ON INTEGRATED AND DIFFERENTIATED \mathbb{C}_{2}-SEQUENCE SPACES

LAKSHMI NARAYAN MISHRA ${ }^{1,2, *}$, SUKHDEV SINGH ${ }^{3}$, VISHNU NARAYAN MISHRA ${ }^{4}$
${ }^{1}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, University, Vellore 632014, TN, India

${ }^{2}$ L. 1627 Awadh Puri Colony Beniganj, Phase -III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road Faizabad-224 001, UP, India
${ }^{3}$ Department of Mathematics, Lovely Professional University, Jalandhar-Delhi Road, Phagwara-144411, Punjab, India
${ }^{4}$ Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484887, India

* Corresponding author: lakshminarayanmishra04@gmail.com

Abstract. The integrated and differentiated \mathbb{C}_{2}-sequence spaces are defined and studied by using the norm on the bicomplex space \mathbb{C}_{2}, infinite matrices of the bicomplex number and the Orlicz functions. We also studied some topological properties of the \mathbb{C}_{2}-sequence spaces We define the α-duals of the integrated and differentiated \mathbb{C}_{2}-sequence spaces.

Received 2018-02-28; accepted 2018-05-24; published 2018-11-02.
2010 Mathematics Subject Classification. 06F30, 54A99.
Key words and phrases. Bicomplex numbers; bicomplex net; \mathbb{C}_{2}-sequence spaces.

1. Introduction

The set of bicomplex numbers [8] is denoted by \mathbb{C}_{2} and sets of real and complex numbers are denoted as \mathbb{C}_{0} and \mathbb{C}_{1}, respectively.The set of bicomplex number is defined as (cf. [8], [9])

$$
\begin{aligned}
\mathbb{C}_{2} & :=\left\{a_{1}+i_{1} a_{2}+i_{2} a_{3}+i_{1} i_{2} a_{4}: a_{k} \in \mathbb{C}_{0}, 1 \leq k \leq 4\right\} \\
& :=\left\{w_{1}+i_{2} w_{2}: w_{1}, w_{2} \in \mathbb{C}_{1}\right\}
\end{aligned}
$$

where $i_{1}^{2}=i_{2}^{2}=-1, i_{1} i_{2}=i_{2} i_{1}$.
The set of bicomplex numbers \mathbb{C}_{2} have exactly two non-trivial idempotent elements denoted by e_{1} and e_{2} give as $e_{1}=\left(1+i_{1} i_{2}\right) / 2$ and $e_{2}=\left(1-i_{1} i_{2}\right) / 2$. Note that $e_{1}+e_{2}=1$ and $e_{1} \cdot e_{2}=0$. The number $\xi=w_{1}+i_{2} w_{2}$ can be uniquely expressed as a complex combination of e_{1} and e_{2} [8].

$$
\begin{equation*}
\xi=w_{1}+i_{2} w_{2}={ }^{1} \xi e_{1}+{ }^{2} \xi e_{2} \tag{1.1}
\end{equation*}
$$

where ${ }^{1} \xi=w_{1}-i_{1} w_{2}$ and ${ }^{2} \xi=w_{1}+i_{1} w_{2}$. The complex coefficients ${ }^{1} \xi$ and ${ }^{2} \xi$ are called the idempotent components of ξ, and ${ }^{1} \xi e_{1}+{ }^{2} \xi e_{2}$ is known as idempotent representation of bicomplex number ξ.

The auxiliary complex spaces \mathbb{A}_{1} and \mathbb{A}_{2} are defined as follows:

$$
\mathbb{A}_{1}=\left\{{ }^{1} \xi: \xi \in \mathbb{C}_{2}\right\} \quad \text { and } \quad \mathbb{A}_{2}=\left\{{ }^{2} \xi: \xi \in \mathbb{C}_{2}\right\}
$$

The norm in \mathbb{C}_{2} is defined as follows:

$$
\begin{equation*}
\|\xi\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}=\sqrt{\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}}=\sqrt{\frac{\left|\left.\right|^{1} \xi\right|^{2}+\left.\left.\right|^{2} \xi\right|^{2}}{2}} \tag{1.2}
\end{equation*}
$$

Further, the norm of the product of two bicomplex numbers and the product of their norms are connected by means of the following inequality:

$$
\begin{equation*}
\|\xi \cdot \eta\| \leq \sqrt{2}\|\xi\| \cdot\|\eta\| \tag{1.3}
\end{equation*}
$$

The inequality given in (1.3) is the best possible relation. For this reason, we call \mathbb{C}_{2} as modified complex Banach algebra [8].

