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Abstract. In this article, we present the transmission dynamic of the acute and chronic hepatitis B epidemic

problem to control the spread of hepatitis B in a community. In order to do this, first we present sensitivity

analysis of the basic reproduction number R0. We develop a unconditionally convergent nonstandard finite

difference scheme by applying Mickens approach φ(h) = h+O(h2) instead of h to control the spread of this

infection, treatment and vaccination to minimize the number of acute infected, chronically infected with

hepatitis B individuals and maximize the number of susceptible and recovered individuals. The stability

analysis of the scheme has been developed by theorems which shows the both stable locally and globally.

Comparison is also made with standard nonstandard finite difference scheme. Finally numerical simulations

are also established to investigate the influence of the system parameter on the spread of the disease.

1. Introduction

The scope of mathematics includes mathematical modeling and esoteric mathematics. The flow of work,

process, predictions and outcomes can easily be measured with the help of mathematical concepts and theory.

Therefore, biologists are now extremely dependent on mathematics. Mathematical modeling of biological

sciences is done by many brilliant scientist [1-3]. The relationship between simple mathematical modeling

involves biological system, integer order differential equations that show their dynamics and complex system
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which describes their changing of structure. The nonlinearity and multi-scale behaviors in mathematical

modeling describe the mutual relationship between parameter [4]. In last few decades, many biological

models were studied in detail by using classical derivative, few of them in [5,6].

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus. It is a major

global health problem. It can cause chronic liver disease and chronic infection and puts people at high risk

of death from cirrhosis of the liver and liver cancer [7]. Infections of hepatitis B occur only if the virus is

able to enter the blood stream and reach the liver. Once in the liver, the virus reproduces and releases large

numbers of new viruses into the blood stream [8].

This infection has two possible phases: (1) acute and (2) chronic. Acute hepatitis B infection lasts less

than six months. If the disease is acute, your immune system is usually able to clear the virus from your

body, and you should recover completely within a few months. Most people who acquire hepatitis B as adults

have an acute infection. Chronic hepatitis B infection lasts six months or longer. Most infants infected with

HBV at birth and many children infected between 1 and 6 years of age become chronically infected [7].

About two-thirds of people with chronic HBV infection are chronic carriers. These people do not develop

symptoms, even though they harbor the virus and can transmit it to other people. The remaining one-third

develop active hepatitis, a disease of the liver that can be very serious. More than 240 million people have

chronic liver infections. About 600 000 people die every year due to the acute or chronic consequences of

hepatitis B [7,9]

HBV can be transmitted from one individual to another individual on different ways, such as transmission

of blood, semen and vaginal secretions [20,21,22]. Another major transmission of HBV is the unprotected

sexual contact, sharing of razors, blades or tooth brushes [3].Also the virus transmits from an infected

mother to her child during the time of birth. However, HBV cannot be transmitted through water, food,

hugging, kissing and causal contact such as in the work place, school, etc. [22]. The mode of transmission of

HBV and HIV is the same, but HBV is 50100 times more infectious [25]. HBV infection is a global health

problem. According to WHO about 400million population is infected world wide chronically. In China

93million population are affected due to HBV infections [23,27,28]. Vaccine for the prevention of hepatitis B

is available in the market that is very effective [24,26]. In the real world phenomena mathematical modeling

is one of the powerful tools to describe the dynamical behavior of different diseases [16,17,18,19,29].

Mathematical models have been used to help understand the dynamics of viral infections, such as human

immunodeficiency virus and hepatitis C infection [11,12]. Following these approaches, dynamic models were

developed to analyze the changes in hepatitis B virus levels during drug therapy [13,14,15,10]. In this

article,we develop a HBV transmission model. The infectious class is divided into two stages, such as acute

infectious and chronic infectious stage. Thus, the total population is divided into four compartments, S(t)
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susceptible, I1(t) infected with acute hepatitis B, I2(t) infected with chronic hepatitis B and R(t) recovered

individuals.

In this paper, we investigate the stability and qualitative analysis of acute and chronic hepatitis B model.

An unconditionally convergent nonstandard finite difference scheme has been presented to obtain solution

of model. The analysis of two different states disease free and endemic equilibrium which means the disease

dies out or persist in a population has been made by finding reproductive number. Numerical results are

presented graphically to show the dynamics of the model.

