

ON INTEGRATED AND DIFFERENTIATED \mathbb{C}_2 -SEQUENCE SPACES

LAKSHMI NARAYAN MISHRA^{1,2,*}, SUKHDEV SINGH³, VISHNU NARAYAN MISHRA⁴

¹Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, University, Vellore 632014, TN, India

²L. 1627 Awadh Puri Colony Beniganj, Phase -III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road Faizabad-224 001, UP, India

³Department of Mathematics, Lovely Professional University, Jalandhar-Delhi Road, Phagwara-144411, Punjab, India

⁴Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484887, India

* Corresponding author: lakshminarayanmishra04@gmail.com

ABSTRACT. The integrated and differentiated \mathbb{C}_2 -sequence spaces are defined and studied by using the norm on the bicomplex space \mathbb{C}_2 , infinite matrices of the bicomplex number and the Orlicz functions. We also studied some topological properties of the \mathbb{C}_2 -sequence spaces We define the α -duals of the integrated and differentiated \mathbb{C}_2 -sequence spaces.

Received 2018-02-28; accepted 2018-05-24; published 2018-11-02.

²⁰¹⁰ Mathematics Subject Classification. 06F30, 54A99.

Key words and phrases. Bicomplex numbers; bicomplex net; \mathbb{C}_2 -sequence spaces.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

1. INTRODUCTION

The set of bicomplex numbers [8] is denoted by \mathbb{C}_2 and sets of real and complex numbers are denoted as \mathbb{C}_0 and \mathbb{C}_1 , respectively. The set of bicomplex number is defined as (cf. [8], [9])

$$\mathbb{C}_2 := \{a_1 + i_1 a_2 + i_2 a_3 + i_1 i_2 a_4 : a_k \in \mathbb{C}_0, \ 1 \le k \le 4\}$$
$$:= \{w_1 + i_2 w_2 : w_1, w_2 \in \mathbb{C}_1\}$$

where $i_1^2 = i_2^2 = -1$, $i_1 i_2 = i_2 i_1$.

The set of bicomplex numbers \mathbb{C}_2 have exactly two non-trivial idempotent elements denoted by e_1 and e_2 give as $e_1 = (1 + i_1 i_2)/2$ and $e_2 = (1 - i_1 i_2)/2$. Note that $e_1 + e_2 = 1$ and $e_1 \cdot e_2 = 0$. The number $\xi = w_1 + i_2 w_2$ can be uniquely expressed as a complex combination of e_1 and e_2 [8].

$$\xi = w_1 + i_2 w_2 = {}^1 \xi e_1 + {}^2 \xi e_2, \tag{1.1}$$

where ${}^{1}\xi = w_1 - i_1w_2$ and ${}^{2}\xi = w_1 + i_1w_2$. The complex coefficients ${}^{1}\xi$ and ${}^{2}\xi$ are called the *idempotent* components of ξ , and ${}^{1}\xi e_1 + {}^{2}\xi e_2$ is known as *idempotent representation* of bicomplex number ξ .

The auxiliary complex spaces \mathbb{A}_1 and \mathbb{A}_2 are defined as follows:

$$\mathbb{A}_1 = \left\{ {}^1\xi \, : \, \xi \in \mathbb{C}_2 \right\} \quad \text{and} \quad \mathbb{A}_2 = \left\{ {}^2\xi \, : \, \xi \in \mathbb{C}_2 \right\}.$$

The norm in \mathbb{C}_2 is defined as follows:

$$||\xi|| = \sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2} = \sqrt{|w_1|^2 + |w_2|^2} = \sqrt{\frac{|1\xi|^2 + |2\xi|^2}{2}}$$
(1.2)

Further, the norm of the product of two bicomplex numbers and the product of their norms are connected by means of the following inequality:

$$||\xi . \eta|| \le \sqrt{2} ||\xi|| . ||\eta||$$
 (1.3)

The inequality given in (1.3) is the best possible relation. For this reason, we call \mathbb{C}_2 as modified complex Banach algebra [8].

Throughout the paper, the ω_4 , c, c_0 and $\ell_{\mathbb{C}_2}^{\infty}$ denote the space of all bicomplex sequences, convergent sequences, null sequences and all bounded sequences. We denote the zero sequence $(0, 0, 0, \ldots, 0, \ldots)$ by π . Refer the book by Mursaleen [?] for details about summability methods.

