©2018 Authors retain the copyrights

A NEW TYPE OF CONNECTED SETS VIA BIOPERATIONS

HARIWAN Z. IBRAHIM*

Department of Mathematics, Faculty of Education, University of Zakho, Kurdistan-Region, Iraq

* Corresponding author: hariwan_math@yahoo.com

ABSTRACT. The purpose of this paper is to introduce the notion of $\alpha_{(\gamma,\gamma')}$ -separated sets and study their properties in topological spaces, then we introduce the notions of $\alpha_{(\gamma,\gamma')}$ -connected and $\alpha_{(\gamma,\gamma')}$ -disconnected sets. We discuss the characterizations and properties of $\alpha_{(\gamma,\gamma')}$ -connected sets and then properties under $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -continuous functions. The $\alpha_{(\gamma,\gamma')}$ -components in a space X is also introduced.

1. Introduction

Njastad [5] introduced α -open sets in a topological space and studied some of their properties. Ibrahim [1] introduced and discussed an operation of a topology $\alpha O(X)$ into the power set P(X) of a space X and also in [2] he introduced the notion of $\alpha O(X, \tau)_{(\gamma, \gamma')}$, which is the collection of all $\alpha_{(\gamma, \gamma')}$ -open sets in a topological space (X, τ) . In addition, Ibrahim [3] introduced the concept of $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -closed and $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -continuous functions and investigated some of their basic properties. Mishra [4] introduced α - τ -disconnectedness and α - τ -connectedness in topological spaces. In this paper, the author introduce and study the characterizations and properties of $\alpha_{(\gamma, \gamma')}$ -connected and $\alpha_{(\gamma, \gamma')}$ -disconnected spaces and then properties under $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -continuous functions.

Received 2018-01-18; accepted 2018-03-19; published 2018-07-02.

²⁰¹⁰ Mathematics Subject Classification. Primary 22A05, 22A10, Secondary 54C05.

Key words and phrases. α -open; bioperations; $\alpha_{(\gamma,\gamma')}$ -connected set; $\alpha_{(\gamma,\gamma')}$ -disconnected set.

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

2. Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denotes a topological spaces on which no separation axioms is assumed unless explicitly stated. For a subset A of a space X, Cl(A) and Int(A) represent the closure of A and the interior of A, respectively.

Definition 2.1. [5] A subset A of a topological space (X, τ) is said to be α -open if $A \subseteq Int(Cl(Int(A)))$. The complement of an α -open set is said to be α -closed. The family of all α -open (resp., α -closed) sets in a topological space (X, τ) is denoted by $\alpha O(X, \tau)$ (resp., $\alpha C(X, \tau)$).

The intersection of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha Cl(A)$.

Definition 2.2. [4] The subsets A and B of a topological space (X, τ) are called α - τ -separated sets if $(\alpha Cl(A) \cap B) \cup (A \cap \alpha Cl(B)) = \phi$.

Definition 2.3. [1] An operation $\gamma : \alpha O(X, \tau) \to P(X)$ is a mapping satisfying the condition, $V \subseteq V^{\gamma}$ for each $V \in \alpha O(X, \tau)$. We call the mapping γ an operation on $\alpha O(X, \tau)$. The operation $id : \alpha O(X, \tau) \to P(X)$ is defined by $V^{id} = V$ for any set $V \in \alpha O(X, \tau)$. This operation is called the identity operation on $\alpha O(X, \tau)$.

Definition 2.4. [2] A nonempty subset A of (X, τ) is said to be $\alpha_{(\gamma,\gamma')}$ -open if for each $x \in A$, there exist α -open sets U and V of X containing x such that $U^{\gamma} \cup V^{\gamma'} \subseteq A$. A subset F of (X, τ) is said to be $\alpha_{(\gamma,\gamma')}$ -closed if its complement $X \setminus F$ is $\alpha_{(\gamma,\gamma')}$ -open. The set of all $\alpha_{(\gamma,\gamma')}$ -open sets of (X, τ) is denoted by $\alpha O(X, \tau)_{(\gamma,\gamma')}$.

Definition 2.5. [2] Let A be a subset of a topological space (X, τ) .

- (1) The union of all $\alpha_{(\gamma,\gamma')}$ -open sets contained in A is called the $\alpha_{(\gamma,\gamma')}$ -interior of A and is denoted by $\alpha_{(\gamma,\gamma')}$ -Int(A).
- (2) The intersection of all α_(γ,γ')-closed sets containing A is called the α_(γ,γ')-closure of A and denoted by α_(γ,γ')-Cl(A).

Proposition 2.1. [2] Let A and B be subsets of (X, τ) . Then the following hold:

- (1) $A \subseteq \alpha_{(\gamma,\gamma')}$ -Cl(A).
- (2) If $A \subseteq B$, then $\alpha_{(\gamma,\gamma')}$ - $Cl(A) \subseteq \alpha_{(\gamma,\gamma')}$ -Cl(B).
- (3) A is $\alpha_{(\gamma,\gamma')}$ -closed if and only if $\alpha_{(\gamma,\gamma')}$ -Cl(A) = A.
- (4) $\alpha_{(\gamma,\gamma')}$ -Cl(A) is $\alpha_{(\gamma,\gamma')}$ -closed.

