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Abstract. The purpose of this paper is to introduce the notion of α
(γ,γ

′
)
-separated sets and study their

properties in topological spaces, then we introduce the notions of α
(γ,γ

′
)
-connected and α

(γ,γ
′
)
-disconnected

sets. We discuss the characterizations and properties of α
(γ,γ

′
)
-connected sets and then properties under

(α
(γ,γ

′
)
, α

(β,β
′
)
)-continuous functions. The α

(γ,γ
′
)
-components in a space X is also introduced.

1. Introduction

Njastad [5] introduced α-open sets in a topological space and studied some of their properties. Ibrahim [1]

introduced and discussed an operation of a topology αO(X) into the power set P (X) of a space X and

also in [2] he introduced the notion of αO(X, τ)(γ,γ′ ), which is the collection of all α(γ,γ′ )-open sets in a

topological space (X, τ). In addition, Ibrahim [3] introduced the concept of (α(γ,γ′ ), α(β,β′ ))-closed and

(α(γ,γ′ ), α(β,β′ ))-continuous functions and investigated some of their basic properties. Mishra [4] introduced

α-τ -disconnectedness and α-τ -connectedness in topological spaces. In this paper, the author introduce and

study the characterizations and properties of α(γ,γ′ )-connected and α(γ,γ′ )-disconnected spaces and then

properties under (α(γ,γ′ ), α(β,β′ ))-continuous functions.

Received 2018-01-18; accepted 2018-03-19; published 2018-07-02.

2010 Mathematics Subject Classification. Primary 22A05, 22A10, Secondary 54C05.

Key words and phrases. α-open; bioperations; α
(γ,γ

′
)
-connected set; α

(γ,γ
′
)
-disconnected set.

c©2018 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

518

https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-16-2018-518


Int. J. Anal. Appl. 16 (4) (2018) 519

2. Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y ) denotes a topological spaces on

which no separation axioms is assumed unless explicitly stated. For a subset A of a space X, Cl(A) and

Int(A) represent the closure of A and the interior of A, respectively.

Definition 2.1. [5] A subset A of a topological space (X, τ) is said to be α-open if A ⊆ Int(Cl(Int(A))).

The complement of an α-open set is said to be α-closed. The family of all α-open (resp., α-closed) sets in a

topological space (X, τ) is denoted by αO(X, τ) (resp., αC(X, τ)).

The intersection of all α-closed sets containing A is called the α-closure of A and is denoted by αCl(A).

Definition 2.2. [4] The subsets A and B of a topological space (X, τ) are called α-τ -separated sets if

(αCl(A) ∩B) ∪ (A ∩ αCl(B)) = φ.

Definition 2.3. [1] An operation γ : αO(X, τ)→ P (X) is a mapping satisfying the condition, V ⊆ V γ for

each V ∈ αO(X, τ). We call the mapping γ an operation on αO(X, τ). The operation id : αO(X, τ)→ P (X)

is defined by V id = V for any set V ∈ αO(X, τ). This operation is called the identity operation on αO(X, τ).

Definition 2.4. [2] A nonempty subset A of (X, τ) is said to be α(γ,γ′ )-open if for each x ∈ A, there

exist α-open sets U and V of X containing x such that Uγ ∪ V γ′ ⊆ A. A subset F of (X, τ) is said to be

α(γ,γ′ )-closed if its complement X \F is α(γ,γ′ )-open. The set of all α(γ,γ′ )-open sets of (X, τ) is denoted by

αO(X, τ)(γ,γ′ ).

Definition 2.5. [2] Let A be a subset of a topological space (X, τ).

(1) The union of all α(γ,γ′ )-open sets contained in A is called the α(γ,γ′ )-interior of A and is denoted by

α(γ,γ′ )-Int(A).

(2) The intersection of all α(γ,γ′ )-closed sets containing A is called the α(γ,γ′ )-closure of A and denoted

by α(γ,γ′ )-Cl(A).

Proposition 2.1. [2] Let A and B be subsets of (X, τ). Then the following hold:

(1) A ⊆ α(γ,γ′ )-Cl(A).