The Orlicz function \mathcal{M} is defined as $\mathcal{M} : [0, \infty) \to [0, \infty)$. It is continuous, non-decreasing and $\mathcal{M}(0) = 0, \mathcal{M}(x) > 0$ for x > 0. Also, for $\lambda \in (0, 1)$ it satisfies the condition

$$\mathcal{M}(\lambda x + (1 - \lambda)y) \leq \lambda \mathcal{M}(x) + (1 - \lambda)\mathcal{M}(y)$$
(1.4)

and If the condition of convexity of the Orlicz function \mathcal{M} is replaced by $\mathcal{M}(x+y) \leq \mathcal{M}(x) + \mathcal{M}(y)$, then the function \mathcal{M} is called the modulus function. The notations (X : Y) denote the class of all matrices M, such that $M : X \to Y$. Therefore, $M \in (X : Y)$ if and only if $M(x) = \{(Mx)_n\}_{n \in \mathbb{N}} \in Y$.

A sequence $\{\xi_n\}$ in \mathbb{C}_2 is said to be M-summable to the bicomplex number ξ if $M(\xi_n)$ converges to ξ which is called *M*-limit of $\{\xi_n\}$.

In [1], the sequence space bv_p is defined, which have all sequences such that their Δ -transform is in ℓ_p , where Δ denotes the matrix $\Delta = \{\delta_{nm}\}$ as

$$\delta_{nm} := \begin{cases} (-1)^{n-k} &, n-1 \le m \le n \\ 0 &, 0 \le m \le n-1 \text{ or } k > n \end{cases}$$
(1.5)

We consider following matrices for our \mathbb{C}_2 -sequence spaces.

$$\omega_{nm} := \begin{cases} \xi &, 1 \le m \le n\xi \\ 0 &, \xi \prec_{Id} \eta \end{cases}$$
(1.6)

$$\gamma_{nm} := \begin{cases} \xi & , m = n \\ -\xi & , n - 1 = m \\ 0 & , \text{ otherwise} \end{cases}$$
(1.7)

$$\pi_{nm} := \begin{cases} \xi^{-1} &, \ 1 \le m \le n \\ 0 &, \ m > n \end{cases}$$
(1.8)

and

$$\pi_{nm} := \begin{cases} \xi^{-1} & , n = m \\ -\xi^{-1} & , n - 1 = m \\ 0 & \text{otherwise} \end{cases}$$
(1.9)

Here we must note that ξ^{-1} exists if and only if $\xi \in \mathbb{C}_2/\mathbb{O}_2$.

The integrated and differentiated sequence space were first studied by Goes and Goes [3]. In this paper, we define and study some \mathbb{C}_2 -sequence space. In the last section we studied the α -dual of these sequence spaces.

2. BICOMPLEX INTEGRATED (*int*) AND DIFFERENTIATED (*diff*) C_2 -SEQUENCE SPACES

Goes and Goes [3] has given the concept of the integrated sequence space. In this section we will obtain the matrix domains of the sequence space ℓ_1 by using the bicomplex matrices. We shall show that the integrated and differentiated \mathbb{C}_2 -sequence spaces are Banach Spaces, BK-spaces, norm isomorphic to ℓ_1 , separable these

spaces have AK-property. The spaces $\int bv$ and $\int \ell_1$ have monotone norms and therefore the spaces $\int bv$ and $\int \ell_1$ have AK-property. Let ω_4 denote the family of bicomplex sequences.

Now we are giving the definitions of some \mathbb{C}_2 -sequence spaces as follows:

Definition 2.1 (Integrated \mathbb{C}_2 -sequence spaces).

$$\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|) = \left\{ \{\xi_n\} \in \omega_4 : \sum_{n=1}^\infty \mathcal{M}\left(\frac{\|n\xi_n\|}{K}\right) < \infty, \text{for some } K > 0 \right\}$$

and

$$\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|) := \left\{ \xi = \{\xi_n\} \in \omega_4 : \sum_{n=2}^{\infty} \mathcal{M}\left(\frac{\|\Delta(n\xi_n)\|}{K}\right) < \infty, \text{for some } K > 0 \right\}$$

Definition 2.2 (Differentiated \mathbb{C}_2 -sequence spaces).