Throughout the paper, the ω_{4}, c, c_{0} and $\ell_{\mathbb{C}_{2}}^{\infty}$ denote the space of all bicomplex sequences, convergent sequences, null sequences and all bounded sequences. We denote the zero sequence $(0,0,0, \ldots, 0, \ldots)$ by π. Refer the book by Mursaleen [?] for details about summability methods.

The Orlicz function \mathcal{M} is defined as $\mathcal{M}:[0, \infty) \rightarrow[0, \infty)$. It is continuous, non-decreasing and $\mathcal{M}(0)=$ $0, \mathcal{M}(x)>0$ for $x>0$. Also, for $\lambda \in(0,1)$ it satisfies the condition

$$
\begin{equation*}
\mathcal{M}(\lambda x+(1-\lambda) y) \leq \lambda \mathcal{M}(x)+(1-\lambda) \mathcal{M}(y) \tag{1.4}
\end{equation*}
$$

and If the condition of convexity of the Orlicz function \mathcal{M} is replaced by $\mathcal{M}(x+y) \leq \mathcal{M}(x)+\mathcal{M}(y)$, then the function \mathcal{M} is called the modulus function.

The notations $(X: Y)$ denote the class of all matrices M, such that $M: X \rightarrow Y$. Therefore, $M \in(X: Y)$ if and only if $M(x)=\left\{(M x)_{n}\right\}_{n \in \mathbb{N}} \in Y$.

A sequence $\left\{\xi_{n}\right\}$ in \mathbb{C}_{2} is said to be M-summable to the bicomplex number ξ if $M\left(\xi_{n}\right)$ converges to ξ which is called M-limit of $\left\{\xi_{n}\right\}$.

In [1], the sequence space $b v_{p}$ is defined, which have all sequences such that their Δ-transform is in ℓ_{p}, where Δ denotes the matrix $\Delta=\left\{\delta_{n m}\right\}$ as

$$
\delta_{n m}:= \begin{cases}(-1)^{n-k} & , n-1 \leq m \leq n \tag{1.5}\\ 0 & , 0 \leq m \leq n-1 \text { or } k>n\end{cases}
$$

We consider following matrices for our \mathbb{C}_{2}-sequence spaces.

$$
\begin{align*}
& \omega_{n m}:= \begin{cases}\xi & , 1 \leq m \leq n \xi \\
0 & , \xi \prec_{I d} \eta\end{cases} \tag{1.6}\\
& \gamma_{n m}:= \begin{cases}\xi & , m=n \\
-\xi & , n-1=m \\
0 & , \text { otherwise }\end{cases} \tag{1.7}\\
& \pi_{n m}:= \begin{cases}\xi^{-1} & , 1 \leq m \leq n \\
0 & , m>n\end{cases} \tag{1.8}
\end{align*}
$$

and

$$
\pi_{n m}:= \begin{cases}\xi^{-1} & , n=m \tag{1.9}\\ -\xi^{-1} & , n-1=m \\ 0 & \text { otherwise }\end{cases}
$$

Here we must note that ξ^{-1} exists if and only if $\xi \in \mathbb{C}_{2} / \mathbb{O}_{2}$.
The integrated and differentiated sequence space were first studied by Goes and Goes [3]. In this paper, we define and study some \mathbb{C}_{2}-sequence space. In the last section we studied the α-dual of these sequence spaces.