Proposition 2.2. [2] For a point $x \in X$, $x \in \alpha_{(\gamma,\gamma')}$ -Cl(A) if and only if $V \cap A \neq \phi$ for every $\alpha_{(\gamma,\gamma')}$ -open set V containing x.

Definition 2.6. [3] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -closed if for $\alpha_{(\gamma, \gamma')}$ -closed set A of X, f(A) is $\alpha_{(\beta, \beta')}$ -closed in Y.

Proposition 2.3. [3] Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then, f is $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -closed if and only if $\alpha_{(\beta, \beta')}$ - $Cl(f(A)) \subseteq f(\alpha_{(\gamma, \gamma')}$ -Cl(A)) for every subset A of X.

Theorem 2.1. [3] Suppose that $f: (X, \tau) \to (Y, \sigma)$ is $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -continuous. Then,

- (1) $f^{-1}(V)$ is $\alpha_{(\gamma,\gamma')}$ -open for every $\alpha_{(\beta,\beta')}$ -open set V of (Y,σ) .
- (2) For each point $x \in X$ and each $\alpha_{(\beta,\beta')}$ -open W of (Y,σ) containing f(x), there exist $\alpha_{(\gamma,\gamma')}$ -open U of (X,τ) containing x such that $f(U) \subseteq W$.

3. $\alpha_{(\gamma,\gamma')}$ -Connected and $\alpha_{(\gamma,\gamma')}$ -Disconnected Sets

Throughout this section, let $\gamma, \gamma' : \alpha O(X, \tau) \to P(X)$ be operations on $\alpha O(X, \tau)$ and $\beta, \beta' : \alpha O(Y, \sigma) \to P(Y)$ be operations on $\alpha O(Y, \sigma)$.

Definition 3.1. Two subsets A and B of a topological space (X, τ) are called $\alpha_{(\gamma,\gamma')}$ -separated if $(\alpha_{(\gamma,\gamma')}-Cl(A)\cap B) \cup (A\cap\alpha_{(\gamma,\gamma')}-Cl(B)) = \phi$.

Remark 3.1. Each two $\alpha_{(\gamma,\gamma')}$ -separated sets are always disjoint, since $A \cap B \subseteq A \cap \alpha_{(\gamma,\gamma')}$ - $Cl(B) = \phi$. The converse may not be true in general, as it is shown in the following example.

Example 3.1. Let $X = \{1, 2, 3\}$ and $\tau = \{\phi, X, \{2\}\}$. For each $A \in \alpha O(X)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } 3 \in A \\ X & \text{if } 3 \notin A \end{cases}$$

Since $\alpha O(X, \tau)_{(\gamma, \gamma')} = \{\phi, X, \{2, 3\}\}$, then $\{2\}$ and $\{3\}$ are disjoint subsets of X, but not $\alpha_{(\gamma, \gamma')}$ -separated.

From the fact that $\alpha Cl(A) \subseteq \alpha_{(\gamma,\gamma')} - Cl(A)$, for every subset A of X. Then every $\alpha_{(\gamma,\gamma')}$ -separated set is $\alpha - \tau$ -separated. But the converse may not be true as shown in the following example.

Example 3.2. Let $X = \{1, 2, 3, 4\}$ and $\tau = \{\phi, X, \{1\}, \{2\}, \{1, 2\}\}$. For each $A \in \alpha O(X)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } 4 \in A \\ X & \text{if } 4 \notin A \end{cases}$$

Since $\alpha O(X, \tau)_{(\gamma, \gamma')} = \{\phi, X, \{1, 2, 4\}\}$, then the subsets $\{3\}$ and $\{4\}$ are α - τ -separated, but not $\alpha_{(\gamma, \gamma')}$ -separated.

Theorem 3.1. If A and B are any two nonempty subsets in a space X, then the following statements are true:

(1) If A and B are $\alpha_{(\gamma,\gamma')}$ -separated, $A_1 \subseteq A$ and $B_1 \subseteq B$, then A_1 and B_1 are also $\alpha_{(\gamma,\gamma')}$ -separated.