$$\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|) := \left\{ \xi = \{\xi_n\} \in \omega_4 : \sum_{n=1}^\infty \mathcal{M}\left(\frac{\|\xi_n/n\|}{K}\right) < \infty, \text{for some } K > 0 \right\}$$

$$\underline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|) := \left\{ \xi = \{\xi_n\} \in \omega_4 : \sum_{n=2}^{\infty} \mathcal{M}\left(\frac{\|\Delta(\xi_n/n)\|}{K}\right) < \infty, \text{for some } K > 0 \right\}$$

we can redefine the spaces $\underline{\ell}(\mathbb{C}_2, \mathcal{M}, \|.\|), \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|), \underline{\ell}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ by

$$(\ell_1)_{\Omega} = \overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|), \quad (\ell_1)_{\Gamma} = \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|), \quad (\ell_1)_{\Pi} = \underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|), \quad (\ell_1)_{\lambda} = \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$$

Let $\xi = \{\xi_n\} \in \overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Then the Ω -transform of ξ is defined as

$$\zeta_n := (\Omega(\xi))_n = \sum_{m=1}^n \mathcal{M}\left(\frac{\|(m\,\xi_m)\|}{K}\right) \quad \text{for some } K > 0$$

or equivalently,

$${}^{1}\zeta_{n} := (\Omega({}^{1}\xi))_{n} = \sum_{m=1}^{n} \mathcal{M}\left(\frac{|m {}^{1}\xi_{m}|}{K}\right) \text{ and } {}^{2}\zeta_{n} := (\Omega({}^{2}\xi))_{n} = \sum_{m=1}^{n} \mathcal{M}\left(\frac{|m {}^{2}\xi_{m}|}{K}\right)$$

Let $\xi = \{\xi_n\} \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. The Γ -transform of $\{\xi_n\}$ is defined as

$$\zeta_n := (\Omega(\xi))_n = \begin{cases} \xi_1 & , p = 1\\ \\ \Delta(p \xi_p) & , p \ge 2 \end{cases}$$

Let $\xi = \{\xi_n\} \in \underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. The Π -transform of $\{\xi_n\}$ is defined as

$$\zeta_n = (\Pi \xi)_n = \sum_{p=1}^n \mathcal{M}\left(\frac{\|\xi_p/p\|}{K}\right) \quad \text{for some } K > 0$$

Let $\xi = \{\xi_n\} \in \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. The Σ -transform of $\{\xi_n\}$ is defined as

$$\zeta_n := (\Sigma(\xi))_n = \begin{cases} \xi_1 & , p = 1 \\ \\ \Delta(p^{-1}\xi_p) & , p \ge 2 \end{cases}$$

For the convenience, we use the following notations.

$$K_1 = \overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|), \quad K_2 = \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|), \quad K_3 = \underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|), \quad K_4 = \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$$

Proposition 2.1. A sequence $\{\xi_n\}$ is in $X(\mathbb{C}_2, \mathcal{M}, \|.\|)$ if and only if $\{1\xi_n\} \in S(\mathbb{A}_1, \mathcal{M}, \|.\|)$ and $\{2\xi_n\} \in S(\mathbb{A}_2, \mathcal{M}, \|.\|)$, where $X = K_1, K_2, K_3$ and K_4 .

Theorem 2.1. The space $\ell_1(\mathbb{C}_2, \mathcal{M}, \|.\|)$ is a linear space over \mathbf{C}_0 .

Proof. Let $\{\xi_n\}, \{\eta_n\} \in \underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Then there exist $P_1 > 0$ and $P_2 > 0$ such that

$$\sum_{n=1}^{\infty} \mathcal{M}\left(\frac{\|n\xi_n\|}{P_1}\right) < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \mathcal{M}\left(\frac{\|n\xi_n\|}{P_2}\right) < \infty$$

Now let $\alpha, \beta \in \mathbb{C}_2 \setminus \mathbf{O}_2$ and $P = \max\{2\|\alpha\|P_1, 2\|\beta\|P_2\}$. Then

$$\sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\|\alpha \Delta(k\,\xi_k) + \beta \Delta(k\,\eta_k)\|}{P}\right) \leq \sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\|\alpha \Delta(k\,\xi_k)\|}{P_1}\right) + \sum_{k=1}^{\infty} \mathcal{M}\left(\frac{\|\beta \Delta(k\,\eta_k)\|}{P_2}\right).$$

Therefore, $\{\alpha \xi_n + \beta \eta_n\} \in \underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Hence, the space $\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ is a linear space over $\mathbb{C}_2 \setminus \mathbf{O}_2$. \Box

Lemma 2.1. The functions $\|\xi\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)} = \sum_{m=1}^{\infty} \|\omega_{nm}\xi_m\|$ and $\|\xi\|_{\underline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)} = \sum_{m=1}^{\infty} \|\pi_{nm}\xi_m\|$ are norms on the spaces $\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)$ and $\underline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)$, respectively.