2. Bicomplex integrated (int) and differentiated (diff) \mathbf{C}_{2}-SEQUENCE spaces

Goes and Goes [3] has given the concept of the integrated sequence space. In this section we will obtain the matrix domains of the sequence space ℓ_{1} by using the bicomplex matrices. We shall show that the integrated and differentiated \mathbb{C}_{2}-sequence spaces are Banach Spaces, BK-spaces, norm isomorphic to ℓ_{1}, separable these
spaces have AK-property. The spaces $\int b v$ and $\int \ell_{1}$ have monotone norms and therefore the spaces $\int b v$ and $\int \ell_{1}$ have AK-property. Let ω_{4} denote the family of bicomplex sequences.

Now we are giving the definitions of some \mathbb{C}_{2}-sequence spaces as follows:

Definition 2.1 (Integrated \mathbb{C}_{2}-sequence spaces).

$$
\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)=\left\{\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{n=1}^{\infty} \mathcal{M}\left(\frac{\left\|n \xi_{n}\right\|}{K}\right)<\infty, \text { for some } K>0\right\}
$$

and

$$
\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right):=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{n=2}^{\infty} \mathcal{M}\left(\frac{\left\|\Delta\left(n \xi_{n}\right)\right\|}{K}\right)<\infty, \text { for some } K>0\right\}
$$

Definition 2.2 (Differentiated \mathbb{C}_{2}-sequence spaces).

$$
\begin{aligned}
\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) & :=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{n=1}^{\infty} \mathcal{M}\left(\frac{\left\|\xi_{n} / n\right\|}{K}\right)<\infty, \text { for some } K>0\right\} \\
\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) & :=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{n=2}^{\infty} \mathcal{M}\left(\frac{\left\|\Delta\left(\xi_{n} / n\right)\right\|}{K}\right)<\infty, \text { for some } K>0\right\}
\end{aligned}
$$

we can redefine the spaces $\underline{\ell}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \underline{\ell}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ by
$\left(\ell_{1}\right)_{\Omega}=\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \quad\left(\ell_{1}\right)_{\Gamma}=\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \quad\left(\ell_{1}\right)_{\Pi}=\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \quad\left(\ell_{1}\right)_{\lambda}=\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$.
Let $\xi=\left\{\xi_{n}\right\} \in \overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. Then the Ω-transform of ξ is defined as

$$
\zeta_{n}:=(\Omega(\xi))_{n}=\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left\|\left(m \xi_{m}\right)\right\|}{K}\right) \quad \text { for some } K>0
$$

or equivalently,

$$
{ }^{1} \zeta_{n}:=\left(\Omega\left({ }^{1} \xi\right)\right)_{n}=\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left|m^{1} \xi_{m}\right|}{K}\right) \quad \text { and } \quad{ }^{2} \zeta_{n}:=\left(\Omega\left({ }^{2} \xi\right)\right)_{n}=\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left|m^{2} \xi_{m}\right|}{K}\right)
$$

Let $\xi=\left\{\xi_{n}\right\} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. The Γ-transform of $\left\{\xi_{n}\right\}$ is defined as

$$
\zeta_{n}:=(\Omega(\xi))_{n}= \begin{cases}\xi_{1} & , p=1 \\ \Delta\left(p \xi_{p}\right) & , p \geq 2\end{cases}
$$

Let $\xi=\left\{\xi_{n}\right\} \in \underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. The Π-transform of $\left\{\xi_{n}\right\}$ is defined as

$$
\zeta_{n}=(\Pi \xi)_{n}=\sum_{p=1}^{n} \mathcal{M}\left(\frac{\left\|\xi_{p} / p\right\|}{K}\right) \quad \text { for some } K>0
$$

Let $\xi=\left\{\xi_{n}\right\} \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. The Σ-transform of $\left\{\xi_{n}\right\}$ is defined as

$$
\zeta_{n}:=(\Sigma(\xi))_{n}= \begin{cases}\xi_{1} & , p=1 \\ \Delta\left(p^{-1} \xi_{p}\right) & , p \geq 2\end{cases}
$$

For the convenience, we use the following notations.

$$
K_{1}=\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \quad K_{2}=\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \quad K_{3}=\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \quad K_{4}=\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) .
$$

Proposition 2.1. A sequence $\left\{\xi_{n}\right\}$ is in $X\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ if and only if $\left\{{ }^{1} \xi_{n}\right\} \in S\left(\mathbb{A}_{1}, \mathcal{M},\|\|.\right)$ and $\left\{{ }^{2} \xi_{n}\right\} \in$ $S\left(\mathbb{A}_{2}, \mathcal{M},\|\cdot\|\right)$, where $X=K_{1}, K_{2}, K_{3}$ and K_{4}.