(2) If A ⊆ B, then α(γ,γ′ )-Cl(A) ⊆ α(γ,γ′ )-Cl(B).

(3) A is α(γ,γ′ )-closed if and only if α(γ,γ′ )-Cl(A) = A.

(4) α(γ,γ′ )-Cl(A) is α(γ,γ′ )-closed.

Proposition 2.2. [2] For a point x ∈ X, x ∈ α(γ,γ′ )-Cl(A) if and only if V ∩A 6= φ for every α(γ,γ′ )-open

set V containing x.

Definition 2.6. [3] A function f : (X, τ)→ (Y, σ) is said to be (α(γ,γ′ ), α(β,β′ ))-closed if for α(γ,γ′ )-closed

set A of X, f(A) is α(β,β′ )-closed in Y .
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Proposition 2.3. [3] Let f : (X, τ)→ (Y, σ) be a function. Then, f is (α(γ,γ′ ), α(β,β′ ))-closed if and only

if α(β,β′ )-Cl(f(A)) ⊆ f(α(γ,γ′ )-Cl(A)) for every subset A of X.

Theorem 2.1. [3] Suppose that f : (X, τ)→ (Y, σ) is (α(γ,γ′ ), α(β,β′ ))-continuous. Then,

(1) f−1(V ) is α(γ,γ′ )-open for every α(β,β′ )-open set V of (Y, σ).

(2) For each point x ∈ X and each α(β,β′ )-open W of (Y, σ) containing f(x), there exist α(γ,γ′ )-open U

of (X, τ) containing x such that f(U) ⊆W .

3. α(γ,γ′ )-Connected and α(γ,γ′ )-Disconnected Sets

Throughout this section, let γ, γ
′

: αO(X, τ)→ P (X) be operations on αO(X, τ) and β, β
′

: αO(Y, σ)→

P (Y ) be operations on αO(Y, σ).

Definition 3.1. Two subsets A and B of a topological space (X, τ) are called α(γ,γ′ )-separated if (α(γ,γ′ )-

Cl(A) ∩B) ∪ (A ∩ α(γ,γ′ )-Cl(B)) = φ.

Remark 3.1. Each two α(γ,γ′ )-separated sets are always disjoint, since A ∩ B ⊆ A ∩ α(γ,γ′ )-Cl(B) = φ.

The converse may not be true in general, as it is shown in the following example.

Example 3.1. Let X = {1, 2, 3} and τ = {φ,X, {2}}. For each A ∈ αO(X), we define two operations γ

and γ
′
, respectively, by

Aγ = Aγ
′

=

 A if 3 ∈ A

X if 3 /∈ A.

Since αO(X, τ)(γ,γ′ ) = {φ,X, {2, 3}}, then {2} and {3} are disjoint subsets of X, but not α(γ,γ′ )-separated.

From the fact that αCl(A) ⊆ α(γ,γ′ )-Cl(A), for every subset A of X. Then every α(γ,γ′ )-separated set is

α-τ -separated. But the converse may not be true as shown in the following example.

Example 3.2. Let X = {1, 2, 3, 4} and τ = {φ,X, {1}, {2}, {1, 2}}. For each A ∈ αO(X), we define two

operations γ and γ
′
, respectively, by

Aγ = Aγ
′

=

 A if 4 ∈ A

X if 4 /∈ A.

Since αO(X, τ)(γ,γ′ ) = {φ,X, {1, 2, 4}}, then the subsets {3} and {4} are α-τ -separated, but not α(γ,γ′ )-

separated.

Theorem 3.1. If A and B are any two nonempty subsets in a space X, then the following statements are

true:

(1) If A and B are α(γ,γ′ )-separated, A1 ⊆ A and B1 ⊆ B, then A1 and B1 are also α(γ,γ′ )-separated.
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(2) If A ∩ B = φ such that each of A and B are both α(γ,γ′ )-closed (α(γ,γ′ )-open), then A and B are

α(γ,γ′ )-separated.