Theorem 2.2. The spaces $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ are Banach spaces with norms $\|\xi\|_{\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{m=1}^{\infty} \|\omega_{nm}\xi_m\|$ and $\|\xi\|_{\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{m=1}^{\infty} \|\pi_{nm}\xi_m\|$, respectively.

Proof. Let $\{\xi_k^n\}$ be a Cauchy sequence in $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Then for given $\epsilon > 0, \exists m_0 \in \mathbb{N}$ such that

$$\|\xi_k^n - \xi_k^m\| < \epsilon, \quad \forall n, m > m_0 \tag{2.1}$$

Therefore,

$$\sum_{k} \|\Omega(\xi^m)_k - \Omega(\xi^n)_k\| < \epsilon, \quad \forall n, m > m_0$$

 $\Rightarrow \{\Omega(\xi^1)_k, \Omega(\xi^2)_k, \Omega(\xi^3)_k, \dots, \Omega(\xi^n)_k, \dots\} \text{ is a Cauchy Sequence of bicomplex numbers. Since, } \mathbb{C}_2 \text{ is a modified Banach space. Therefore, } \{\Omega(\xi^n)_k\} \text{ is convergence in } \mathbb{C}_2. \text{ Suppose that}$

$$\Omega(\xi^n)_k \to \Omega(\xi), \qquad n \to \infty, \forall k$$

Using all these limits, we define a sequence $\{\Omega(\xi)_1, \Omega(\xi)_2, \Omega(\xi)_3, \ldots, \}$.

and from equation (2.1), we have

$$\sum_{k=1}^{p} \left\| \Omega(\xi^m)_k - \Omega(\xi^n)_k \right\| < \epsilon$$
(2.2)

For any $n > m_0$, by letting $m \to \infty$ and $p \to \infty$, we have

$$\|\xi^n - \xi\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)} \le \epsilon$$

In particular,

$$\|\xi\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|\cdot\|)} \le K + \|\xi^n\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|\cdot\|)}, \quad \text{for some} \quad K \ge \epsilon$$

Hence, $\xi \in \overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Further, $\xi^n \to \xi$. Therefore, $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ is complete.

Corollary 2.1. The space $\underline{\ell}_1(\mathbb{C}_2, \mathcal{M}, ||.||)$ is a Banach space.

Theorem 2.3. The spaces $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ are BK-spaces with norms $\|\xi\|_{\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{m=1}^{\infty} \|\omega_{nm}\xi_m\|$ and $\|\xi\|_{\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{m=1}^{\infty} \|\pi_{nm}\xi_m\|$, respectively.

Proof. Let $\{\xi_n\} \in \overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Define $f_p(\xi_n) = \xi_p, \forall n \in \mathbb{N}$. Then

$$\|\xi_n\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)} = \sum \|n\,\xi_n\|$$

So that $\|n\xi_n\| \le \|\xi_n\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)} \Rightarrow \|\xi_n\| \le K \|\xi_n\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)} \Rightarrow \|f_n(\xi_p)\| \le K \|\xi_n\|_{\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)}.$

Therefore, f_n is a continuous linear functional for each n. So, $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ is a BK-space.

In the similar manner, we can prove that $\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ is a BK-space.

Theorem 2.4. The space $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ is a BK-space with the norm $\|\xi\|_{\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{m=1}^{\infty} \|\Delta(m\xi_m)\|$. *Proof.* As we know, $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|) = (\ell_1)_{\Sigma}$ is true and ℓ_1 is a BK-space with respect to the norm $\|\xi\|_{\ell_1}$ and also the matrix Σ is a triangular matrix. Then by Wilansky [?], the space \overline{bv} is a BK-space.

Theorem 2.5. The function $\|\xi\|_{\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)} = \sum_{m=1}^{\infty} \|\Delta(m\,\xi_m)\|$ is a norm on $\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)$.