Theorem 2.1. The space $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ is a linear space over \mathbf{C}_{0}.

Proof. Let $\left\{\xi_{n}\right\},\left\{\eta_{n}\right\} \in \underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. Then there exist $P_{1}>0$ and $P_{2}>0$ such that

$$
\sum_{n=1}^{\infty} \mathcal{M}\left(\frac{\left\|n \xi_{n}\right\|}{P_{1}}\right)<\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \mathcal{M}\left(\frac{\left\|n \xi_{n}\right\|}{P_{2}}\right)<\infty
$$

Now let $\alpha, \beta \in \mathbb{C}_{2} \backslash \mathbf{O}_{2}$ and $P=\max \left\{2\|\alpha\| P_{1}, 2\|\beta\| P_{2}\right\}$. Then

$$
\sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\left\|\alpha \Delta\left(k \xi_{k}\right)+\beta \Delta\left(k \eta_{k}\right)\right\|}{P}\right) \leq \sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\left\|\alpha \Delta\left(k \xi_{k}\right)\right\|}{P_{1}}\right)+\sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\left\|\beta \Delta\left(k \eta_{k}\right)\right\|}{P_{2}}\right) .
$$

Therefore, $\left\{\alpha \xi_{n}+\beta \eta_{n}\right\} \in \underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. Hence, the space $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ is a linear space over $\mathbb{C}_{2} \backslash \mathbf{O}_{2}$.
Lemma 2.1. The functions $\|\xi\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{m=1}^{\infty}\left\|\omega_{n m} \xi_{m}\right\|$ and $\|\xi\|_{\underline{\ell_{1}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}}=\sum_{m=1}^{\infty}\left\|\pi_{n m} \xi_{m}\right\|$ are norms on the spaces $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$, respectively.

Theorem 2.2. The spaces $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ are Banach spaces with norms $\|\xi\|_{\overline{\ell_{1}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}}=$ $\sum_{m=1}^{\infty}\left\|\omega_{n m} \xi_{m}\right\|$ and $\|\xi\|_{\underline{\ell}_{1}\left(\mathbb{C}_{2}, \mathcal{M},\|.\|\right)}=\sum_{m=1}^{\infty}\left\|\pi_{n m} \xi_{m}\right\|$, respectively.

Proof. Let $\left\{\xi_{k}^{n}\right\}$ be a Cauchy sequence in $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$. Then for given $\epsilon>0, \exists m_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\xi_{k}^{n}-\xi_{k}^{m}\right\|<\epsilon, \quad \forall n, m>m_{0} \tag{2.1}
\end{equation*}
$$

Therefore,

$$
\sum_{k}\left\|\Omega\left(\xi^{m}\right)_{k}-\Omega\left(\xi^{n}\right)_{k}\right\|<\epsilon, \quad \forall n, m>m_{0}
$$

$\Rightarrow\left\{\Omega\left(\xi^{1}\right)_{k}, \Omega\left(\xi^{2}\right)_{k}, \Omega\left(\xi^{3}\right)_{k}, \ldots, \Omega\left(\xi^{n}\right)_{k}, \ldots\right\}$ is a Cauchy Sequence of bicomplex numbers. Since, \mathbb{C}_{2} is a modified Banach space. Therefore, $\left\{\Omega\left(\xi^{n}\right)_{k}\right\}$ is convergence in \mathbb{C}_{2}. Suppose that

$$
\Omega\left(\xi^{n}\right)_{k} \rightarrow \Omega(\xi), \quad n \rightarrow \infty, \forall k
$$

Using all these limits, we define a sequence $\left\{\Omega(\xi)_{1}, \Omega(\xi)_{2}, \Omega(\xi)_{3}, \ldots,\right\}$.
and from equation (2.1), we have

$$
\begin{equation*}
\sum_{k=1}^{p}\left\|\Omega\left(\xi^{m}\right)_{k}-\Omega\left(\xi^{n}\right)_{k}\right\|<\epsilon \tag{2.2}
\end{equation*}
$$