2. Materials and Method

we used a mathematical model for HBV transmission by extending the work presented in [28].We divide the

host population denoted by T(t) into four compartments: susceptible individuals S(t), who are not infective

but have the chance to catch the disease; infected I1(t) represents those individuals who are infective with

acute hepatitis; I2(t) are those individuals, who are infected with chronic hepatitis and R(t) represents

those individuals who have recovered after the infection with a life-time immunity. The flowchart for the

transmission of HBV is given in Figure 1.

Figure 1. The flowchart of the model

Thus, the mathematical model is represented by the following four differentials equations:

dS

dt
= b− αS(t)I2(t)− (µ0 + ν)S(t) (2.1)

dI1
dt

= αS(t)I2(t)− (µ1 + β + γ1)I1(t) (2.2)
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dI2
dt

= βI1(t)− (µ0 + µ1 + γ2)I2(t) (2.3)

dR

dt
= γ1I1(t) + γ2I2(t) + νS(t)− µ0R(t) (2.4)

with initial conditions S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥, R(0) ≥ 0, Here b represents the birth rate, α is the

moving rate from susceptible to infected with acute hepatitis B, β is the moving rate from acute stage to

infected with chronic hepatitis, γ1 is the recovery rate from acute stage to recovered, γ2 is the recovery

rate from chronic stage to recovered compartment, µ0 is the death rate occurring naturally, which is also

called natural mortality rate, µ1 is the death rate occurring due to hepatitis B and ν represents hepatitis B

vaccination rate.

3. Qualitative Analysis

The model (2.1 − 2.4) is locally asymptotically as well as globally asymptotically stable at disease-free

and endemic equilibrium points [29]. For disease-free equilibrium the model (2.1 − 2.4) is both locally and

globally stable, if the value of basic reproduction number is less than unity while for the endemic equilibrium

the model is stable if the value of the basic reproduction number R0 is greater than unity. Model has a

disease-free equilibrium, denoted by E0 and defined as, E0 = (S0, 0, 0, R
0), where

S0 =
b

µ0 + ν

and

R0 =
νb

µ0(µ0 + ν)
.

The endemic equilibrium is given by E∗ = (S∗, I∗1 , I
∗
2 , R

∗), where

S∗ =
1

αβ
(µ0 + β + γ1)(µ0 + µ1 + γ2)

I∗1 =
1

αβ
(µ0 + ν)(µ0 + µ1 + γ2)[R0 − 1]

I∗2 =
1

α
(µ0 + ν)[R0 − 1]

R∗ =
1

µ0
[(
γ1
αβ

(µ0 + ν)(µ0 + µ1 + γ2) +
γ2
α

(µ0 + ν)[R0 − 1]) +
ν

αβ
(µ0 + β + γ1)(µ0 + µ1 + γ2)]

Regarding these equilibrium point of the model (2.1−2.4), we have the following results which are proved

in [29].
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3.1. Reproductive Number. Basic reproduction number R0 is defined to be the expected number of

secondary infections produced by an index case or the average number of secondary infection arising from a

single individual introduced into the susceptible class during its entire infectious period in a totally susceptible

population. The basic reproduction number R0 of the model (2.1− 2.4) in [29] is

R0 =
αβb

(µ0 + ν)(µ0 + β + γ1)(µ0 + µ1 + γ2)

Theorem 3.1. If R0 < 1, then the model (2.1−2.4) is locally asymptotically stable at disease-free equilibrium,

E0 = ( b
µ0+ν

, 0, 0, νb
µ0(µ0+ν)

), while E0 is unstable saddle point if R0 > 1.

Theorem 3.2. If R0 ≤ 1, then the model (2.1− 2.4) is globally asymptotically stable at disease-free equilib-

rium, E0 = (S0, 0, 0, R0) and unstable otherwise.

Theorem 3.3. The endemic equilibrium state E1 = (S∗, I∗1 , I
∗
2 , R

∗) of the model (2.1 − 2.4) is globally

asymptotically stable, if R0 > 1, otherwise unstable.

Prof of these theorems will be given in [29], used in section 4.