(3) If each of A and B is α(γ,γ′ )-closed (α(γ,γ′ )-open) and if H = A ∩ (X \ B) and G = B ∩ (X \ A),

then H and G are α(γ,γ′ )-separated.

Proof. (1) Since A1 ⊆ A, then α(γ,γ′ )-Cl(A1) ⊆ α(γ,γ′ )-Cl(A). Then, B ∩ α(γ,γ′ )-Cl(A) = φ implies

B1 ∩ α(γ,γ′ )-Cl(A) = φ and B1 ∩ α(γ,γ′ )-Cl(A1) = φ. Similarly A1 ∩ α(γ,γ′ )-Cl(B1) = φ. Hence, A1

and B1 are α(γ,γ′ )-separated.

(2) Since A = α(γ,γ′ )-Cl(A), B = α(γ,γ′ )-Cl(B) and A ∩ B = φ, then α(γ,γ′ )-Cl(A) ∩ B = φ and

α(γ,γ′ )-Cl(B) ∩ A = φ. Hence, A and B are α(γ,γ′ )-separated. If A and B are α(γ,γ′ )-open, then

their complements are α(γ,γ′ )-closed. Hence, α(γ,γ′ )-Cl(A) ⊆ X \ B and α(γ,γ′ )-Cl(B) ⊆ X \ A.

Therefore, A and B are α(γ,γ′ )-separated.

(3) If A and B are α(γ,γ′ )-open, then X \ A and X \ B are α(γ,γ′ )-closed. Since H ⊆ X \ B, α(γ,γ′ )-

Cl(H) ⊆ α(γ,γ′ )-Cl(X \ B) = X \ B and so α(γ,γ′ )-Cl(H) ∩ B = φ. Thus G ∩ α(γ,γ′ )-Cl(H) = φ.

Similarly, H∩α(γ,γ′ )-Cl(G) = φ. Hence H and G are α(γ,γ′ )-separated. If A and B are α(γ,γ′ )-closed,

then α(γ,γ′ )-Cl(H) ⊆ A and α(γ,γ′ )-Cl(G) ⊆ B. Thus, H and G are α(γ,γ′ )-separated.

�

Theorem 3.2. The sets A and B of a space X are α(γ,γ′ )-separated if and only if there exist U and V in

αO(X, τ)(γ,γ′ ) such that A ⊆ U , B ⊆ V and A ∩ V = φ and B ∩ U = φ.

Proof. Let A and B be α(γ,γ′ )-separated sets. Set V = X \ α(γ,γ′ )-Cl(A) and U = X \ α(γ,γ′ )-Cl(B).

Then U, V ∈ αO(X, τ)(γ,γ′ ) such that A ⊆ U , B ⊆ V and A ∩ V = φ, B ∩ U = φ. On the other hand, let

U, V ∈ αO(X, τ)(γ,γ′ ) such that A ⊆ U , B ⊆ V and A∩V = φ, B∩U = φ. Since X \V and X \U are α(γ,γ′ )-

closed, then α(γ,γ′ )-Cl(A) ⊆ X \V ⊆ X \B and α(γ,γ′ )-Cl(B) ⊆ X \U ⊆ X \A. Thus α(γ,γ′ )-Cl(A)∩B = φ

and α(γ,γ′ )-Cl(B) ∩A = φ. �

Theorem 3.3. In any topological space (X, τ), the following statements are equivalent:

(1) φ and X are the only α(γ,γ′ )-open and α(γ,γ′ )-closed sets in X.

(2) X is not the union of two disjoint nonempty α(γ,γ′ )-open sets.

(3) X is not the union of two disjoint nonempty α(γ,γ′ )-closed sets.

(4) X is not the union of two nonempty α(γ,γ′ )-separated sets.

Proof. (1)⇒ (2): Suppose (2) is false and that X = A ∪ B, where A,B are disjoint nonempty α(γ,γ′ )-open

sets. Since X \A = B is α(γ,γ′ )-open and nonempty, we have that A is a nonempty proper α(γ,γ′ )-open and

α(γ,γ′ )-closed set in X, which shows that (1) is false.

