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1. Introduction

The set of bicomplex numbers [8] is denoted by C2 and sets of real and complex numbers are denoted as

C0 and C1, respectively.The set of bicomplex number is defined as (cf. [8], [9])

C2 := {a1 + i1a2 + i2a3 + i1i2a4 : ak ∈ C0, 1 ≤ k ≤ 4}

:= {w1 + i2w2 : w1, w2 ∈ C1}

where i21 = i22 = −1, i1i2 = i2i1.

The set of bicomplex numbers C2 have exactly two non-trivial idempotent elements denoted by e1 and

e2 give as e1 = (1 + i1i2)/2 and e2 = (1 − i1i2)/2. Note that e1 + e2 = 1 and e1.e2 = 0. The number

ξ = w1 + i2w2 can be uniquely expressed as a complex combination of e1 and e2 [8].

ξ = w1 + i2w2 = 1ξe1 + 2ξe2, (1.1)

where 1ξ = w1 − i1w2 and 2ξ = w1 + i1w2. The complex coefficients 1ξ and 2ξ are called the idempotent

components of ξ, and 1ξe1 + 2ξe2 is known as idempotent representation of bicomplex number ξ.

The auxiliary complex spaces A1 and A2 are defined as follows:

A1 =
{

1ξ : ξ ∈ C2

}
and A2 =

{
2ξ : ξ ∈ C2

}
.

The norm in C2 is defined as follows:

||ξ|| =
√
a2

1 + a2
2 + a2

3 + a2
4 =

√
|w1|2 + |w2|2 =

√
|1ξ|2 + |2ξ|2

2
(1.2)

Further, the norm of the product of two bicomplex numbers and the product of their norms are connected

by means of the following inequality:

||ξ . η|| ≤
√

2 ||ξ|| . ||η|| (1.3)

The inequality given in (1.3) is the best possible relation . For this reason, we call C2 as modified complex

Banach algebra [8].

Throughout the paper, the ω4, c, c0 and `∞C2
denote the space of all bicomplex sequences, convergent

sequences, null sequences and all bounded sequences. We denote the zero sequence (0, 0, 0, . . . , 0, . . .) by π.

Refer the book by Mursaleen [?] for details about summability methods.

The Orlicz function M is defined as M : [0,∞) → [0,∞). It is continuous, non-decreasing and M(0) =

0,M(x) > 0 for x > 0. Also, for λ ∈ (0, 1) it satisfies the condition

M(λx+ (1− λ)y) ≤ λM(x) + (1− λ)M(y) (1.4)

and If the condition of convexity of the Orlicz function M is replaced by M(x+ y) ≤ M(x) +M(y), then

the function M is called the modulus function.
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The notations (X : Y ) denote the class of all matrices M , such that M : X → Y . Therefore, M ∈ (X : Y )

if and only if M(x) = {(Mx)n}n∈N ∈ Y .

A sequence {ξn} in C2 is said to be M-summable to the bicomplex number ξ if M(ξn) converges to ξ

which is called M -limit of {ξn}.

In [1], the sequence space bvp is defined, which have all sequences such that their ∆-transform is in `p,

where ∆ denotes the matrix ∆ = {δnm} as

δnm :=


(−1)n−k , n− 1 ≤ m ≤ n

0 , 0 ≤ m ≤ n− 1 or k > n

(1.5)

We consider following matrices for our C2-sequence spaces.

ωnm :=


ξ , 1 ≤ m ≤ nξ

0 , ξ ≺Id η
(1.6)

γnm :=


ξ , m = n

−ξ , n− 1 = m

0 , otherwise

(1.7)

πnm :=


ξ−1 , 1 ≤ m ≤ n

0 , m > n

(1.8)

and

πnm :=


ξ−1 , n = m

−ξ−1 , n− 1 = m

0 otherwise

(1.9)

Here we must note that ξ−1 exists if and only if ξ ∈ C2/O2.

The integrated and differentiated sequence space were first studied by Goes and Goes [3]. In this paper,

we define and study some C2-sequence space. In the last section we studied the α-dual of these sequence

spaces.

2. Bicomplex integrated (int) and differentiated (diff ) C2-sequence spaces

Goes and Goes [3] has given the concept of the integrated sequence space. In this section we will obtain the

matrix domains of the sequence space `1 by using the bicomplex matrices. We shall show that the integrated

and differentiated C2-sequence spaces are Banach Spaces, BK-spaces, norm isomorphic to `1, separable these
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spaces have AK-property. The spaces
∫
bv and

∫
`1 have monotone norms and therefore the spaces

∫
bv and∫

`1 have AK-property. Let ω4 denote the family of bicomplex sequences.