For any $n>m_{0}$, by letting $m \rightarrow \infty$ and $p \rightarrow \infty$, we have

$$
\left\|\xi^{n}-\xi\right\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)} \leq \epsilon
$$

In particular,

$$
\|\xi\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)} \leq K+\left\|\xi^{n}\right\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}, \quad \text { for some } \quad K \geq \epsilon
$$

Hence, $\xi \in \overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$. Further, $\xi^{n} \rightarrow \xi$. Therefore, $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ is complete.

Corollary 2.1. The space $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ is a Banach space.
Theorem 2.3. The spaces $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ are BK-spaces with norms $\|\xi\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=$ $\sum_{m=1}^{\infty}\left\|\omega_{n m} \xi_{m}\right\|$ and $\|\xi\|_{\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{m=1}^{\infty}\left\|\pi_{n m} \xi_{m}\right\|$, respectively.

Proof. Let $\left\{\xi_{n}\right\} \in \overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. Define $f_{p}\left(\xi_{n}\right)=\xi_{p}, \forall n \in \mathbb{N}$. Then

$$
\left\|\xi_{n}\right\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum\left\|n \xi_{n}\right\|
$$

So that $\left\|n \xi_{n}\right\| \leq\left\|\xi_{n}\right\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)} \quad \Rightarrow\left\|\xi_{n}\right\| \leq K\left\|\xi_{n}\right\|_{\overline{\ell_{1}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}} \quad \Rightarrow\left\|f_{n}\left(\xi_{p}\right)\right\| \leq K\left\|\xi_{n}\right\|_{\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}$.
Therefore, f_{n} is a continuous linear functional for each n. So, $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ is a BK-space.
In the similar manner, we can prove that $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ is a BK-space.
Theorem 2.4. The space $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ is a BK-space with the norm $\|\xi\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{m=1}^{\infty}\left\|\Delta\left(m \xi_{m}\right)\right\|$.
Proof. As we know, $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)=\left(\ell_{1}\right)_{\Sigma}$ is true and ℓ_{1} is a BK-space with respect to the norm $\|\xi\|_{\ell_{1}}$ and also the matrix Σ is a triangular matrix. Then by Wilansky [?], the space $\overline{b v}$ is a BK-space.

Theorem 2.5. The function $\|\xi\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{m=1}^{\infty}\left\|\Delta\left(m \xi_{m}\right)\right\|$ is a norm on $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$.
Theorem 2.6. The spaces $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{b v}$ have $A K$-property.
Proof. Let $\left\{\xi_{k}^{n}\right\} \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ and $\left[\xi_{k}^{n}\right]=\left\{\xi_{1}^{n}, \xi_{2}^{n}, \xi_{3}^{n}, \ldots, \ldots, \xi_{k}^{n}, 0,0,0, \ldots\right\}$.

$$
\begin{aligned}
& \xi_{k}^{n}-\left[\xi_{k}^{n}\right]=\left\{0,0,0, \ldots, \xi_{k+1}^{n}, \xi_{k+2}^{n}, \ldots,\right\} . \\
& \Rightarrow \quad\left\|\xi_{k}^{n}-\left[\xi_{k}^{n}\right]\right\|_{\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\left\|0,0,0, \ldots, \xi_{k+1}^{n}, \xi_{k+2}^{n}, \ldots,\right\|_{\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)} . \\
&=\sum_{p \geq k+1} \mathcal{M}\left(\frac{\left\|\xi_{p}^{n} / p\right\|}{K}\right) \rightarrow 0, \quad \text { as } p \rightarrow 0 . \\
& \Rightarrow \quad\left[\xi_{k}^{n}\right] \rightarrow \xi_{k}^{n} \quad \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

Then, the space $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ has $A K$-property.
Theorem 2.7. The spaces $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \overline{\bar{v}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right), \underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ are norm isomorphic to ℓ_{1}.