3.2. Sensitivity Analysis of R0: The sensitivity of

R0 =
αβb

(µ0 + ν)(µ0 + β + γ1)(µ0 + µ1 + γ2)

to each of its parameters is

∂R0

∂α
=

βb

(µ0 + ν)(µ0 + β + γ1)(µ0 + µ1 + γ2)
≥ 0

∂R0

∂β
=

αb(µ0 + γ1)

(µ0 + ν)(µ0 + β + γ1)2(µ0 + µ1 + γ2)
≥ 0

∂R0

∂b
=

αβ

(µ0 + ν)(µ0 + β + γ1)(µ0 + µ1 + γ2)
≥ 0

∂R0

∂ν
= − αβb

(µ0 + ν)2(µ0 + β + γ1)(µ0 + µ1 + γ2)
≤ 0

∂R0

∂γ1
= − αβb

(µ0 + ν)(µ0 + β + γ1)2(µ0 + µ1 + γ2)
≤ 0

∂R0

∂γ2
= − αβb

(µ0 + ν)(µ0 + β + γ1)(µ0 + µ1 + γ2)2
≤ 0

∂R0

∂µ1
= − αβb

(µ0 + ν)(µ0 + β + γ1)(µ0 + µ1 + γ2)2
≤ 0

∂R0

∂µ0
=
−αβb[(µ0 + ν)(µ0 + β + γ1) + (µ0 + ν)(µ0 + µ1 + γ2) + (µ0 + β + γ1)(µ0 + µ1 + γ2)]

(µ0 + ν)2(µ0 + β + γ1)2(µ0 + µ1 + γ2)2
≤ 0

It can be seen that R0 is most sensitive to change in parameter, here, R0 is increasing with α, b, β, and

decreasing with γ1, γ2, ν, µ0, µ1. In other words it found that the sensitivity analysis shows that prevention

is better than to control the disease.
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4. Nonstandard Finite Difference (NSFD) Scheme

A nonstandard finite difference (NSFD) scheme for the system (2.1− 2.4) is presented in this section [30].

In recent years, nonstandard finite difference (NSFD) scheme for discrete models have been constructed or

tested for a wide range of nonlinear systems of differential equations [31,32,33]. The positivity of the state

variables involved in the system is satisfy by proposed method. This property has key role when we solve

mathematical models arising in biology because these state variables represent sub-populations which never

take negative values. The discretized form of the the system (2.1− 2.4) by using NSFD scheme which based

on the generalized first order forward method is written as

Sk+1 − Sk

h
= b− αsk+1Ik2 − (µ0 + ν)Sk+1 (4.1)

Sk+1 + hαsk+1Ik2 + h(µ0 + ν)Sk+1 = Sk + bh (4.2)

Sk+1 =
Sk + bh

1 + hαIk2 + h(µ0 + ν)
(4.3)

Ik+1
1 − Ik1

h
= αIk2S

k+1 − (β + µ0 + γ1)Ik+1
1 (4.4)

Ik+1
1 + h(β + µ0 + γ1)Ik+1

1 = Ik1 + hαIk2S
k+1 (4.5)

Ik+1
1 =

Ik1 + hαIk2S
k+1

1 + h(β + µ0 + γ1)
(4.6)

Ik+1
2 − Ik2

h
= βIk+1

1 − (µ1 + µ0 + γ2)Ik+1
2 (4.7)

Ik+1
2 + h(µ1 + µ0 + γ2)Ik+1

2 = Ik2 + hβIk+1
1 (4.8)

Ik+1
2 =

Ik2 + hβIk+1
1

1 + h(µ1 + µ0 + γ2)
(4.9)

Rk+1 −Rk

h
= γ1I

k+1
1 + γ2I

k+1
2 + νSk+1 − µ0R

k+1 (4.10)

Rk+1(1 + hµ0) = Rk + h(γ1I
k+1
1 + γ2I

k+1
2 + νSk+1) (4.11)

Rk+1 =
Rk + h(γ1I

k+1
1 + γ2I

k+1
2 + νSk+1)

1 + hµ0
(4.12)
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4.1. Proposed NSFD Scheme. In this section, we design an NSFD scheme [34] that replicates the dy-

namics of the continuous model (2.1− 2.4). Let Yk = (Sk, I1k, I2k, Rk)T denoted an approximation of X(tk)

where tk = k∆t, with k ∈ N , h = ∆t > 0 be a step size then

Sk+1 − Sk

φ
= b− αsk+1Ik2 − (µ0 + ν)Sk+1 (4.13)

