and R denote the set of natural numbers and the set of real numbers, respectively.

Definition 1.1. ( [7], [10]) Let X is a nonempty set and let s ≥ 1 be a given real number. A function

d : X × X → [0,∞) is said to be a b−metric space on X if and only if for all x, y, z ∈ X, the following

conditions hold:

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The triplet (X, d, s) is called a b−metric space.

It is well known that the class of b-metric spaces is larger than the class of metric spaces when s = 1, the

concept of b-metric space coincides with the concept of metric space.

Example 1.1. Consider the set X = [0, 1] endowed with the function d : X × X → [0,∞) defined by

d(x, y) = |x− y|2 for all x, y ∈ X. Clearly, (X, d, 3) is a b−metric space but it is not a metric space.
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Example 1.2. Let X = R and let the mapping d : X ×X → [0,∞) be defined by

d(x, y) =| x− y |2 for all x, y ∈ X.

Then (X, d) is a b-metric space with coefficient s = 2.

Definition 1.2. [21] Let X be a nonempty set. A function p : X ×X → [0,∞) is called a partial metric

space if for all x, y, z ∈ X, the following conditions are satisfied:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space(PMS). The sequence {xn} in X converges to a point x ∈ X

if limn→∞ p(xn, x) = p(x, x). Also the sequence {xn} is called p−Cauchy if the limn,m→∞p(xn, ym) exists.

The partial metric space (X, p) is called complete if for every p-Cauchy sequence {xn}n∞, there is some x ∈ X

such that

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

A basic example of a partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+.

Definition 1.3. [35] Let X be a nonempty set. A function b : X ×X → [0,∞) is called a b−partial metric

space if for all x, y, z ∈ X, the following conditions are satisfied:

(pb1) x = y if and only if b(x, x) = b(x, y) = b(y, y),

(pb2) b(x, x) ≤ b(x, y),

(pb3) b(x, y) = b(y, x),

(pb4) there exists a real number s ≥ 1 such that b(x, y) ≤ s[b(x, z) + b(z, y)]− b(z, z).

Remark 1.1. [35] In a partial b−metric space (X, b) if x, y ∈ X and b(x, y) = 0, then x = y, but the

converse may not be true.

Remark 1.2. [35] It is clear that every partial metric space is a partial b−metric space with coefficient

s = 1 and every b−metric space is a partial b−metric space with the same coefficient and zero self-distance.

However, the converse of this fact need not hold.

Example 1.3. [35] Let X = R+, p > 1 is a constant and b : X ×X → R+ be defined by

b(x, y) = [max{x, y}]p − |x− y|p
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for all x, y ∈ X. Then, (X, b) is a partial b−metric space with coefficient s = 2p > 1, but it is neither a

b-metric nor a partial metric space.

Proposition 1.1. [35] Let X be a nonempty set such that p is a partial and d is a b−metric with coefficient

s > 1 on X. Then the function b : X ×X → R+ defined by b(x, y) = p(x, y) + d(x, y) for all x, y ∈ X is a

partial b-metric on X, that is, (X, b) is a partial b−metric space.

Definition 1.4. [35] Let (X, b) be be a partial b−metric space with coefficient s. Let {xn} be any sequence

in X and x ∈ X. Then:

(i) A sequence {xn} ⊆ X converges to a point x ∈ X if limn→∞ b(xn, x) = b(x, x),

(ii) A sequence {xn} ⊆ X is said to be a Cauchy sequence in (X, b) if, for every given ε > 0, there exists

n(ε) ∈ N such that limn,m→∞ b(xn, xm) exists and is finite for all m,n ≥ n(ε),

(iii) (X, b) is said to be complete partial b−metric space if Cauchy sequence {xn} ⊆ X there exists x ∈ X

such that

lim
n,m→∞

b(xn, xm) = lim
n→∞

b(xn, x) = b(x, x).

Note that in a partial b−metric space the limit of convergent sequence may not be unique.

Samet el al. [31] introduced the notion of α−admossible mapping and studied many fixed point theorems.

After that several authors used the notion of α-admissible to prove and construct many fixed and common

fixed point theorems (see [14]- [1]).