Theorem 2.6. The spaces $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and \underline{bv} have AK-property.

Proof. Let $\{\xi_k^n\} \in \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $[\xi_k^n] = \{\xi_1^n, \xi_2^n, \xi_3^n, \dots, \dots, \xi_k^n, 0, 0, 0, \dots\}.$

$$\xi_k^n - [\xi_k^n] = \{0, 0, 0, \dots, \xi_{k+1}^n, \xi_{k+2}^n, \dots, \}$$

$$\Rightarrow \quad \|\xi_k^n - [\xi_k^n]\|_{\underline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)} = \|0,0,0,\dots,\xi_{k+1}^n,\xi_{k+2}^n,\dots,\|_{\underline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)}$$
$$= \sum_{p \ge k+1} \mathcal{M}\left(\frac{\|\xi_p^n/p\|}{K}\right) \to 0, \quad \text{as} \quad p \to 0.$$
$$\Rightarrow \quad [\xi_k^n] \to \xi_k^n \quad \text{as} \quad k \to \infty$$

Then, the space $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ has AK-property.

Theorem 2.7. The spaces $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$, $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$, $\underline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ are norm isomorphic to ℓ_1 .

Proof. We must show that there is a one-one and onto linear mapping between $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and ℓ_1 . Suppose that $T : \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|) \to \ell_l$ be a mapping defined as $\xi \mapsto T\xi$. Clearly, for $\xi = \theta \implies T\xi = \theta$.

Now, let $\eta \in \ell_1$. Define a sequence $\{\xi_k\} \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ by

$$\xi_k = \frac{1}{k} \sum_{p=1}^k y_p$$

Then

$$\begin{aligned} |\xi_k||_{\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)} &= \sum_k \Delta(k\,\xi_k) &= \sum_k \left\| \sum_{p=1}^k p\,\eta_p - (p-1)\sum_{p=1}^{k-1} \eta_p \right| \\ &= \sum_k \|\eta_k\| = \|\eta\|_{\ell_1} \end{aligned}$$

Therefore, $\xi_n \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Hence, the spaces $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and ℓ_1 are isomorphic.

In the similar way, we can prove the isomorphism of remaining spaces.

Theorem 2.8. The spaces $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ have monotone norm.

Proof. Let $\{\xi_n\} \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Define $\|\xi_n\|_{\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{k=1} \Delta(k\xi_k)$ and $\|[\xi_p]\|_{\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)} = \sum_{k=1}^n \|\Delta(p\xi_p)\|, \quad \forall \{\xi_k\} \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$. Now, suppose q > p, then

$$\begin{aligned} \|[\xi_p]\|_{\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)} &= \sum_{k=1}^p \|\Delta(k\,\xi_k)\| \\ &\leq \sum_{k=1}^q \|\Delta(k\,\xi_k)\| \\ &\leq \|[\xi_q]\|_{\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)} \end{aligned}$$

Also,

$$\sup \| [\xi_n] \|_{\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)} = \sup \left(\sum_{k=1}^n \| \Delta(k\,\xi_k) \| \right) = \| \xi_n \|_{\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)}.$$

Therefore, the space $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ has the monotone norm.

Remark 2.1. The spaces $\overline{\ell_1}$ and $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ have AB-property.

Theorem 2.9. The following statements hold for $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ given as :

(1) If $\zeta^{(m)} = \{\zeta_n^{(m)}\}\$ is sequence where $\{\zeta_n^{(m)}\} \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)\$ of elements of $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$, defined as

$$\zeta_n^{(m)} := \begin{cases} 1/m & , n \ge m \\ 0 & , n < m \end{cases}$$

This sequence is the basis for the space $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and select $B_m = (M\xi)_m$, for all $m \in \mathbb{N}$ and matrix M defined in equation (??), then $\xi \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ has the unique representation of the type:

$$\xi = \sum_{m} (M\xi)_m \, \zeta_n^{(m)}$$

(2) Define a sequence $\{\eta_n^m\}$ with $\eta_n^m \in \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ as

$$\eta_n^{(m)} := \begin{cases} m & , n \ge m \\ \\ 0 & , n < m \end{cases}$$

Then this sequence $\zeta^{(m)}$ is a basis for the space \overline{bv} and for $E_m = (Ax)_m$, for all $m \in \mathbb{N}$, where the matrix A is defined by $\Gamma = [\gamma_{nm}]$, every sequence $\xi \in \overline{bv}$ have unique representation as

$$\xi = \sum_{m} E_m \zeta^{(m)}$$

Corollary 2.2. The spaces $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ and $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$ are separable.