Ik+1
1 − Ik1

φ
= αIk2S

k+1 − (β + µ0 + γ1)Ik+1
1 (4.14)

Ik+1
2 − Ik2

φ
= βIk+1

1 − (µ1 + µ0 + γ2)Ik+1
2 (4.15)

Rk+1 −Rk

φ
= γ1I

k+1
1 + γ2I

k+1
2 + νSk+1 − µ0R

k+1 (4.16)

which is the new purposed NSFD scheme for the given model, where

φ = φ(h) =
1− e−(β+µ0+γ1)h

β + µ0 + γ1
(4.17)

The discrete method (4.13 − 4.16) is indeed an NSFD scheme because it is constructed according to

Mickens rules [33] formalized as follows in [34].

Rule 1. The standard denominator h = ∆t of the discrete derivatives is replaced by the complex denominator

function in Equation (4.17) which satisfies the asymptotic relation

φ(h) = h+O(h2)

Note that the denominator function φ is expected to better capture the dynamics of the continuous model

through the presence of the underlying parameters µ0, β, γ1. In fact, exact schemes for a wide range of

dynamical systems involve such complex denominator functions [35,36].

Rule 2.Nonlinear terms in the right-hand side of Equation (2.1− 2.4) are approximated in a non-local way.

For instance, we have I2(tk)S(tk) ' I2kSk+1 instead of I2(tk)S(tk) ' I2kSk

4.2. Analysis of the Scheme.

Theorem 4.1. The NSFD scheme (4.13− 4.16) is a dynamical system on the biological feasible domain K

of the continuous model (2.1− 2.4).

Proof:First, we prove the positivity of the scheme (4.13 − 4.16). It is easy to show that the NSFD scheme

(4.13− 4.16) takes the explicit form

Sk+1 =
Sk + φb

1 + αφIk2 + (µ0 + ν)φ
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Ik+1
1 =

[1 + αφIk2 + (µ0 + ν)φ][Ik1 + αφ(Sk + φb)Ik2 ]

[1 + φ(µ0 + β + γ1)][1 + αφIk2 + (µ0 + ν)φ]

Ik+1
2 =

[1 + φ(µ0 + β + γ1)][1 + αφIk2 + (µ0 + ν)φ](Ik2 + βφIk1 ) + βαφ2(Sk + φb)Ik2
[1 + φ(µ0 + µ1 + γ2)][1 + φ(µ0 + β + γ1)][1 + αφIk2 + (µ0 + ν)φ]

Rk+1 =
Rk.A.B.C.D + φ{γ1(A.D.CIk1 + αφ.E) + γ2A(B.C[Ik2 + βφIk1 ] + αβφ2Ik2 .E) + νE.A.B.C}

A.B.C.D

where

A = 1 + µ0φ, B = 1 + φ(µ0 + β + γ1), C = 1 + αφIk2 + (µ0 + ν)φ

D = 1 + φ(µ0 + µ1 + γ2), E = Sk + φb

Thus Sk+1 ≥ 0, Ik+1
1 ≥ 0, Ik+1

2 ≥ 0, Rk+1 ≥ 0 whenever the discrete variables are non-negative at the

previous iteration. It remains to prove the positive invariance of K. Adding the (4.13) and (4.14),we have

[1 + φ(µ0 + ν)]Hk+1 = φb+Hk − [1 + (µ0 + µ1 + γ1)φ]Ik ≤ φb+Hk

[1 + φ(µ0 + ν)]Hk+1 ≤ φb+Hk

⇒ Hk+1 ≤ b

µ0 + ν

whenever

Hk ≤ b

µ0 + ν

The priori bonds for Ik+1
2 and Rk+1 follow the radially from the fact that Ik+1

2 and Ik+1
1 and less then or

equal Hk+1. This complete the proof.

Theorem 4.2. (1) The disease-free fixed point (resp. the endemic fixed point ) of the NSFD scheme (4.13−

4.16) for the model without recruitment/provision of disease is GAS whenever R0 ≤ 1 (resp. whenever

R0 > 1).

(2) The endemic fixed-point of the NSFD scheme (4.13− 4.16) for the full model is GAS.