Samet et al. [31] presented the notion of α-admissible mapping as follows:

Definition 1.5. [31] Let f : X → X and α : X ×X → [0,∞). Then f is called α-admissible if ∀x, y ∈ X

with α(x, y) ≥ 1 implies α(fx, fy) ≥ 1.

Definition 1.6. [17] Let T : X → X and α : X ×X → [0,∞). Then T is called a triangular α-admissible

mapping if

(1) T is α-admissible;

(2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1.

Sintunavarat [32] presented the notion of weak α-admissible mappings as follows:

Definition 1.7. [32] Let X be a nonempty set and let α : X ×X → [0,∞) be a given mapping. A mapping

f : X → X is said to be a weak α-admissible mappings if the following condition holds:

x ∈ X with α(x, fx) ≥ 1⇒ α(fx, f2x) ≥ 1.
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Remark 1.3. [32] It is customary to write A(X,α) and WA(X,α) to denote the collection of all α-

admissible mappings on X and the collection of all weak α-admissible mappings on X. One can verify that

A(X,α) ⊆ WA(X,α).

Qawaqneh et al. [23] presented the notion of α-admissible with respect to another function η for the pair

of self-mappings S and T on a set X as follows:

Definition 1.8 ( [23]). Let S, T : X → X be two mappings and α : X ×X → [0,+∞) be a function such

that the following conditions hold:

(1) if α(x, y) ≥ 1, then α(Sx, Ty) ≥ 1 and α(TSx, STy) ≥ 1;

(2) if α(x, z) ≥ 1 and α(z, y) ≥ 1, then α(x, y) ≥ 1.

Then we say that the pair (S, T ) is triangular α-admissible.

Definition 1.9 ( [23]). Let S, T : X → X be two mappings and α, η : X ×X → [0,+∞) be two functions

such that the following conditions hold:

(1) if α(x, y) ≥ η(x, y), then α(Sx, Ty) ≥ η(Sx, Ty) and α(TSx, STy) ≥ η(TSx, STy);

(2) if α(x, z) ≥ η(x, z) and α(z, y) ≥ η(z, y), then α(x, y) ≥ η(x, y).

Then we say that the pair (S, T ) is triangular α-admissible with respect to η.

Lemma 1.1 ( [23]). Let S, T : X → X be two mappings and α, η : X × X → [0,+∞) be two functions

such that the pair (S, T ) is triangular α-admissible with respect to η. Assume that there exists x0 ∈ X such

that α(x0, Sx0) ≥ η(x0, Sx0). Define a sequence {xn} in X by Sx2n = x2n+1 and Tx2n+1 = x2n+2. Then

α(xn, xm) ≥ η(xn, Sxm) for all m,n ∈ N with n < m.

In 2014, Ansari [4] defined the concept of C-class function as the following:

Definition 1.10. [4] A mapping F : R+ × R+ → R is called a C-class function if it is continuous and for

s, t ∈ [0,∞), F satisfies the following two conditions:

(1) F (s, t) ≤ s; and

(2) F (s, t) = s implies that either s = 0 or t = 0.

The family of all C−class functions is denoted by C.

Example 1.4. [4] The following functions F : R+ × R+ → R are elements in C.

(1) F (s, t) = s− t for all s, t ∈ [0,∞).

(2) F (s, t) = ks for all s, t ∈ [0,∞), where 0 < k < 1.

(3) F (s, t) = s
(1+t)r for all s, t ∈ [0,∞), where r ∈ [0,∞).

(4) F (s, t) = (s+ l)(1/(1+t)
r) − l for all s, t ∈ [0,∞), where r ∈ (0,∞), l > 1.
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(5) F (s, t) = s logt+a a for all s, t ∈ [0,∞), where a > 1.

(6) F (s, t) = s− ( 1+s
2+s )( t

1+t ) for all s, t ∈ [0,∞).

(7) F (s, t) = sβ(s) for all s, t ∈ [0,∞), where β : [0,∞)→ [0, 1) is continuous.

(8) F (s, t) = s− ϕ(s) for all s, t ∈ [0,∞), where ϕ : [0,∞)→ [0,∞) is a continuous function such that

ϕ(t) = 0 if and only if t = 0.