3. α -Duals of the \mathbb{C}_2 -Sequence Spaces

In this section, we determine the α -duals of the spaces K_2 and K_4 .

Let $\xi = \{\xi_n\}$ and $\eta = \{\eta_n\}$ be sequences, and A and B be two subsets of ω_4 . Now let $M = (a_{mk})$ be an infinite matrix of bicomplex numbers. Define $\xi \eta = (\xi_n \eta_n)$,

 $\xi_n^{-1} \star B = \{\zeta \in \omega_4 : \zeta \xi \in B\}. \ N(A, B) = \bigcap_{\xi \in A} \xi^{-1} \star B = \{\zeta \in \omega_4 : \zeta \xi \in B, \text{for } \xi \in A\}. \text{ In particular, for } B = \ell_1, cs \text{ or } bs, \text{ We have } \xi^\alpha = \xi^{-1} \star \ell_1, \ \xi^\beta = \xi^1 \star cs \text{ and } \xi^\gamma = \xi^{-1} \star bs. \text{ The } \alpha - \text{ dual of } A \text{ are given by } A^\alpha = M(A, \ell_1).$

Suppose that $M_m = (a_{mk})_{k=0}^{\infty}$ denotes the m-th row of the matrix M. Let $M_m(\xi) = \sum_{k=0}^{\infty} a_{mk}\xi_k$, $\forall n = 0, 1, 2, \ldots$, and $M(\xi) = [M_m(\xi)]_{m=0}^{\infty}$, where $M_m \in \xi^{\beta}$

Lemma 3.1. [?] Let A_1, A_2 be to BK-spaces, and $M = [\eta_{nm}]$ be a triangular matrix where $\xi_{nm} \in \mathbb{C}_2/\mathbb{O}_2$, then for matrix $S_{A_1}^M = [\xi_{nm}]$ defined with $\nu = \{\nu_m\} \in A_1$ as

$$\xi_{nm} = \sum_{i=1}^{n} \nu_i \eta_{nm} \mu_{im}$$

Then $A_2A_1(M) \subset A_1(M)$ holds if and only if the matrix $S_{A_1}^M = MD_{\nu}M^{-1} \in (A_1 : A_1)$, where D_{ν} is a diagonal matrix such that $[D_{\nu}]_{nn} = \nu_n$, $\forall n \in \mathbb{N}$.

Lemma 3.2. [?] Let $\{\gamma_k\}$ be a sequence in ω_4 and $M = [\eta_{nm}]$ be an invertible triangular matrix. Define a matrix $S_{A_1}^M = [\xi_{nm}]$ as

$$\xi_{nm} = \sum_{i=m}^{n} \eta_i \, \mu_{im}$$

Then

$$A_1^{\beta}(M) = \{\eta_m \in \omega_4 : S(M) \in (A_1 : c)\}$$

and

$$A_1^{\gamma}(M) = \{\eta_m \in \omega_4 : S(M) \in (A_1 : \ell_\infty)\}$$

Lemma 3.3. Let $M = [\xi_{nm}]$ be an infinite matrix of bicomplex numbers. Then

(1) $M \in (\ell_1 : \ell_1) \iff \sup \sum_{k \in \mathbb{N}} \|\xi_{nm}\| < \infty.$

(2)
$$M \in (\ell_1 : \ell_\infty) \iff \sup_{k,n \in \mathbb{N}} \|\xi_{nm}\| < \infty$$

(3) $M \in (\ell_1, c) \iff \sup_{k,n \in \mathbb{N}} \|\xi_{nm}\| < \infty$ and for some sequence $\{\kappa_m\}$ such that $\lim_{n \to \infty} \xi_{nm} = \kappa_m$

Theorem 3.1. For the space $\underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$, we have

$$\underline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)^{\alpha}=\underline{\alpha}_1$$

where

$$\underline{\alpha}_1 = \left\{ \xi = \{\xi_n\} \in \omega_4 : \sum_k \left\| \sum_{m=1}^n \mathcal{M}\left(\frac{\|\Delta(\xi_m/m)\|}{K}\right) \eta_k \right\| < \infty, (\eta_k) \in \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|) \text{ for some } K > 0 \right\}$$