- (2) If $A \cap B = \phi$ such that each of A and B are both $\alpha_{(\gamma,\gamma')}$ -closed ($\alpha_{(\gamma,\gamma')}$ -open), then A and B are $\alpha_{(\gamma,\gamma')}$ -separated.
- (3) If each of A and B is $\alpha_{(\gamma,\gamma')}$ -closed $(\alpha_{(\gamma,\gamma')}$ -open) and if $H = A \cap (X \setminus B)$ and $G = B \cap (X \setminus A)$, then H and G are $\alpha_{(\gamma,\gamma')}$ -separated.
- Proof. (1) Since $A_1 \subseteq A$, then $\alpha_{(\gamma,\gamma')} Cl(A_1) \subseteq \alpha_{(\gamma,\gamma')} Cl(A)$. Then, $B \cap \alpha_{(\gamma,\gamma')} Cl(A) = \phi$ implies $B_1 \cap \alpha_{(\gamma,\gamma')} Cl(A) = \phi$ and $B_1 \cap \alpha_{(\gamma,\gamma')} Cl(A_1) = \phi$. Similarly $A_1 \cap \alpha_{(\gamma,\gamma')} Cl(B_1) = \phi$. Hence, A_1 and B_1 are $\alpha_{(\gamma,\gamma')}$ -separated.
 - (2) Since $A = \alpha_{(\gamma,\gamma')} Cl(A)$, $B = \alpha_{(\gamma,\gamma')} Cl(B)$ and $A \cap B = \phi$, then $\alpha_{(\gamma,\gamma')} Cl(A) \cap B = \phi$ and $\alpha_{(\gamma,\gamma')} Cl(B) \cap A = \phi$. Hence, A and B are $\alpha_{(\gamma,\gamma')}$ -separated. If A and B are $\alpha_{(\gamma,\gamma')}$ -open, then their complements are $\alpha_{(\gamma,\gamma')}$ -closed. Hence, $\alpha_{(\gamma,\gamma')} Cl(A) \subseteq X \setminus B$ and $\alpha_{(\gamma,\gamma')} Cl(B) \subseteq X \setminus A$. Therefore, A and B are $\alpha_{(\gamma,\gamma')}$ -separated.
 - (3) If A and B are $\alpha_{(\gamma,\gamma')}$ -open, then $X \setminus A$ and $X \setminus B$ are $\alpha_{(\gamma,\gamma')}$ -closed. Since $H \subseteq X \setminus B$, $\alpha_{(\gamma,\gamma')}$ - $Cl(H) \subseteq \alpha_{(\gamma,\gamma')}$ - $Cl(X \setminus B) = X \setminus B$ and so $\alpha_{(\gamma,\gamma')}$ - $Cl(H) \cap B = \phi$. Thus $G \cap \alpha_{(\gamma,\gamma')}$ - $Cl(H) = \phi$. Similarly, $H \cap \alpha_{(\gamma,\gamma')}$ - $Cl(G) = \phi$. Hence H and G are $\alpha_{(\gamma,\gamma')}$ -separated. If A and B are $\alpha_{(\gamma,\gamma')}$ -closed, then $\alpha_{(\gamma,\gamma')}$ - $Cl(H) \subseteq A$ and $\alpha_{(\gamma,\gamma')}$ - $Cl(G) \subseteq B$. Thus, H and G are $\alpha_{(\gamma,\gamma')}$ -separated.

Theorem 3.2. The sets A and B of a space X are $\alpha_{(\gamma,\gamma')}$ -separated if and only if there exist U and V in $\alpha O(X,\tau)_{(\gamma,\gamma')}$ such that $A \subseteq U, B \subseteq V$ and $A \cap V = \phi$ and $B \cap U = \phi$.

Proof. Let A and B be $\alpha_{(\gamma,\gamma')}$ -separated sets. Set $V = X \setminus \alpha_{(\gamma,\gamma')}$ -Cl(A) and $U = X \setminus \alpha_{(\gamma,\gamma')}$ -Cl(B). Then $U, V \in \alpha O(X, \tau)_{(\gamma,\gamma')}$ such that $A \subseteq U, B \subseteq V$ and $A \cap V = \phi, B \cap U = \phi$. On the other hand, let $U, V \in \alpha O(X, \tau)_{(\gamma,\gamma')}$ such that $A \subseteq U, B \subseteq V$ and $A \cap V = \phi, B \cap U = \phi$. Since $X \setminus V$ and $X \setminus U$ are $\alpha_{(\gamma,\gamma')}$ -closed, then $\alpha_{(\gamma,\gamma')}$ - $Cl(A) \subseteq X \setminus V \subseteq X \setminus B$ and $\alpha_{(\gamma,\gamma')}$ - $Cl(B) \subseteq X \setminus U \subseteq X \setminus A$. Thus $\alpha_{(\gamma,\gamma')}$ - $Cl(A) \cap B = \phi$ and $\alpha_{(\gamma,\gamma')}$ - $Cl(B) \cap A = \phi$.

Theorem 3.3. In any topological space (X, τ) , the following statements are equivalent:

- (1) ϕ and X are the only $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed sets in X.
- (2) X is not the union of two disjoint nonempty $\alpha_{(\gamma,\gamma')}$ -open sets.
- (3) X is not the union of two disjoint nonempty $\alpha_{(\gamma,\gamma')}$ -closed sets.
- (4) X is not the union of two nonempty $\alpha_{(\gamma,\gamma')}$ -separated sets.

Proof. (1) \Rightarrow (2): Suppose (2) is false and that $X = A \cup B$, where A, B are disjoint nonempty $\alpha_{(\gamma,\gamma')}$ -open sets. Since $X \setminus A = B$ is $\alpha_{(\gamma,\gamma')}$ -open and nonempty, we have that A is a nonempty proper $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed set in X, which shows that (1) is false. (2) \Leftrightarrow (3): This is clear.