(9) F (s, t) = sh(s, t) for all s, t ∈ [0,∞), where h : [0,∞) → [0,∞) is a continuous function such that

h(s, t) < 1 for all s, t ∈ [0,∞).

(10) F (s, t) = s− ( 2+t
1+t )t for all s, t ∈ [0,∞).

(11) F (s, t) = n
√

ln(1 + sn) for all s, t ∈ [0,∞).

In 2016, Ansari and Kaewcharoen [6] gave the definition of a generalized α − η − ψ − ϕ− F -contraction

type mapping and proved same fixed point theorems for such mappings in complete metric spaces.

Definition 1.11 ( [6]). Let (X, d) be a metric space and α, η : X×X → [0,∞) be two functions. A mapping

T : X → X is said to be a generalized α−η−ψ−ϕ−F -contraction type mapping if α(x, y) ≥ η(x, y) implies

ψ(d(Tx, Ty)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))),

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Hussain et al. [15] introduced the concepts of α−η-complete metric spaces and α−η-continuous functions.

Definition 1.12 ( [15]). Let (X, d) be a metric space and α, η : X×X → [0,∞) be two functions. Then X is

said to be an α, η-complete metric space if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥ η(xn, xn+1)

for all n ∈ N converges in X.

Definition 1.13 ( [15]). Let (X, d) be a metric space and α, η : X × X → [0,∞) be two functions. A

mapping T : X → X is said to be an α, η-continuous mapping if each sequence {xn} in X with xn → x as

n→∞ and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N implies Txn → Tx as n→∞.

Theorem 1.1 ( [6]). Let (X, d) be a metric space. Assume that α, η : X × X → [0,∞) are two functions

and T : X → X is a mapping. Suppose that the following conditions are satisfied:

(1) (X, d) is an α, η-complete metric space;

(2) T is generalized α− η − ψ − ϕ− F -contraction type mapping;

(3) T is triangular α-orbital admissible mapping with respect to η;

(4) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(5) T is an α, η-continuous mapping.
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Then T has a fixed point x∗ ∈ X.

Khan et al. [20] introduced the notion of an altering distance function as follows:

Definition 1.14. [20] A mapping ψ : R+ → R+ is called an altering distance function if the following

properties are satisfied:

(1) ψ is monotone and nondecreasing;

(2) ψ(t) = 0 if an only if t = 0.

The set of all altering distance functions is denoted by Ψ.

In the rest of this paper, we let φ be the set of all functions ϕ : R+ → R+ such that

(1) ϕ is continuous.

(2) ϕ(t) = 0 if and only if t = 0.

2. main result

In this section, we introduce the concept of generalized C−class functions for Geraghty contraction type

mappings on a set X and we prove fixed point results for self mappings on α, η− partial b−metric space.

Now, we present the notion of triangular weak α-admissible with respect to another function η for the

self-mapping S on a set X.

Definition 2.1. Let S : X → X be a mapping and α, η : X ×X → [0,+∞) be two functions such that the

following conditions hold:

(1) if α(x, Snx) ≥ η(x, Snx), then α(Snx, Sn+1x) ≥ η(Snx, Sn+1x),

(2) if α(x, z) ≥ η(x, z) and α(z, y) ≥ η(z, y), then α(x, y) ≥ η(x, y),

for all n ∈ N. Then we say that S is triangular weak α-admissible with respect to η.

Now, we introduce the following example to illustrate our new definition.

Example 2.1. Let X = [0,+∞). Define S : X → X by Sx = x2. Also, define the functions α, η : X×X →

[0,+∞) by α(x, y) = ex+y and η(x, y) = ey−x. Then S is triangular weak α-admissible with respect to η.

Proof. If α(x, Sx) ≥ η(x, Sx), then ex+x
2 ≥ ex

2−x. So x + x2 ≥ x2 − x. So 2x ≥ 0. Hence x ≥ 0. Since

x ≥ −x, then x + x4 ≥ x4 − x. So ex+
4 ≥ e

4−x. Hence α(x,4 ) ≥ η(x,4 ). So α(Sx, Ty) ≥ η(Sx, Ty).