Proof. $\{\xi_n\}$ be any sequence in ω_4 . Assume the following relation

$$\xi_n \eta_n = \sum_{k=1}^n \mathcal{M}\left(\frac{\|\Delta(\xi_n/n)\|}{K}\right) \eta_k = (E\eta)_k$$

where $E = \{e_{nk}\}$ is defined by

$$e_{nm} = \begin{cases} \mathcal{M}\left(\frac{\|\Delta(\xi_n/n)\|}{K}\right) &, 1 \le m \le n\\ 0 & , n < m \end{cases}$$
(3.1)

Therefore, from the equation (3.1) and the Lemma (3.3) we have

$$\left\{ \mathcal{M}\left(\frac{\|\Delta(\xi_n/n)\|}{K}\right)\zeta_n \right\} \in \ell_1 \text{ if and only if } E\eta \in \ell_1, \text{ whenever } \eta \in \ell_1.$$

So, $\xi = \{\xi_n s\} \in \overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)^{\alpha}$ if and only if $E \in (\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|) : \ell_1).$

Hence proved.

Analogously, we can prove the following theorems.

Theorem 3.2. For the space $\overline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|)$

$$\overline{bv}(\mathbb{C}_2,\mathcal{M},\|.\|)^{\alpha}=\underline{\alpha}_2$$

where

$$\underline{\alpha}_1 = \left\{ \xi = \{\xi_n\} \in \omega_4 : \sum_k \left\| \sum_{m=1}^n \mathcal{M}\left(\frac{\|(\xi_m/m)\|}{K}\right) \eta_k \right\| < \infty, (\eta_k) \in \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|) \text{ for some } K > 0 \right\}$$

Theorem 3.3. For the space $\overline{\ell_1}(\mathbb{C}_2, \mathcal{M}, \|.\|)$

$$\overline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)^{\alpha}=\overline{\alpha}\mathbf{1}$$

where

$$\underline{\alpha}_1 = \left\{ \xi = \{\xi_n\} \in \omega_4 : \sum_k \left\| \sum_{m=1}^n \mathcal{M}\left(\frac{\|(m\,\xi_m)\|}{K}\right) \eta_k \right\| < \infty, (\eta_k) \in \underline{bv}(\mathbb{C}_2, \mathcal{M}, \|.\|) \text{ for some } K > 0 \right\}$$

Theorem 3.4. For the space $\underline{\ell}_1(\mathbb{C}_2, \mathcal{M}, \|.\|)$

$$\underline{\ell_1}(\mathbb{C}_2,\mathcal{M},\|.\|)^{\alpha}=\overline{\alpha}_2$$

where

$$\underline{\alpha}_{1} = \left\{ \xi = \{\xi_{n}\} \in \omega_{4} : \sum_{k} \left\| \sum_{m=1}^{n} \mathcal{M}\left(\frac{\|(\Delta(m\xi_{m}))\|}{K}\right) \eta_{k} \right\| < \infty, (\eta_{k}) \in \underline{bv}(\mathbb{C}_{2}, \mathcal{M}, \|.\|) \text{ for some } K > 0 \right\}$$

REFERENCES

- B. Atlay, F. Basar, Summability Theory and its Applications, Bentham Science Publishers, e-books, Monographs, Istambul, (2012).
- B. Atlay, F. Basar, Certain topological properties and duals of the domain of a triangle matrix in a sequence spaces, J. Math. Anal. Appl., 336 (2007), 632-645.
- [3] Goes and Goes, Sequences of bounded variation and sequences of Fourier coefficients I, Math. Z, 118 (1970) 93-102.
- [4] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2),169-176, (1981).
- [5] M. Et, R. Colak, On some generalized difference sequence spaces, Soochow J. Math., 21(4), 377-386, (1995).
- [6] H. Nakano, Modular Sequence Spaces, Proc. Japan Acad., 27, 508-512, (1951).
- [7] S.D. Prashar and B Chaudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Mathematics, 25, 419-478, (1994).
- [8] G.B. Price, An introduction to multicomplex space and functions, Marcel Dekker, Inc., New York, (1991).
- [9] Rajiv K Srivastava, Bicomplex numbers: analysis and applications, Math. Student, 72 (1-4), 63-87, (2007).