Proof. We must show that there is a one-one and onto linear mapping between $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ and ℓ_{1}.
Suppose that $T: \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) \rightarrow \ell_{l}$ be a mapping defined as $\xi \mapsto T \xi$.
Clearly, for $\xi=\theta \quad \Rightarrow T \xi=\theta$.
Now, let $\eta \in \ell_{1}$. Define a sequence $\left\{\xi_{k}\right\} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ by

$$
\xi_{k}=\frac{1}{k} \sum_{p=1}^{k} y_{p}
$$

Then

$$
\begin{aligned}
\left\|\xi_{k}\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{k} \Delta\left(k \xi_{k}\right) & =\sum_{k}\left\|\sum_{p=1}^{k} p \eta_{p}-(p-1) \sum_{p=1}^{k-1} \eta_{p}\right\| \\
& =\sum_{k}\left\|\eta_{k}\right\|=\|\eta\|_{\ell_{1}}
\end{aligned}
$$

Therefore, $\xi_{n} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$. Hence, the spaces $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and ℓ_{1} are isomorphic.
In the similar way, we can prove the isomorphism of remaining spaces.
Theorem 2.8. The spaces $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ and $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ have monotone norm.

Proof. Let $\left\{\xi_{n}\right\} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$.
Define $\left\|\xi_{n}\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{k=1} \Delta\left(k \xi_{k}\right)$
and $\left\|\left[\xi_{p}\right]\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sum_{k=1}^{n}\left\|\Delta\left(p \xi_{p}\right)\right\|, \quad \forall\left\{\xi_{k}\right\} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$.
Now, suppose $q>p$, then

$$
\begin{aligned}
\left\|\left[\xi_{p}\right]\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)} & =\sum_{k=1}^{p}\left\|\Delta\left(k \xi_{k}\right)\right\| \\
& \leq \sum_{k=1}^{q}\left\|\Delta\left(k \xi_{k}\right)\right\| \\
& \leq\left\|\left[\xi_{q}\right]\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}
\end{aligned}
$$

Also,

$$
\sup \left\|\left[\xi_{n}\right]\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}=\sup \left(\sum_{k=1}^{n}\left\|\Delta\left(k \xi_{k}\right)\right\|\right)=\left\|\xi_{n}\right\|_{\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)}
$$

Therefore, the space $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ has the monotone norm.

Remark 2.1. The spaces $\overline{\ell_{1}}$ and $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ have AB-property.

Theorem 2.9. The following statements hold for $\overline{\operatorname{bv}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ given as :
(1) If $\zeta^{(m)}=\left\{\zeta_{n}^{(m)}\right\}$ is sequence where $\left\{\zeta_{n}^{(m)}\right\} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ of elements of $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$, defined as

$$
\zeta_{n}^{(m)}:= \begin{cases}1 / m & , n \geq m \\ 0 & , n<m\end{cases}
$$

This sequence is the basis for the space $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and select $B_{m}=(M \xi)_{m}$, for all $m \in \mathbb{N}$ and matrix M defined in equation (??), then $\xi \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ has the unique representation of the type:

$$
\xi=\sum_{m}(M \xi)_{m} \zeta_{n}^{(m)}
$$

(2) Define a sequence $\left\{\eta_{n}^{m}\right\}$ with $\eta_{n}^{m} \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$ as

$$
\eta_{n}^{(m)}:= \begin{cases}m & , n \geq m \\ 0 & , n<m\end{cases}
$$

Then this sequence $\zeta^{(m)}$ is a basis for the space $\overline{b v}$ and for $E_{m}=(A x)_{m}$, for all $m \in \mathbb{N}$, where the matrix A is defined by $\Gamma=\left[\gamma_{n m}\right]$, every sequence $\xi \in \overline{b v}$ have unique representation as

$$
\xi=\sum_{m} E_{m} \zeta^{(m)}
$$

Corollary 2.2. The spaces $\overline{\operatorname{bv}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ and $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$ are separable.