Now we are giving the definitions of some C2-sequence spaces as follows:

Definition 2.1 (Integrated C2-sequence spaces).

`1(C2,M, ‖.‖) =

{
{ξn} ∈ ω4 :

∞∑
n=1

M
(
‖nξn‖
K

)
<∞, for someK > 0

}
and

bv(C2,M, ‖.‖) :=

{
ξ = {ξn} ∈ ω4 :

∞∑
n=2

M
(
‖∆(n ξn)‖

K

)
<∞, for someK > 0

}

Definition 2.2 (Differentiated C2-sequence spaces).

`1(C2,M, ‖.‖) :=

{
ξ = {ξn} ∈ ω4 :

∞∑
n=1

M
(
‖ξn/n‖
K

)
<∞, for someK > 0

}

bv(C2,M, ‖.‖) :=

{
ξ = {ξn} ∈ ω4 :

∞∑
n=2

M
(
‖∆(ξn/n)‖

K

)
<∞, for someK > 0

}

we can redefine the spaces `(C2,M, ‖.‖), bv(C2,M, ‖.‖), `(C2,M, ‖.‖) and bv(C2,M, ‖.‖) by

(`1)Ω = `1(C2,M, ‖.‖), (`1)Γ = bv(C2,M, ‖.‖), (`1)Π = `1(C2,M, ‖.‖), (`1)λ = bv(C2,M, ‖.‖).

Let ξ = {ξn} ∈ `1(C2,M, ‖.‖). Then the Ω-transform of ξ is defined as

ζn := (Ω(ξ))n =

n∑
m=1

M
(
‖(mξm)‖

K

)
for someK > 0

or equivalently,

1ζn := (Ω(1ξ))n =

n∑
m=1

M
(
|m 1ξm|
K

)
and 2ζn := (Ω(2ξ))n =

n∑
m=1

M
(
|m 2ξm|
K

)
Let ξ = {ξn} ∈ bv(C2,M, ‖.‖). The Γ-transform of {ξn} is defined as

ζn := (Ω(ξ))n =


ξ1 , p = 1

∆(p ξp) , p ≥ 2

Let ξ = {ξn} ∈ `1(C2,M, ‖.‖). The Π-transform of {ξn} is defined as

ζn = (Π ξ)n =

n∑
p=1

M
(
‖ξp/p‖
K

)
for someK > 0

Let ξ = {ξn} ∈ bv(C2,M, ‖.‖). The Σ-transform of {ξn} is defined as
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ζn := (Σ(ξ))n =


ξ1 , p = 1

∆(p−1 ξp) , p ≥ 2

For the convenience, we use the following notations.

K1 = `1(C2,M, ‖.‖), K2 = bv(C2,M, ‖.‖), K3 = `1(C2,M, ‖.‖), K4 = bv(C2,M, ‖.‖).

Proposition 2.1. A sequence {ξn} is in X(C2,M, ‖.‖) if and only if {1ξn} ∈ S(A1,M, ‖.‖) and {2ξn} ∈

S(A2,M, ‖.‖), where X = K1,K2,K3 and K4.

Theorem 2.1. The space `1(C2,M, ‖.‖) is a linear space over C0.

Proof. Let {ξn}, {ηn} ∈ `1(C2,M, ‖.‖). Then there exist P1 > 0 and P2 > 0 such that

∞∑
n=1

M
(
‖n ξn‖
P1

)
<∞ and

∞∑
n=1

M
(
‖n ξn‖
P2

)
<∞

Now let α, β ∈ C2 \O2 and P = max{2‖α‖P1, 2‖β‖P2}. Then

∞∑
k=1

M
(
‖α∆(k ξk) + β∆(k ηk)‖

P

)
≤
∞∑
k=1

M
(
‖α∆(k ξk)‖

P1

)
+

∞∑
k=1

M
(
‖β∆(k ηk)‖

P2

)
.

Therefore, {α ξn+β ηn} ∈ `1(C2,M, ‖.‖). Hence, the space `1(C2,M, ‖.‖) is a linear space over C2 \O2. �

Lemma 2.1. The functions ‖ξ‖`1(C2,M,‖.‖) =
∑∞
m=1 ‖ωnmξm‖ and ‖ξ‖`1(C2,M,‖.‖) =

∑∞
m=1 ‖πnmξm‖ are

norms on the spaces `1(C2,M, ‖.‖) and `1(C2,M, ‖.‖), respectively.