(3) \Rightarrow (4): If (4) is false, then $X = A \cup B$, where A, B are nonempty and $\alpha_{(\gamma,\gamma')}$ -separated. Since $\alpha_{(\gamma,\gamma')}$ - $Cl(B) \cap A = \phi$, we conclude that $\alpha_{(\gamma,\gamma')}$ - $Cl(B) \subseteq B$, so B is $\alpha_{(\gamma,\gamma')}$ -closed. Similarly, A must be $\alpha_{(\gamma,\gamma')}$ -closed. Therefore, (3) is false.

(4) \Rightarrow (1): Suppose (1) is false and that A is a nonempty proper $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed subset of X. Then, $B = X \setminus A$ is nonempty, $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed, so A and B are $\alpha_{(\gamma,\gamma')}$ -separated and $X = A \cup B$, so (4) is false.

Definition 3.2. A subset C of a space X is said to be $\alpha_{(\gamma,\gamma')}$ -disconnected if there are nonempty $\alpha_{(\gamma,\gamma')}$ separated subsets A and B of X such that $C = A \cup B$, otherwise C is called $\alpha_{(\gamma,\gamma')}$ -connected. If C is $\alpha_{(\gamma,\gamma')}$ -disconnected, such a pair of sets A, B will be called an $\alpha_{(\gamma,\gamma')}$ -disconnection of C.

Example 3.3. Let $X = \{1, 2, 3\}$ and $\tau = \{\phi, X, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}\}$. For each $A \in \alpha O(X)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } 3 \in A \\ Cl(A) & \text{if } 3 \notin A. \end{cases}$$

Then, X is $\alpha_{(\gamma,\gamma')}$ -disconnected because there exist a pair $\{1\}, \{2,3\}$ subsets of X such that $\{1\} \cup \{2,3\} = X$, and $(\alpha_{(\gamma,\gamma')}-Cl(\{1\}) \cap \{2,3\}) \cup (\{1\} \cap \alpha_{(\gamma,\gamma')}-Cl(\{2,3\})) = (\{1\} \cap \{2,3\}) \cup (\{1\} \cap \{2,3\}) = \phi$.

Example 3.4. Let $X = \{1, 2, 3\}$ and $\tau = \{\phi, X, \{1\}, \{3\}, \{1, 3\}\}$. For each $A \in \alpha O(X)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } 2 \in A \\ X & \text{if } 2 \notin A. \end{cases}$$

Then, X is $\alpha_{(\gamma,\gamma')}$ -connected, since there does not exist a pair A, B of nonempty $\alpha_{(\gamma,\gamma')}$ -separated subsets of X such that $X = A \cup B$.

Remark 3.2. Every indiscrete space is $\alpha_{(\gamma,\gamma')}$ -connected.

Remark 3.3. Every discrete space contains more than one element is $\alpha_{(id,id')}$ -disconnected.

Remark 3.4. A space X is $\alpha_{(\gamma,\gamma')}$ -connected if any (therefore all) of the conditions (1) – (4) in Theorem 3.3 hold.

Remark 3.5. According to the Definition 3.2 and Remark 3.4, a space X is $\alpha_{(\gamma,\gamma')}$ -disconnected if we can write $X = A \cup B$, where the following (equivalent) statements are true:

- (1) A and B are disjoint, nonempty and $\alpha_{(\gamma,\gamma')}$ -open.
- (2) A and B are disjoint, nonempty and $\alpha_{(\gamma,\gamma')}$ -closed.
- (3) A and B are nonempty and $\alpha_{(\gamma,\gamma')}$ -separated.

Theorem 3.4. A space X is $\alpha_{(\gamma,\gamma')}$ -disconnected if and only if there exists a nonempty proper subset A of X which is both $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed in X.

Proof. Follows from Remark 3.5.

Definition 3.3. Let A be a subset of a space X, then the $\alpha_{(\gamma,\gamma')}$ -boundary of A is defined as $\alpha_{(\gamma,\gamma')}$ - $Cl(A) \setminus \alpha_{(\gamma,\gamma')}$ -Int(A) and is denoted by $\alpha_{(\gamma,\gamma')}$ -Bd(A).

Proposition 3.1. Let A be any subset of a topological space (X, τ) . Then, the following statements are hold:

(1)
$$\alpha_{(\gamma,\gamma')}$$
- $Cl(A) = \alpha_{(\gamma,\gamma')}$ - $Int(A) \cup \alpha_{(\gamma,\gamma')}$ - $Bd(A).$
(2) $\alpha_{(\gamma,\gamma')}$ - $Bd(A) = \alpha_{(\gamma,\gamma')}$ - $Cl(A) \cap \alpha_{(\gamma,\gamma')}$ - $Cl(X \setminus A).$

Proof. Obvious.

Theorem 3.5. A space X is $\alpha_{(\gamma,\gamma')}$ -connected if and only if every nonempty proper subset of X has a nonempty $\alpha_{(\gamma,\gamma')}$ -boundary.