Also, since x2 ≥ −x2, then x2 + y2 ≥ y2 − x2. So ex
2+y2 ≥ ey

2−x2

. Hence α(x2, y2) ≥ η(x2, y2). So

α(Sx, S2x) ≥ η(Sx, S2x). Also, if α(x, z) ≥ η(x, z), and α(z, y) ≥ η(z, y), then x+z ≥ z−x and z+y ≥ y−z.

So x ≥ −x and hence x+ x2 ≥ x2 − x. Therefore ex+y ≥ ey−x. Therefore α(x, Sx) ≥ η(x, Sx). �
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By taking a special case of Lemma 1.1and generalize with is triangular weak α−admissible with respect

to η, we present a lemma that will be helpful for us to achieve our main result.

Lemma 2.1. Let S : X → X be a mappings and α, η : X ×X → R are a functions such that S is triangular

weak α−admissible with respect to η. Assume that there exist x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0).

Define a sequence {xn} in X by Sxn = xn+1. Then α(xn, xm) ≥ η(xn, xm) for all m,n ∈ N with n < m.

Proof. Since α(x0, Sx0) ≥ η(x0, Sx0) and S is weak α−admissible, We get
α(x0, x1) = α(x0, Sx0) ≥ η(x0, x1), then

α(Sx0, Sx1) = α(Sx0, S
2x0) = α(x1, x2) ≥ η(x1, x2).

By triangular α−admissibility, we get
α(Sx0, Sx1) = α(x1, x2) ≥ η(x1, x2), then

α(S2x0, S
2x1) = α(x2, x3) ≥ η(x2, x3)

and

α(S2x1, S
2x2) = α(x3, x4) ≥ η(x3, x4).

Again, since α(x3, x4) ≥ η(x3, x4), then

α(S2x3, S
2x4) = α(x4, x5) ≥ η(x4, x5)

and

α(S2x4, S
2x5) = α(x5, x6) ≥ η(x5, x6).

By continuing the above process, we conclude that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N ∪ {0}.

Now, we prove that

α(xn, xm) ≥ 1, ∀m,n ∈ N with n < m.

Given m,n ∈ N with n < m. Since
α(xn, xn+1) ≥ η(xn, xn+1),

α(Sxn, S
2xn) = α(xn+1, xn+2) ≥ η(xn+1, xn+2),

then, we have

α(xn, xn+2) ≥ η(xn, xn+2).

Again, since 
α(xn, xn+2) ≥ η(xn, xn+2)

α(Sxn+1, S
2xn+1) = α(xn+2, xn+3) ≥ η(xn+2, xn+3),

we deduce that

α(xn, xn+3) ≥ η(xn, xn+3).
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By continuing this process, we have

α(xn, xm) ≥ η(xn, xm)

for all n ∈ N with m > n.

�

In order to facilitate our subsequent arguments, we introduce the notion of generalized C−class functions

for self mappings on a set X.

Definition 2.2. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1, S : X → X be a

Geraghty contraction type mapping and α, η : X × X → R be a function. Let F ∈ C, ψ ∈ Ψ and ϕ ∈ Φ.

Then S is called generalized C−class function with α(x, y) ≥ η(x, y), then

ψ(b(Sx, Sy)) ≤ λF (ψ(M(x, y)), ϕ(M(x, y))), (2.1)

where

M(x, y) = max{b(x, y), b(x, Sx), b(y, Sy),
b(x, Sy) + b(y, Sx)

2
} (2.2)

and λ ∈ [0, 1s ).

Theorem 2.1. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be Geraghty

contraction type mapping on X. Assume that α, η : X × X → [0,+∞) are a functions. Suppose that the

following conditions hold:

(1) S is generalized C−class function.

(2) S is a triangular weak α-admissible.

(3) There exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

(4) S is α, η−continuous mappings.

Then S has a unique fixed point.