Theorem 2.2. The spaces `1(C2,M, ‖.‖) and `1(C2,M, ‖.‖) are Banach spaces with norms ‖ξ‖`1(C2,M,‖.‖) =∑∞
m=1 ‖ωnmξm‖ and ‖ξ‖`1(C2,M,‖.‖) =

∑∞
m=1 ‖πnmξm‖, respectively.

Proof. Let {ξnk } be a Cauchy sequence in `1(C2,M, ‖.‖). Then for given ε > 0, ∃ m0 ∈ N such that

‖ξnk − ξmk ‖ < ε, ∀n,m > m0 (2.1)

Therefore,

∑
k

‖Ω(ξm)k − Ω(ξn)k‖ < ε, ∀n,m > m0

⇒ {Ω(ξ1)k,Ω(ξ2)k,Ω(ξ3)k, . . . ,Ω(ξn)k, . . .} is a Cauchy Sequence of bicomplex numbers. Since, C2 is a

modified Banach space. Therefore, {Ω(ξn)k} is convergence in C2. Suppose that

Ω(ξn)k → Ω(ξ), n→∞,∀k

Using all these limits, we define a sequence {Ω(ξ)1,Ω(ξ)2,Ω(ξ)3, . . . , }.
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and from equation (2.1), we have

p∑
k=1

‖Ω(ξm)k − Ω(ξn)k‖ < ε (2.2)

For any n > m0, by letting m→∞ and p→∞, we have

‖ξn − ξ‖`1(C2,M,‖.‖) ≤ ε

In particular,

‖ξ‖`1(C2,M,‖.‖) ≤ K + ‖ξn‖`1(C2,M,‖.‖), for some K ≥ ε.

Hence, ξ ∈ `1(C2,M, ‖.‖). Further, ξn → ξ. Therefore, `1(C2,M, ‖.‖) is complete. �

Corollary 2.1. The space `1(C2,M, ‖.‖) is a Banach space.

Theorem 2.3. The spaces `1(C2,M, ‖.‖) and `1(C2,M, ‖.‖) are BK-spaces with norms ‖ξ‖`1(C2,M,‖.‖) =∑∞
m=1 ‖ωnmξm‖ and ‖ξ‖`1(C2,M,‖.‖) =

∑∞
m=1 ‖πnmξm‖, respectively.

Proof. Let {ξn} ∈ `1(C2,M, ‖.‖). Define fp(ξn) = ξp,∀n ∈ N. Then

‖ξn‖`1(C2,M,‖.‖) =
∑
‖n ξn‖

So that ‖n ξn‖ ≤ ‖ξn‖`1(C2,M,‖.‖) ⇒ ‖ξn‖ ≤ K‖ξn‖`1(C2,M,‖.‖) ⇒ ‖fn(ξp)‖ ≤ K‖ξn‖`1(C2,M,‖.‖).

Therefore, fn is a continuous linear functional for each n. So, `1(C2,M, ‖.‖) is a BK-space. �

In the similar manner, we can prove that `1(C2,M, ‖.‖) is a BK-space.

Theorem 2.4. The space bv(C2,M, ‖.‖) is a BK-space with the norm ‖ξ‖bv(C2,M,‖.‖) =
∑∞
m=1 ‖∆(mξm)‖.

Proof. As we know, bv(C2,M, ‖.‖) = (`1)Σ is true and `1 is a BK-space with respect to the norm ‖ξ‖`1 and

also the matrix Σ is a triangular matrix.Then by Wilansky [?], the space bv is a BK-space. �

Theorem 2.5. The function ‖ξ‖bv(C2,M,‖.‖) =
∑∞
m=1 ‖∆(mξm)‖ is a norm on bv(C2,M, ‖.‖).

Theorem 2.6. The spaces bv(C2,M, ‖.‖) and bv have AK-property.

Proof. Let {ξnk } ∈ bv(C2,M, ‖.‖) and [ξnk ] = {ξn1 , ξn2 , ξn3 , . . . , . . . , ξnk , 0, 0, 0, . . .}.

ξnk − [ξnk ] = {0, 0, 0, . . . , ξnk+1, ξ
n
k+2, . . . , }.

⇒ ‖ξnk − [ξnk ]‖bv(C2,M,‖.‖) = ‖0, 0, 0, . . . , ξnk+1, ξ
n
k+2, . . . , ‖bv(C2,M,‖.‖).