Proof:Let Yk ∈ R4
+ be the bounded sequence defined by the NSFD scheme (4.13− 4.16). We want to prove

that Yk tends to Y ∗, where Y ∗ is any of the fixed point. By Bolzano Weierstrass theorem, there exists a

subsequence Ynk
of Yn that converge to some Z∗ as k → +∞. By the assumption made above and the

structure of the NSFD scheme (4.13− 4.16), Y ∗ = Z∗ is necessarily either the unique disease-free fixed-point
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E0 (whenever R0 ≤ 1) or the unique endemic fixed-point E∗ or the unique endemic E�, which is LAS thanks

to Theorem 4.2. Therefore, there exists θ > 0 such that for an initial condition Y0 satisfying

‖Y 0 − Y ∗‖ ≤ θ

we have

lim
x→+∞

‖Y 0 − Y ∗‖ = 0 (4.18)

let Y 0 be an arbitrary initial condition . As

lim
x→+∞

Ynk
= Y ∗,

there exits a integer k0 such that

‖Ynk0
− Y ∗‖ ≤ θ (4.19)

In view equation (4.18) and (4.19), we have

lim
x→+∞,n≥1

‖Ynn
− Y ∗‖ = lim

x→+∞,n≥nk0

‖Ynn
− Y ∗‖ = 0 (4.20)

This prove that Y ∗ is GAS.

Table 1. Values of physical parameters used in model when R0 < 1

Parameter Value Parameter Value

n1 100 n2 40

n3 20 n4 5

b 0.4 ν 0.02

β 0.01 µ0 0.03

µ1 0.002 γ1 0.05

γ2 0.06 α 0.005
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Table 2. Values of physical parameters used in model when R0 > 1

Parameter Value Parameter Value

n1 100 n2 40

n3 20 n4 5

b 0.4 ν 0.02

β 0.1 µ0 0.03

µ1 0.04 γ1 0.05

γ2 0.06 α 0.05

4.3. Numerical Simulations. The mathematical analysis of epidemic model hepatitis B with non-linear

incidence has been presented. To observe the effects of the parameters using in this dynamics hepatitis B

model (2.1−2.4), conclude several numerical simulations varying the value of parameters given in table 1 and

table 2 for R0 < 1 and R0 > 1 respectively. Figure 2 and 3 shows the convergence solution for diseases free

and endemic equilibria by using NSFD scheme at h = 1. Figure 4 and 5 also represent the he convergence

solution for diseases free and endemic equilibria by using NSFD scheme at φ = φ(h) +O(h2). The technique

create a better impact to control the hepatitis B, it reduces the infected rate and increases the susceptible

and recovered population during disease free state as well as in endemic state.
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Figure 2. Numerical solutions for susceptible, acute infected individual, chronic infected

individual and recovered population in a time t with step size h = 1 for disease free equilib-

rium points.
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Figure 3. Numerical solutions for susceptible, acute infected individual, chronic infected

individual and recovered population in a time t with step size h = 1 for endemic equilibrium

points.
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Figure 4. Numerical solutions for susceptible, acute infected individual, chronic infected

individual and recovered population in a time t by using φ = φ(h) with step size h = 1 for

disease free equilibrium points.
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Figure 5. Numerical solutions for susceptible, acute infected individual, chronic infected

individual and recovered population in a time t by using φ = φ(h) with step size h = 1 for

endemic equilibrium points.

5. Conclusion

We have considered a mathematical system of equation which describes the hepatitis B disease. The

analysis of the system is well established. Sufficient conditions for local stability of the DFE point E0

are given in terms of the basic reproduction number R0 of the model, where it is asymptotically stable if

R0 < 1. The positive infected equilibrium E∗ exist when R0 > 1 and sufficient conditions that guarantee

the asymptotic stability of the point are given. Beside this sensitivity analysis of the parameters involved

in threshold parameter R0 is discussed. It is important to note that nonstandard finite difference scheme

for mathematical models based on system of differential equations is more powerful approach to compute

the convergent solutions for the disease models. The nonstandard finite difference scheme is dynamically

consistent, easy to implement and show a good agreement to control the bad impact of hepatitis B for

long period of time and to eradicate a death killer factor in the world spread by hepatitis B. Finally, we

presented the numerical simulation and verified all the analytical results numerically by using nonstandard

finite difference scheme to reduce acute as well chronic infected rates for both disease free and endemic

equilibria , we are able to control the spreading of hepatitis B in the community.
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