3. α-Duals of the \mathbb{C}_{2}-SEquence Spaces

In this section, we determine the α-duals of the spaces K_{2} and K_{4}.
Let $\xi=\left\{\xi_{n}\right\}$ and $\eta=\left\{\eta_{n}\right\}$ be sequences, and A and B be two subsets of ω_{4}. Now let $M=\left(a_{m k}\right)$ be an infinite matrix of bicomplex numbers. Define $\xi \eta=\left(\xi_{n} \eta_{n}\right)$,

$$
\xi_{n}^{-1} \star B=\left\{\zeta \in \omega_{4}: \zeta \xi \in B\right\} . N(A, B)=\cap_{\xi \in A} \xi^{-1} \star B=\left\{\zeta \in \omega_{4}: \zeta \xi \in B, \text { for } \xi \in A\right\} . \text { In particular, for }
$$ $B=\ell_{1}, c s$ or $b s$, We have $\xi^{\alpha}=\xi^{-1} \star \ell_{1}, \xi^{\beta}=\xi^{1} \star c s$ and $\xi^{\gamma}=\xi^{-1} \star b s$. The $\alpha-$ dual of A are given by $A^{\alpha}=M\left(A, \ell_{1}\right)$.

Suppose that $M_{m}=\left(a_{m k}\right)_{k=0}^{\infty}$ denotes the m-th row of the matrix M. Let $M_{m}(\xi)=\sum_{k=0}^{\infty} a_{m k} \xi_{k}$, $\forall n=0,1,2, \ldots$, and $M(\xi)=\left[M_{m}(\xi)\right]_{m=0}^{\infty}$, where $M_{m} \in \xi^{\beta}$

Lemma 3.1. [?] Let A_{1}, A_{2} be to BK-spaces, and $M=\left[\eta_{n m}\right]$ be a triangular matrix where $\xi_{n m} \in \mathbb{C}_{2} / \mathbb{O}_{2}$, then for matrix $S_{A_{1}}^{M}=\left[\xi_{n m}\right]$ defined with $\nu=\left\{\nu_{m}\right\} \in A_{1}$ as

$$
\xi_{n m}=\sum_{i=1}^{n} \nu_{i} \eta_{n m} \mu_{i m}
$$

Then $A_{2} A_{1}(M) \subset A_{1}(M)$ holds if and only if the matrix $S_{A_{1}}^{M}=M D_{\nu} M^{-1} \in\left(A_{1}: A_{1}\right)$, where D_{ν} is a diagonal matrix such that $\left[D_{\nu}\right]_{n n}=\nu_{n}, \forall n \in \mathbb{N}$.

Lemma 3.2. [?] Let $\left\{\gamma_{k}\right\}$ be a sequence in ω_{4} and $M=\left[\eta_{n m}\right]$ be an invertible triangular matrix. Define a matrix $S_{A_{1}}^{M}=\left[\xi_{n m}\right]$ as

$$
\xi_{n m}=\sum_{i=m}^{n} \eta_{i} \mu_{i m}
$$

Then

$$
A_{1}^{\beta}(M)=\left\{\eta_{m} \in \omega_{4}: S(M) \in\left(A_{1}: c\right)\right\}
$$

and

$$
A_{1}^{\gamma}(M)=\left\{\eta_{m} \in \omega_{4}: S(M) \in\left(A_{1}: \ell_{\infty}\right)\right\}
$$

Lemma 3.3. Let $M=\left[\xi_{n m}\right]$ be an infinite matrix of bicomplex numbers. Then
(1) $M \in\left(\ell_{1}: \ell_{1}\right) \Longleftrightarrow \sup \sum_{k \in \mathbb{N}}\left\|\xi_{n m}\right\|<\infty$.
(2) $M \in\left(\ell_{1}: \ell_{\infty}\right) \Longleftrightarrow \sup _{k, n \in \mathbb{N}}\left\|\xi_{n m}\right\|<\infty$
(3) $M \in\left(\ell_{1}, c\right) \Longleftrightarrow \sup _{k, n \in \mathbb{N}}\left\|\xi_{n m}\right\|<\infty$ and for some sequence $\left\{\kappa_{m}\right\}$ such that $\lim _{n \rightarrow \infty} \xi_{n m}=\kappa_{m}$