Proof. Suppose that a nonempty proper subset A of an $\alpha_{(\gamma,\gamma')}$ -connected space X has empty $\alpha_{(\gamma,\gamma')}$ -boundary. Since $\alpha_{(\gamma,\gamma')}$ - $Cl(A) = \alpha_{(\gamma,\gamma')}$ - $Int(A) \cup \alpha_{(\gamma,\gamma')}$ -Bd(A). Thus, A is both $\alpha_{(\gamma,\gamma')}$ -closed and $\alpha_{(\gamma,\gamma')}$ -open. By Theorem 3.4, X is $\alpha_{(\gamma,\gamma')}$ -disconnected. This contradiction, hence proves that A has a nonempty $\alpha_{(\gamma,\gamma')}$ -boundary.

Conversely, suppose X is $\alpha_{(\gamma,\gamma')}$ -disconnected. Then by Theorem 3.4, X has a nonempty proper subset A which is both $\alpha_{(\gamma,\gamma')}$ -closed and $\alpha_{(\gamma,\gamma')}$ -open. Then, $\alpha_{(\gamma,\gamma')}$ -Cl(A) = A, $\alpha_{(\gamma,\gamma')}$ - $Cl(X \setminus A) = X \setminus A$ and $\alpha_{(\gamma,\gamma')}$ - $Cl(A) \cap \alpha_{(\gamma,\gamma')}$ - $Cl(X \setminus A) = \phi$. So A has empty $\alpha_{(\gamma,\gamma')}$ -boundary, this is a contradiction. Hence, X is $\alpha_{(\gamma,\gamma')}$ -connected.

Lemma 3.1. Suppose M, N are $\alpha_{(\gamma,\gamma')}$ -separated subsets of X. If $C \subseteq M \cup N$ and C is $\alpha_{(\gamma,\gamma')}$ -connected, then $C \subseteq M$ or $C \subseteq N$.

Proof. Since $C \cap M \subseteq M$ and $C \cap N \subseteq N$, then $C \cap M$ and $C \cap N$ are $\alpha_{(\gamma,\gamma')}$ -separated and $C = C \cap (M \cup N) = (C \cap M) \cup (C \cap N)$. But C is $\alpha_{(\gamma,\gamma')}$ -connected so $(C \cap M)$ and $(C \cap N)$ can not form an $\alpha_{(\gamma,\gamma')}$ -disconnection of C. Therefore, either $C \cap M = \phi$, so $C \subseteq N$ or $C \cap N = \phi$, so $C \subseteq M$.

Theorem 3.6. Suppose C and C_i $(i \in I)$ are $\alpha_{(\gamma,\gamma')}$ -connected subsets of X and that for each i, C_i and C are not $\alpha_{(\gamma,\gamma')}$ -separated. Then, $S = C \cup C_i$ is $\alpha_{(\gamma,\gamma')}$ -connected.

Proof. Suppose that $S = M \cup N$, where M and N are $\alpha_{(\gamma,\gamma')}$ -separated. By Lemma 3.1, either $C \subseteq M$ or $C \subseteq N$. Without loss of generality, assume $C \subseteq M$. By the same reasoning we conclude that for each i,

either $C_i \subseteq M$ or $C_i \subseteq N$. But if some $C_i \subseteq N$, then C and C_i would be $\alpha_{(\gamma,\gamma')}$ -separated. Hence every $C_i \subseteq M$. Therefore, $N = \phi$ and the pair M, N is not an $\alpha_{(\gamma,\gamma')}$ -disconnection of S.

Corollary 3.1. Suppose that for each $i \in I$, C_i is an $\alpha_{(\gamma,\gamma')}$ -connected subset of X and that for all $i \neq j$, $C_i \cap C_j \neq \phi$. Then, $\cup \{C_i : i \in I\}$ is $\alpha_{(\gamma,\gamma')}$ -connected.

Proof. If $I = \phi$, then $\cup \{C_i : i \in I\} = \phi$ is $\alpha_{(\gamma,\gamma')}$ -connected. If $I \neq \phi$, pick $i_0 \in I$ and let C_{i_0} be the central set C in Theorem 3.6. For all $i \in I$, $C_i \cap C_{i_0} \neq \phi$, so C_i and C_{i_0} are not $\alpha_{(\gamma,\gamma')}$ -separated. By Theorem 3.6, $\cup \{C_i : i \in I\}$ is $\alpha_{(\gamma,\gamma')}$ -connected.

Corollary 3.2. Suppose that for all $x, y \in X$, there exists an $\alpha_{(\gamma,\gamma')}$ -connected set $C_{xy} \subseteq X$ with $x, y \in C_{xy}$. Then, X is $\alpha_{(\gamma,\gamma')}$ -connected.

Proof. Certainly $X = \phi$ is $\alpha_{(\gamma,\gamma')}$ -connected. If $X \neq \phi$, choose $a \in X$. By hypothesis there is, for each $y \in X$, an $\alpha_{(\gamma,\gamma')}$ -connected set C_{ay} containing both a and y. By Corollary 3.1, $X = \bigcup \{C_{ay} : y \in X\}$ is $\alpha_{(\gamma,\gamma')}$ -connected.