Proof. We divide the proof to three steps:

Step 1. Let x0 ∈ X be such that α(x0, Sx0) ≥ η(x0, Sx0). Define a sequence {xn} in X such that

xn+1 = Sxn for all n ∈ N. If xn0 = xn0+1 for some n0 ∈ N, then it is very easy to show that S has a fixed

point. Now, since the pair S is α−admissible, then

α(x1, x2) = α(Sx0, S
2x0) ≥ η(x1, x2)

and

α(x2, x3) = α(Sx1, S
2x1) ≥ η(x2, x3).
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Again, by using the property of weak α−admissible and repeating the above process for n-times, we have

α(xn, xn+1) ≥ η(xn, xn+1) and α(xn+1, xn) ≥ η(xn+1, xn).

Using the property of triangular weak α−admissible, we can deduce that for any n,m ∈ N with m > n, we

have α(xn, xm) ≥ η(xn, xm) and α(xm, xn) ≥ η(xm, xn).

Suppose xn 6= xn+1 for all n ∈ N, by Lemma 2.1, we have α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. Since S

is a generalized C−class function, we have

ψ(b(xn+1, xn)) = ψ(b(Sxn, Sxn−1))

≤ λF (ψ(M(xn, xn−1)), ϕ(M(xn, xn−1)))

≤ λψ(M(xn, xn−1)), (2.3)

for all n ∈ N, where

M(xn, xn−1) = max{b(xn, xn−1), b(xn, Sxn), b(xn−1, Sxn−1),
b(xn, Sxn−1) + b(xn−1, Sxn)

2
}

= max{b(xn, xn−1), b(xn, xn+1), b(xn−1, xn),
b(xn, xn) + b(xn−1, xn+1)

2
}

= max{b(xn, xn−1), b(xn, xn+1)}. (2.4)

If M(xn, xn−1) = b(xn, xn+1), then

ψ(b(xn+1, xn)) ≤ λF (ψ(M(xn, xn−1), ϕ(M(xn, xn−1)))

≤ λψ(M(xn, xn−1))

= λψ(b(xn+1, xn)),

< ψ(b(xn+1, xn)). (2.5)

Which is contraction. Thus we conclude that M(xn, xn−1) = b(xn, xn−1). By (2.2), we get that

ψ(b(xn+1, xn)) ≤ λψ(b(xn, xn−1))

for all n ∈ N.

On repeating this process, we obtain

ψ(b(xn+1, xn)) ≤ λnψ(b(x1, x0)) (2.6)

for all n > 0.

Since ψ is nondecreasing, we have b(xn+1, xn+2) ≤ b(xn, xn+1) for all n ∈ N.

Similarly, we can show that b(xn, xn+1) ≤ b(xn−1, xn).

for all n ∈ N ∪ {0}.

It follow that the sequence {b(xn, xn+1)} is nonincreasing for all n ∈ N. Therefore there exists r ≥ 0 such
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that limn→∞ b(xn, xn+1) = r. We claim that r = 0.

Now, we have

ψ(b(xn+1, xn+2)) ≤ λF (ψ(b(xn, xn+1)), ϕ(b(xn, xn+1))) < F (ψ(b(xn, xn+1)), ϕ(b(xn, xn+1))).

Taking n→∞ , we obtain that

ψ(r) ≤ λF (ψ(r), ϕ(r)) < F (ψ(r), ϕ(r)).

This implies that ψ(r) = 0 or ϕ(r) = 0 which yields

lim
n→∞

b(xn, xn+1) = 0. (2.7)

Step 2. To prove that {xn} is a Cauchy sequence, there exist ε > 0 and two subsequences {xm(k)} and

{xn(k)} of {xn} with mk > nk > k such that:

d(xn(k), xm(k)) ≥ ε, d(xn(k), xm(k)−1) < ε.

Then, using the triangular inequality we get

b(xn, xm(k)) ≤ s[b(xn(k), xn(k)+1) + b(xn(k)+1, xm(k))]− b(xn(k)+1, xn(k)+1)

≤ sb(xn(k), xn(k)+1) + s2[b(xn(k)+1, xn(k)+2) + b(xn(k)+2, xm(k))− sb(xn(k)+2, xn(k)+2)

≤ sb(xn(k), xn(k)+1) + s2b(xn(k)+1, xn(k)+2) + s3b(xn(k)+2, xn(k)+2) + ...+ sm−nb(xm(k)−1, xm(k)).