=
∑
p≥k+1

M
(‖ξnp /p‖

K

)
→ 0, as p→ 0.

⇒ [ξnk ]→ ξnk as k →∞
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Then, the space bv(C2,M, ‖.‖) has AK-property. �

Theorem 2.7. The spaces `1(C2,M, ‖.‖), bv(C2,M, ‖.‖), `1(C2,M, ‖.‖) and bv(C2,M, ‖.‖) are norm iso-

morphic to `1.

Proof. We must show that there is a one-one and onto linear mapping between bv(C2,M, ‖.‖) and `1.

Suppose that T : bv(C2,M, ‖.‖)→ `l be a mapping defined as ξ 7→ Tξ.

Clearly, for ξ = θ ⇒ Tξ = θ.

Now, let η ∈ `1. Define a sequence {ξk} ∈ bv(C2,M, ‖.‖) by

ξk =
1

k

k∑
p=1

yp

Then

‖ξk‖bv(C2,M,‖.‖) =
∑
k

∆(k ξk) =
∑
k

∥∥∥∥ k∑
p=1

p ηp − (p− 1)

k−1∑
p=1

ηp

∥∥∥∥
=

∑
k

‖ηk‖ = ‖η‖`1

Therefore, ξn ∈ bv(C2,M, ‖.‖). Hence, the spaces bv(C2,M, ‖.‖) and `1 are isomorphic. �

In the similar way, we can prove the isomorphism of remaining spaces.

Theorem 2.8. The spaces `1(C2,M, ‖.‖) and bv(C2,M, ‖.‖) have monotone norm.

Proof. Let {ξn} ∈ bv(C2,M, ‖.‖).

Define ‖ξn‖bv(C2,M,‖.‖) =
∑
k=1 ∆(kξk)

and ‖[ξp]‖bv(C2,M,‖.‖) =
∑n
k=1 ‖∆(p ξp)‖, ∀{ξk} ∈ bv(C2,M, ‖.‖).

Now, suppose q > p, then

‖[ξp]‖bv(C2,M,‖.‖) =

p∑
k=1

‖∆(k ξk)‖

≤
q∑

k=1

‖∆(k ξk)‖

≤ ‖[ξq]‖bv(C2,M,‖.‖)

Also,

sup ‖[ξn]‖bv(C2,M,‖.‖) = sup

( n∑
k=1

‖∆(k ξk)‖
)

= ‖ξn‖bv(C2,M,‖.‖).

Therefore, the space bv(C2,M, ‖.‖) has the monotone norm. �
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Remark 2.1. The spaces `1 and bv(C2,M, ‖.‖) have AB-property.

Theorem 2.9. The following statements hold for bv(C2,M, ‖.‖) and bv(C2,M, ‖.‖) given as :

(1) If ζ(m) = {ζ(m)
n } is sequence where {ζ(m)

n } ∈ bv(C2,M, ‖.‖) of elements of bv(C2,M, ‖.‖), defined as

ζ(m)
n :=


1/m , n ≥ m

0 , n < m

This sequence is the basis for the space bv(C2,M, ‖.‖) and select Bm = (Mξ)m, for all m ∈ N and

matrix M defined in equation (??), then ξ ∈ bv(C2,M, ‖.‖) has the unique representation of the

type:

ξ =
∑
m

(Mξ)m ζ
(m)
n

(2) Define a sequence {ηmn } with ηmn ∈ bv(C2,M, ‖.‖) as

η(m)
n :=


m , n ≥ m

0 , n < m

Then this sequence ζ(m) is a basis for the space bv and for Em = (Ax)m, for all m ∈ N, where

the matrix A is defined by Γ = [γnm], every sequence ξ ∈ bv have unique representation as

ξ =
∑
m

Emζ
(m)

Corollary 2.2. The spaces bv(C2,M, ‖.‖) and bv(C2,M, ‖.‖) are separable.

3. α−Duals of the C2-Sequence Spaces

In this section, we determine the α−duals of the spaces K2 and K4.

Let ξ = {ξn} and η = {ηn} be sequences, and A and B be two subsets of ω4. Now let M = (amk) be an

infinite matrix of bicomplex numbers. Define ξη = (ξnηn),

ξ−1
n ? B = {ζ ∈ ω4 : ζ ξ ∈ B}. N(A,B) = ∩ξ∈Aξ−1 ? B = {ζ ∈ ω4 : ζ ξ ∈ B, for ξ ∈ A}. In particular, for

B = `1, cs or bs, We have ξα = ξ−1 ? `1, ξβ = ξ1 ? cs and ξγ = ξ−1 ? bs. The α− dual of A are given by

Aα = M(A, `1).