Corollary 3.3. Suppose C is an $\alpha_{(\gamma,\gamma')}$ -connected subset of X and $A \subseteq X$. If $C \subseteq A \subseteq \alpha_{(\gamma,\gamma')}$ -Cl(C), then A is $\alpha_{(\gamma,\gamma')}$ -connected.

Proof. For each $a \in A$, $\{a\}$ and C are not $\alpha_{(\gamma,\gamma')}$ -separated. By Theorem 3.6, $A = C \cup \bigcup \{\{a\} : a \in A\}$ is $\alpha_{(\gamma,\gamma')}$ -connected.

Remark 3.6. In particular, the $\alpha_{(\gamma,\gamma')}$ -closure of an $\alpha_{(\gamma,\gamma')}$ -connected set is $\alpha_{(\gamma,\gamma')}$ -connected.

Theorem 3.7. Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Consider the following statements.

- (1) f is $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -continuous.
- (2) $f^{-1}(V) \subseteq \alpha_{(\gamma,\gamma')}$ -Int $(f^{-1}(V))$ for every $\alpha_{(\beta,\beta')}$ -open set V of Y.
- (3) $f(\alpha_{(\gamma,\gamma')}-Cl(A)) \subseteq \alpha_{(\beta,\beta')}-Cl(f(A))$ for every subset A of X.
- (4) $\alpha_{(\gamma,\gamma')}$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\alpha_{(\beta,\beta')}-Cl(B))$ for every subset B of Y.

Then, the following implications are true: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$.

Proof. (1) \Rightarrow (2). Let V be any $\alpha_{(\beta,\beta')}$ -open set of Y and $x \in f^{-1}(V)$. Then, $f(x) \in V$. Since f is $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -continuous, there exists an $\alpha_{(\gamma,\gamma')}$ -open set U of X containing x such that $f(U) \subseteq V$ and hence $U \subseteq f^{-1}(V)$, this implies that $x \in \alpha_{(\gamma,\gamma')}$ - $Int(f^{-1}(V))$. Thus, it follows that $f^{-1}(V) \subseteq \alpha_{(\gamma,\gamma')}$ - $Int(f^{-1}(V))$.

(2) \Rightarrow (3). Let A be any subset of X and $f(x) \notin \alpha_{(\beta,\beta')}$ -Cl(f(A)). Then, by Proposition 2.2, there exists an $\alpha_{(\beta,\beta')}$ -open set V of Y containing f(x) such that $V \cap f(A) = \phi$ and hence $f^{-1}(V) \cap A = \phi$. Also $f(x) \in V$ implies $x \in f^{-1}(V)$. Then by (2) we obtain that $x \in \alpha_{(\gamma,\gamma')}$ -Int($f^{-1}(V)$). Hence, there exists an $\alpha_{(\gamma,\gamma')}$ -open set U of X containing x such that $U \subseteq f^{-1}(V)$. Then $U \cap A = \phi$ and so $x \notin \alpha_{(\gamma,\gamma')}$ -Cl(A). This implies $f(x) \notin f(\alpha_{(\gamma,\gamma')}$ -Cl(A)). Thus, $f(\alpha_{(\gamma,\gamma')}$ - $Cl(A)) \subseteq \alpha_{(\beta,\beta')}$ -Cl(f(A)).

 $(3) \Rightarrow (4). \text{ Let } B \text{ be any subset of } Y. \text{ Since } f(f^{-1}(B)) \subseteq B, \text{ so, we have } \alpha_{(\beta,\beta')} \text{-} Cl(f(f^{-1}(B))) \subseteq \alpha_{(\beta,\beta')} \text{-} Cl(B). \text{ Also, } f^{-1}(B) \subseteq X, \text{ then by } (3), \text{ we have } f(\alpha_{(\gamma,\gamma')} \text{-} Cl(f^{-1}(B))) \subseteq \alpha_{(\beta,\beta')} \text{-} Cl(f(f^{-1}(B))) \subseteq \alpha_{(\beta,\beta')} \text{-} Cl(B). \text{ Thus, } \alpha_{(\gamma,\gamma')} \text{-} Cl(f^{-1}(B)) \subseteq f^{-1}(\alpha_{(\beta,\beta')} \text{-} Cl(B)).$

Corollary 3.4. Let $f: X \to Y$ be an $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -continuous and injective function. If K is $\alpha_{(\gamma,\gamma')}$ connected in X, then f(K) is $\alpha_{(\beta,\beta')}$ -connected in Y.