Using (2.6) in the above inequality

b(xn, xm(k)) ≤ sλnb(x1, x0) + s2λn+1b(x1, x0) + s3λn+3b(x1, x0) + ...+ sm−nλm−1b(x1, x0)

≤ sλn[1 + sλ+ (sλ)2 + ...]b(x1, x0)

=
sλn

1− sλ
b(x1, x0).

As λ ∈ [0, 1s ) and s > 1, it follows from the above inequality that

lim
n,m→∞

b(xn, xm) = 0.

Therefore, {xn} is a Cauchy sequence in the complete b−partial metric space X

Step3. We now prove that S has a fixed point.

Since {xn} is a Cauchy sequence in the complete b−partial metric space X and by completeness of X,

then there exists x∗ ∈ X such that

lim
n,m→∞

b(xn, x
∗) = lim

n,m→∞
b(xn, xm) = b(x∗, x∗). (2.8)
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We will show that x∗ is a fixed point of S. For any n ∈ N, we have

b(x∗, Sx∗) ≤ s[b(x∗, xn+1) + b(xn+1, Sx
∗)]− b(xn+1, xn+1)]

≤ s[b(x∗, xn+1) + b(Sxn, Sx
∗)]

≤ sb(x∗, xn+1) + sλb(xn, x
∗).

Using (2.8) in the above inequality, we obtain b(x∗, Sx∗) = 0, that is, Sx∗ = x∗. Thus, x∗ is a fixed point

of S.

Step4. Let us show that the fixed point of S is unique.

Let u, v ∈ X be two distinct fixed points of S, that is, Su = u and Sv = v. It follows from (2.2) that

ψ(b(u, v)) = ψ(b(Su, Sv))

≤ λF (ψ(max{b(u, v), b(u, Su), b(v, Sv),
b(u, Sv) + b(v, Su)

2
}), ϕ(max{b(u, v), b(u, Su), b(v, Sv),

b(u, Sv) + b(v, Su)

2
}))

≤ λψ(max{b(u, v), b(u, Su), b(v, Sv),
b(u, Sv) + b(v, Su)

2
})

= λψ(max{b(u, v), b(u, u), b(v, v),
b(u, v) + b(v, u)

2
})

= λψ(b(u, v)),

< ψ(b(u, v)).

Which is contraction. Therefore, we must have b(u, v) = 0, that is, u = v. Thus, the fixed point of S is

unique.

�

The continuity of S in Theorem 2.1 can be dropped.

Theorem 2.2. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be Geraghty

contraction type mapping on X. Assume that α, η : X × X → [0,+∞) are a functions. Suppose that the

following conditions hold:

(1) S is C−class function.

(2) S is triangular weak α-admissible.

(3) There exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0).

(4) If {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as

n → ∞, then there exist a subsequence {xn(k)} of {xn} such that α(xn(k), x
∗) ≥ η(xn(k), x

∗) for all

k ∈ N.

Then S has a unique fixed point.
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Proof. Following the same proof as in Theorem 2.1, we construct the sequence {xn} be defining xn+1 = Sxn

for all n ∈ N converging to x∗ ∈ X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. By condition (5),

there exist a subsequence {xn(k)} of {xn} such that α(xn(k), x
∗) ≥ η(xn(k), x

∗) for all k ∈ N.

Therefore,

ψ(b(xn(k)+1, Tx
∗)) = ψ(d(Sxn(k), Tx

∗)),

≤ λF (ψ(M(xn(k), x
∗), ϕ(M(xn(k), x

∗))),

≤ F (ψ(M(xn(k), x
∗))), (2.9)

for all n ∈ N.

Now,

M(xn(k), x
∗) = max{b(xn, x∗), b(xn(k), Sxn(k)), b(x∗, Sx∗), (2.10)

b(xn(k), Sx
∗) + b(x∗, Sxn(k))

2
},

= max{b(xn(k), x∗), b(xn(k), xn(k)+1), b(x∗, x∗), (2.11)

b(xn(k), x
∗) + b(x∗, Sxn(k))

2
},

= max{d(xn(k), x
∗), d(xn(k), xn(k)+1))}. (2.12)

By taking n→∞ in (2.9) and using (2.7), we obtain

ψ(b(x∗, Sx∗)) ≤ λF (ψ(b(x∗, Sx∗)), φ(b(x∗, Sx∗))),

which implies that b(x∗, Sx∗) = 0, that is, Sx∗ = x∗. �

Now, we use Theorem 2.1 and Theorem 2.2 to present many fixed point results:

Corollary 2.1. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be mapping on

X. Assume that α : X ×X → [0,+∞) is a function. Also, suppose that the following conditions hold:

(1) For all x, y ∈ X with α(x, y) ≥ 1), we have ψ(b(Sx, Sy)) ≤ λF (ψ(b(x, y)), ϕ(b(x, y)).