Suppose that Mm = (amk)∞k=0 denotes the m-th row of the matrix M . Let Mm(ξ) =
∑∞
k=0 amkξk,

∀n = 0, 1, 2, . . ., and M(ξ) = [Mm(ξ)]∞m=0, where Mm ∈ ξβ

Lemma 3.1. [?] Let A1, A2 be to BK-spaces, and M = [ηnm] be a triangular matrix where ξnm ∈ C2/O2,

then for matrix SMA1
= [ξnm] defined with ν = {νm} ∈ A1 as
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ξnm =

n∑
i=1

νi ηnm µim

Then A2A1(M) ⊂ A1(M) holds if and only if the matrix SMA1
= MDνM

−1 ∈ (A1 : A1), where Dν is a

diagonal matrix such that [Dν ]nn = νn, ∀n ∈ N.

Lemma 3.2. [?] Let {γk} be a sequence in ω4 and M = [ηnm] be an invertible triangular matrix. Define a

matrix SMA1
= [ξnm] as

ξnm =

n∑
i=m

ηi µim

Then

Aβ1 (M) = {ηm ∈ ω4 : S(M) ∈ (A1 : c)}

and

Aγ1(M) = {ηm ∈ ω4 : S(M) ∈ (A1 : `∞)}

Lemma 3.3. Let M = [ξnm] be an infinite matrix of bicomplex numbers. Then

(1) M ∈ (`1 : `1) ⇐⇒ sup
∑
k∈N ‖ξnm‖ <∞.

(2) M ∈ (`1 : `∞) ⇐⇒ supk,n∈N ‖ξnm‖ <∞

(3) M ∈ (`1, c) ⇐⇒ supk,n∈N ‖ξnm‖ <∞ and for some sequence {κm} such that lim
n→∞

ξnm = κm

Theorem 3.1. For the space bv(C2,M, ‖.‖), we have

bv(C2,M, ‖.‖)α = α1

where

α1 =

{
ξ = {ξn} ∈ ω4 :

∑
k

∥∥∥∥ n∑
m=1

M
(
‖∆(ξm/m)‖

K

)
ηk

∥∥∥∥ <∞, (ηk) ∈ bv(C2,M, ‖.‖) for someK > 0

}
Proof. {ξn} be any sequence in ω4. Assume the following relation

ξnηn =

n∑
k=1

M
(
‖∆(ξn/n)‖

K

)
ηk = (Eη)k

where E = {enk} is defined by

enm =


M
(
‖∆(ξn/n)‖

K

)
, 1 ≤ m ≤ n

0 , n < m

(3.1)

Therefore, from the equation (3.1) and the Lemma (3.3) we have{
M
(
‖∆(ξn/n)‖

K

)
ζn

}
∈ `1 if and only if Eη ∈ `1, whenever η ∈ `1.

So, ξ = {ξns} ∈ bv(C2,M, ‖.‖)α if and only if E ∈ (bv(C2,M, ‖.‖) : `1).

Hence proved. �
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Analogously, we can prove the following theorems.

Theorem 3.2. For the space bv(C2,M, ‖.‖)

bv(C2,M, ‖.‖)α = α2

where

α1 =

{
ξ = {ξn} ∈ ω4 :

∑
k

∥∥∥∥ n∑
m=1

M
(
‖(ξm/m)‖

K

)
ηk

∥∥∥∥ <∞, (ηk) ∈ bv(C2,M, ‖.‖) for someK > 0

}

Theorem 3.3. For the space `1(C2,M, ‖.‖)

`1(C2,M, ‖.‖)α = α1

where

α1 =

{
ξ = {ξn} ∈ ω4 :

∑
k

∥∥∥∥ n∑
m=1

M
(
‖(mξm)‖

K

)
ηk

∥∥∥∥ <∞, (ηk) ∈ bv(C2,M, ‖.‖) for someK > 0

}

Theorem 3.4. For the space `1(C2,M, ‖.‖)

`1(C2,M, ‖.‖)α = α2

where

α1 =

{
ξ = {ξn} ∈ ω4 :

∑
k

∥∥∥∥ n∑
m=1

M
(
‖(∆(mξm))‖

K

)
ηk

∥∥∥∥ <∞, (ηk) ∈ bv(C2,M, ‖.‖) for someK > 0

}
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