Proof. Suppose that f(K) is $\alpha_{(\beta,\beta')}$ -disconnected in Y. There exist two $\alpha_{(\beta,\beta')}$ -separated sets P and Q of Y such that $f(K) = P \cup Q$. Set $A = K \cap f^{-1}(P)$ and $B = K \cap f^{-1}(Q)$. Since $f(K) \cap P \neq \phi$, then $K \cap f^{-1}(P) \neq \phi$ and so $A \neq \phi$. Similarly $B \neq \phi$. Now, $A \cup B = (K \cap f^{-1}(P)) \cup (K \cap f^{-1}(Q)) = K \cap (f^{-1}(P) \cup f^{-1}(Q)) = K \cap f^{-1}(P \cup Q) = K \cap f^{-1}(f(K)) = K$. Since f is $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -continuous, then by Theorem 3.7, $\alpha_{(\gamma,\gamma')}$ - $Cl(f^{-1}(Q)) \subseteq f^{-1}(\alpha_{(\beta,\beta')}$ -Cl(Q)) and $B \subseteq f^{-1}(Q)$, then $\alpha_{(\gamma,\gamma')}$ - $Cl(B) \subseteq f^{-1}(\alpha_{(\beta,\beta')}$ -Cl(Q)). Since $P \cap \alpha_{(\beta,\beta')}$ - $Cl(Q) = \phi$, then $A \cap \alpha_{(\gamma,\gamma')}$ - $Cl(B) \subseteq A \cap f^{-1}(\alpha_{(\beta,\beta')}$ - $Cl(Q)) \subseteq f^{-1}(\alpha_{(\beta,\beta')}$ - $Cl(Q)) = \phi$ and then $A \cap \alpha_{(\gamma,\gamma')}$ - $Cl(B) = \phi$. Similarly, $B \cap \alpha_{(\gamma,\gamma')}$ - $Cl(A) = \phi$. Thus, A and B are $\alpha_{(\gamma,\gamma')}$ -separated. Therefore, K is $\alpha_{(\gamma,\gamma')}$ -disconnected, this is contradiction. Hence, f(K) is $\alpha_{(\beta,\beta')}$ -connected.

Theorem 3.8. If $f : (X, \tau) \to (Y, \sigma)$ is an onto $(\alpha_{(\gamma, \gamma')}, \alpha_{(\beta, \beta')})$ -continuous function and X is $\alpha_{(\gamma, \gamma')}$ connected, then Y is $\alpha_{(\beta, \beta')}$ -connected.

Proof. Suppose that Y is $\alpha_{(\beta,\beta')}$ -disconnected and A, B is an $\alpha_{(\beta,\beta')}$ -disconnection of Y. By Remark 3.5, A and B are both $\alpha_{(\beta,\beta')}$ -open sets. Since f is $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -continuous, so by Theorem 2.1, $f^{-1}(A)$ and $f^{-1}(B)$ are both nonempty $\alpha_{(\gamma,\gamma')}$ -open sets in X. Now, $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(Y) = X$, and $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\phi) = \phi$. Then by Remark 3.5, $f^{-1}(A), f^{-1}(B)$ is a pair of $\alpha_{(\gamma,\gamma')}$ -disconnection of X. This contradiction shows that Y is $\alpha_{(\beta,\beta')}$ -connected.

Corollary 3.5. For a bijective $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -closed function $f: X \to Y$, if C is $\alpha_{(\beta,\beta')}$ -connected in Y, then $f^{-1}(C)$ is $\alpha_{(\gamma,\gamma')}$ -connected in X.

Proof. Suppose that $f^{-1}(C)$ is $\alpha_{(\gamma,\gamma')}$ -disconnected in X. There exist two $\alpha_{(\gamma,\gamma')}$ -separated sets M and N of X such that $f^{-1}(C) = M \cup N$. Set $K = C \cap f(M)$ and $L = C \cap f(N)$. Since $C = f(M) \cup f(N)$, then $C \cap f(M) \neq \phi$ and so $K \neq \phi$. Similarly $L \neq \phi$. Now, $K \cup L = (C \cap f(M)) \cup (C \cap f(N)) = C \cap (f(M) \cup f(N)) = C \cap f(M \cup N) = C \cap f(f^{-1}(C)) = C$. Since f is $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -closed, then by Proposition 2.3, $\alpha_{(\beta,\beta')}$ - $Cl(f(N)) \subseteq f(\alpha_{(\gamma,\gamma')}$ -Cl(N)) and $L \subseteq f(N)$, then $\alpha_{(\beta,\beta')}$ - $Cl(L) \subseteq f(\alpha_{(\gamma,\gamma')}$ -Cl(N)). Since $M \cap \alpha_{(\gamma,\gamma')}$ - $Cl(N) = \phi$, then $K \cap \alpha_{(\beta,\beta')}$ - $Cl(L) \subseteq K \cap f(\alpha_{(\gamma,\gamma')}$ - $Cl(N)) \subseteq f(M) \cap f(\alpha_{(\gamma,\gamma')}$ - $Cl(N)) = \phi$ and then $K \cap \alpha_{(\beta,\beta')}$ - $Cl(L) = \phi$. Similarly, $L \cap \alpha_{(\beta,\beta')}$ - $Cl(K) = \phi$. Thus, K and L are $\alpha_{(\beta,\beta')}$ -separated. Therefore, C is $\alpha_{(\beta,\beta')}$ -disconnected, this is contradiction. Hence, $f^{-1}(C)$ is $\alpha_{(\gamma,\gamma')}$ -connected.