(2) S is generalized C−class function.

(3) S is a triangular weak α-admissible.

(4) There exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

(5) S is α, η−continuous mappings.

Then S has a unique fixed point.

Proof. Follows the same proof of the Theorem 2.1 by defining η : X ×X → R via η(x, y) = 1. �

Corollary 2.2. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be mapping on

X. Assume that α : X ×X → [0,+∞) is a function. Also, suppose that the following conditions hold:
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(1) For all x, y ∈ X with α(x, y) ≥ 1, we have ψ(b(Sx, Sy)) ≤ λF (ψ(b(x, y)), ϕ(b(x, y)).

(2) S is generalized C−class function.

(3) S is a triangular α-admissible.

(4) There exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

(5) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x∗ ∈ X as n → ∞,

then there exist a subsequence {xn(k)} of {xn} such that α(xn(k), x
∗) ≥ 1 for all k ∈ N.

Then S has a unique fixed point.

Proof. Follows the same proof of the Theorem 2.2 by defining η : X ×X → R via η(x, y) = 1. �

Let β : [0,+∞)→ [0, 1) be a continuous function. Define S : [0,∞)× [0,∞)→ [0,∞) via F (s, t) = sβ(t).

Then F ∈ C. By Theorem 2.1 and Theorem 2.2, we have the following results:

Corollary 2.3. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be mapping

on X. Assume that α, η : X ×X → [0,+∞) are a functions. Suppose there exist ψ ∈ Ψ and a continuous

function β : [0,+∞)→ [0, 1) such that for all x, y ∈ X with α(x, y) ≥ η(x, y), we have

ψ(b(Sx, Sy)) ≤ λF (β(ψ(b(x, y))), ϕ(b(x, y)). (2.13)

Also, suppose that the following conditions hold:

(1) S is generalized C−class function.

(2) S is a triangular weak α-admissible.

(3) There exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

(4) S is α, η−continuous mappings.

Then S has a unique fixed point.

Corollary 2.4. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be mapping

on X. Assume that α, η : X ×X → [0,+∞) are a functions. Suppose there exist ψ ∈ Ψ and a continuous

function β : [0,+∞)→ [0, 1) such that for all x, y ∈ X with α(x, y) ≥ η(x, y), we have

ψ(b(Sx, Sy)) ≤ λF (β(ψ(b(x, y))), ϕ(b(x, y)). (2.14)

Also, suppose that the following conditions hold:

(1) S is generalized C−class function.

(2) S is a triangular weak α-admissible.

(3) There exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0).

(4) If {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as

n → ∞, then there exist a subsequence {xn(k)} of {xn} such that α(xn(k), x
∗) ≥ η(xn(k), x

∗) for all

k ∈ N.
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Then S has a unique fixed point.

Example 2.2. Let X = [0, 1] and b : X × X → R define by b(x, y) = |x− y|2 for all x, y ∈ X. Define

ψ, φ : [0,∞) → [0,∞) by ψ(t) = t and φ(t) = 4
25 t. Define the mapping S : R → R by Sx = ln x

5 . Also, we

define the functionsα, η : X ×X → [0,∞) by

α(x, y) =


ex+y if x, y ∈ [0, 1],

0 if otherwise,

η(x, y) =


1 if x, y ∈ [0, 1],

0 if otherwise.

and F (r, t) = r − t for all r, t, x, y ∈ X.

Firstly, It is easy to see that (X, b) is a complete partial b−metric space with s = 3.