Theorem 3.1. For the space $\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$, we have

$$
\underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)^{\alpha}=\underline{\alpha}_{1}
$$

where
$\underline{\alpha}_{1}=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{k}\left\|\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left\|\Delta\left(\xi_{m} / m\right)\right\|}{K}\right) \eta_{k}\right\|<\infty,\left(\eta_{k}\right) \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)\right.$ for some $\left.K>0\right\}$
Proof. $\left\{\xi_{n}\right\}$ be any sequence in ω_{4}. Assume the following relation

$$
\xi_{n} \eta_{n}=\sum_{k=1}^{n} \mathcal{M}\left(\frac{\left\|\Delta\left(\xi_{n} / n\right)\right\|}{K}\right) \eta_{k}=(E \eta)_{k}
$$

where $E=\left\{e_{n k}\right\}$ is defined by

$$
e_{n m}= \begin{cases}\mathcal{M}\left(\frac{\left\|\Delta\left(\xi_{n} / n\right)\right\|}{K}\right) & , 1 \leq m \leq n \tag{3.1}\\ 0 & , n<m\end{cases}
$$

Therefore, from the equation (3.1) and the Lemma (3.3) we have
$\left\{\mathcal{M}\left(\frac{\left\|\Delta\left(\xi_{n} / n\right)\right\|}{K}\right) \zeta_{n}\right\} \in \ell_{1}$ if and only if $E \eta \in \ell_{1}$, whenever $\eta \in \ell_{1}$.
So, $\xi=\left\{\xi_{n} s\right\} \in \overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)^{\alpha}$ if and only if $E \in\left(\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right): \ell_{1}\right)$.
Hence proved.

Analogously, we can prove the following theorems.

Theorem 3.2. For the space $\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)$

$$
\overline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)^{\alpha}=\underline{\alpha}_{2}
$$

where

$$
\underline{\alpha}_{1}=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{k}\left\|\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left\|\left(\xi_{m} / m\right)\right\|}{K}\right) \eta_{k}\right\|<\infty,\left(\eta_{k}\right) \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) \text { for some } K>0\right\}
$$

Theorem 3.3. For the space $\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$

$$
\overline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)^{\alpha}=\bar{\alpha} 1
$$

where

$$
\underline{\alpha}_{1}=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{k}\left\|\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left\|\left(m \xi_{m}\right)\right\|}{K}\right) \eta_{k}\right\|<\infty,\left(\eta_{k}\right) \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) \text { for some } K>0\right\}
$$

Theorem 3.4. For the space $\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\|.\right)$

$$
\underline{\ell_{1}}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right)^{\alpha}=\bar{\alpha}_{2}
$$

where

$$
\underline{\alpha}_{1}=\left\{\xi=\left\{\xi_{n}\right\} \in \omega_{4}: \sum_{k}\left\|\sum_{m=1}^{n} \mathcal{M}\left(\frac{\left\|\left(\Delta\left(m \xi_{m}\right)\right)\right\|}{K}\right) \eta_{k}\right\|<\infty,\left(\eta_{k}\right) \in \underline{b v}\left(\mathbb{C}_{2}, \mathcal{M},\|\cdot\|\right) \text { for some } K>0\right\}
$$

References

[1] B. Atlay, F. Basar, Summability Theory and its Applications, Bentham Science Publishers, e-books, Monographs, Istambul, (2012).
[2] B. Atlay, F. Basar, Certain topological properties and duals of the domain of a triangle matrix in a sequence spaces, J. Math. Anal. Appl., 336 (2007), 632-645.
[3] Goes and Goes, Sequences of bounded variation and sequences of Fourier coefficients I, Math. Z, 118 (1970) 93-102.
[4] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2),169-176, (1981).
[5] M. Et, R. Colak, On some generalized difference sequence spaces, Soochow J. Math., 21(4), 377-386, (1995).
[6] H. Nakano, Modular Sequence Spaces, Proc. Japan Acad., 27, 508-512, (1951).
[7] S.D. Prashar and B Chaudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Mathematics, 25, 419-478, (1994).
[8] G.B. Price, An introduction to multicomplex space and functions, Marcel Dekker, Inc., New York, (1991).
[9] Rajiv K Srivastava, Bicomplex numbers: analysis and applications, Math. Student, 72 (1-4), 63-87, (2007).