Definition 3.4. A set C is called a maximal $\alpha_{(\gamma,\gamma')}$ -connected set if it is $\alpha_{(\gamma,\gamma')}$ -connected and if $C \subseteq D \subseteq X$ where D is $\alpha_{(\gamma,\gamma')}$ -connected, then C = D. A maximal $\alpha_{(\gamma,\gamma')}$ -connected subset C of a space X is called an $\alpha_{(\gamma,\gamma')}$ -component of X. If X is itself $\alpha_{(\gamma,\gamma')}$ -connected, then X is the only $\alpha_{(\gamma,\gamma')}$ -component of X.

Theorem 3.9. For each $x \in X$, there is exactly one $\alpha_{(\gamma,\gamma')}$ -component of X containing x.

Proof. For any $x \in X$, let $C_x = \bigcup \{A : x \in A \subseteq X \text{ and } A \text{ is } \alpha_{(\gamma,\gamma')}\text{-connected}\}$. Then, $\{x\} \in C_x$, since C_x is a union of $\alpha_{(\gamma,\gamma')}$ -connected sets each containing x, C_x is $\alpha_{(\gamma,\gamma')}$ -connected by Corollary 3.1. If $C_x \subseteq D$ and D is $\alpha_{(\gamma,\gamma')}$ -connected, then D was one of the sets A in the collection whose union defines C_x , so $D \subseteq C_x$ and therefore $C_x = D$. Therefore, C_x is an $\alpha_{(\gamma,\gamma')}$ -component of X that contains x.

Corollary 3.6. A space X is the union of its $\alpha_{(\gamma,\gamma')}$ -components.

Proof. Follows from Theorem 3.9.

Corollary 3.7. Two $\alpha_{(\gamma,\gamma')}$ -components are either disjoint or coincide.

Proof. Let C_x and C_y be $\alpha_{(\gamma,\gamma')}$ -components and $C_x \neq C_y$. If $p \in C_x \cap C_y$, then by Corollary 3.1, $C_x \cup C_y$ would be an $\alpha_{(\gamma,\gamma')}$ -connected set strictly larger than C_x . Therefore, $C_x \cap C_y = \phi$.

Theorem 3.10. Each $\alpha_{(\gamma,\gamma')}$ -connected subset of X is contained in exactly one $\alpha_{(\gamma,\gamma')}$ -component of X.

Proof. Let A be an $\alpha_{(\gamma,\gamma')}$ -connected subset of X which is not in exactly one $\alpha_{(\gamma,\gamma')}$ -component of X. Suppose that C_1 and C_2 are $\alpha_{(\gamma,\gamma')}$ -components of X such that $A \subseteq C_1$ and $A \subseteq C_2$. Since $C_1 \cap C_2 \neq \phi$ and by Corollary 3.1, $C_1 \cup C_2$ is another $\alpha_{(\gamma,\gamma')}$ -connected set which contains C_1 as well as C_2 , a contradiction to the fact that C_1 and C_2 are $\alpha_{(\gamma,\gamma')}$ -components. This proves that A is contained in exactly one $\alpha_{(\gamma,\gamma')}$ -component of X.

Theorem 3.11. A nonempty $\alpha_{(\gamma,\gamma')}$ -connected subset of X which is both $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed is $\alpha_{(\gamma,\gamma')}$ -component.

Proof. Suppose that A is $\alpha_{(\gamma,\gamma')}$ -connected subset of X which is both $\alpha_{(\gamma,\gamma')}$ -open and $\alpha_{(\gamma,\gamma')}$ -closed. By Theorem 3.10, A is contained in exactly one $\alpha_{(\gamma,\gamma')}$ -component C of X. If A is a proper subset of C, then $C = (C \cap A) \cup (C \cap (X \setminus A))$ and $(C \cap A), (C \cap (X \setminus A))$ is an $\alpha_{(\gamma,\gamma')}$ -disconnection of C, which is a contradiction. Thus, A = C.

Theorem 3.12. Every $\alpha_{(\gamma,\gamma')}$ -component of X is $\alpha_{(\gamma,\gamma')}$ -closed.

Proof. Suppose that C is an $\alpha_{(\gamma,\gamma')}$ -component of X. Then, by Remark 3.6, $\alpha_{(\gamma,\gamma')}$ -Cl(C) is $\alpha_{(\gamma,\gamma')}$ -connected containing $\alpha_{(\gamma,\gamma')}$ -component C of X. This implies that $C = \alpha_{(\gamma,\gamma')}$ -Cl(C) and hence C is $\alpha_{(\gamma,\gamma')}$ -closed. \Box

References

- [1] H. Z. Ibrahim, On a class of $\alpha_{(\gamma,\gamma')}$ -open sets in a topological space, Acta Sci., Technol., 35 (3) (2013), 539-545.
- [2] H. Z. Ibrahim, On $\alpha_{(\gamma,\gamma')}^{}$ -open sets in topological spaces, (submitted).
- [3] H. Z. Ibrahim, On $(\alpha_{(\gamma,\gamma')}, \alpha_{(\beta,\beta')})$ -functions, *(submitted)*.
- [4] S. Mishra, On α-τ-disconnectedness and α-τ-connectedness in topological spaces, Acta Sci., Technol., 37 (3) (2015), 395-399.
- [5] O. Njastad, On some classes of nearly open sets, Pac. J. Math. 15 (1965), 961-970.