Then S is a triangular weak α-admissible with respect to η. Indeed, if α(x, Sx) ≥ η(x, Sx), then

α(Sx, S2x) ≥ η(Sx, S2x), So α(x, lnx+ 1) = ex+ln x > 1 = η(x, lnx),then α(lnx, ln (lnx)) = eln x+ln (ln x) ≥

e = η(lnx, ln (lnx)).So x ≥ 0 and hence Sx ≤ 0. Therefore, α(x, Sx) ≥ η(x, Sx).

We will prove that S is a generalized C−class function. Since α(x, Sx) ≥ η(x, Sx). Then we have

x, y ∈ [0, 1] and then

ψ(d(Sx, Sy)) =

∣∣∣∣ lnx5 − ln y

5

∣∣∣∣2
=

1

25
|lnx− ln y|2

=
1

25
b(x, y)

≤ 1

25
M(x, y)

= M(x, y)− 24

25
M(x, y)

= ψ(M(x, y))− φ(M(x, y))

= F (ψ(M(x, y)), φ(M(x, y))).

Then S is a generalized C−class function and all assumptions of Corollary 2.1 are satisfied. Hence S has

a unique fixed point.

3. Applications

In this section, we apply our results to construct an application on Lebesgue-integrable. Denote by Γ the

set of all functions γ : R+ → R+ satisfying the following conditions:
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(1) γ is Lebesgue-integrable on each compact of R+;

(2) For each ε > 0, we have ∫ ε

0

γ(z)dz > 0

.

Theorem 3.1. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be Geraghty

contraction type mappings on X. Also, let F ∈ C and γ1, γ2 ∈ Γ. Assume that α, η : X ×X → [0,∞) be two

functions such for all x, y ∈ X with α(x, y) ≥ η(x, y), we have

∫ d(Sx,Ty)

0

γ1(z))dz ≤ F

(∫ max{d(x,y),d(x,Sx),d(Tx,Ty), b(x,Sy)+b(y,Sx)
2 }

0

γ1(z)dz,

∫ max{d(x,y),d(x,Sx),d(Tx,Ty), b(x,Sy)+b(y,Sx)
2 }

0

γ2(z)dz

)
.

Also, suppose the following hypotheses:

(1) S is generalized C−class function.

(2) S is a triangular weak α-admissible.

(3) There exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

(4) S is α, η−continuous mappings.

Then S has a unique fixed point.

Proof. Define the functions ψ,ϕ : R+ → R+ via ψ(t) =
∫ t
0
γ1(z))dz and ϕ(t) =

∫ t
0
γ2(z))dz. Noting that ψ

is an altering distance function and ϕ ∈ Φ. So S is triangular weak α−admissible with respect to η. So S

satisfies all the hypotheses of theorem 2.1. Therefore S has a fixed point. �

Theorem 3.2. Let (X, b) be a complete b−partial metric space with coefficient s ≥ 1 and S be Geraghty

contraction type mappings on X. Also, let F ∈ C and γ1, γ2 ∈ Γ. Assume that α, η : X ×X → [0,∞) be two

functions such for all x, y ∈ X with α(x, y) ≥ η(x, y), we have

∫ d(Sx,Ty)

0

γ1(z))dz ≤ F

(∫ max{d(x,y),d(x,Sx),d(Tx,Ty), b(x,Sy)+b(y,Sx)
2 }

0

γ1(z)dz,

∫ max{d(x,y),d(x,Sx),d(Tx,Ty), b(x,Sy)+b(y,Sx)
2 }

0

γ2(z)dz

)
.

Also, suppose the following hypotheses:

(1) S is generalized C−class function.

(2) S is a triangular weak α-admissible.

(3) There exists x0 ∈ X such that α(x0, Sx0) ≥ 1.
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(4) If {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as

n → ∞, then there exist a subsequence {xn(k)} of {xn} such that α(xn(k), x
∗) ≥ η(xn(k), x

∗) for all

k ∈ N.

Then S has a unique fixed point.

Proof. Follow from Theorem 2.2 by defining ψ(t) =
∫ t
o
γ1(z))dz and ϕ(t) =

∫ t
o
γ2(z))dz. Noting that the

mapping S satisfies all the hypotheses of theorem 2.2. �
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