(2)⇔ (3): This is clear.
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(3) ⇒ (4): If (4) is false, then X = A ∪ B, where A,B are nonempty and α(γ,γ′ )-separated. Since α(γ,γ′ )-

Cl(B)∩A = φ, we conclude that α(γ,γ′ )-Cl(B) ⊆ B, soB is α(γ,γ′ )-closed. Similarly, Amust be α(γ,γ′ )-closed.

Therefore, (3) is false.

(4) ⇒ (1): Suppose (1) is false and that A is a nonempty proper α(γ,γ′ )-open and α(γ,γ′ )-closed subset of

X. Then, B = X \ A is nonempty, α(γ,γ′ )-open and α(γ,γ′ )-closed, so A and B are α(γ,γ′ )-separated and

X = A ∪B, so (4) is false. �

Definition 3.2. A subset C of a space X is said to be α(γ,γ′ )-disconnected if there are nonempty α(γ,γ′ )-

separated subsets A and B of X such that C = A ∪ B, otherwise C is called α(γ,γ′ )-connected. If C is

α(γ,γ′ )-disconnected, such a pair of sets A,B will be called an α(γ,γ′ )-disconnection of C.

Example 3.3. Let X = {1, 2, 3} and τ = {φ,X, {1}, {2}, {1, 2}, {2, 3}}. For each A ∈ αO(X), we define

two operations γ and γ
′
, respectively, by

Aγ = Aγ
′

=

 A if 3 ∈ A

Cl(A) if 3 /∈ A.

Then, X is α(γ,γ′ )-disconnected because there exist a pair {1}, {2, 3} subsets of X such that {1}∪{2, 3} = X,

and (α(γ,γ′ )-Cl({1}) ∩ {2, 3}) ∪ ({1} ∩ α(γ,γ′ )-Cl({2, 3})) = ({1} ∩ {2, 3}) ∪ ({1} ∩ {2, 3}) = φ.

Example 3.4. Let X = {1, 2, 3} and τ = {φ,X, {1}, {3}, {1, 3}}. For each A ∈ αO(X), we define two

operations γ and γ
′
, respectively, by

Aγ = Aγ
′

=

 A if 2 ∈ A

X if 2 /∈ A.

Then, X is α(γ,γ′ )-connected, since there does not exist a pair A,B of nonempty α(γ,γ′ )-separated subsets

of X such that X = A ∪B.

Remark 3.2. Every indiscrete space is α(γ,γ′ )-connected.

Remark 3.3. Every discrete space contains more than one element is α(id,id′ )-disconnected.

Remark 3.4. A space X is α(γ,γ′ )-connected if any (therefore all) of the conditions (1) − (4) in Theorem

3.3 hold.

Remark 3.5. According to the Definition 3.2 and Remark 3.4, a space X is α(γ,γ′ )-disconnected if we can

write X = A ∪B, where the following (equivalent) statements are true:

(1) A and B are disjoint, nonempty and α(γ,γ′ )-open.

(2) A and B are disjoint, nonempty and α(γ,γ′ )-closed.

(3) A and B are nonempty and α(γ,γ′ )-separated.
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Theorem 3.4. A space X is α(γ,γ′ )-disconnected if and only if there exists a nonempty proper subset A of

X which is both α(γ,γ′ )-open and α(γ,γ′ )-closed in X.

Proof. Follows from Remark 3.5. �

Definition 3.3. Let A be a subset of a space X, then the α(γ,γ′ )-boundary of A is defined as α(γ,γ′ )-

Cl(A) \ α(γ,γ′ )-Int(A) and is denoted by α(γ,γ′ )-Bd(A).

Proposition 3.1. Let A be any subset of a topological space (X, τ). Then, the following statements are

hold:

(1) α(γ,γ′ )-Cl(A) = α(γ,γ′ )-Int(A) ∪ α(γ,γ′ )-Bd(A).

(2) α(γ,γ′ )-Bd(A) = α(γ,γ′ )-Cl(A) ∩ α(γ,γ′ )-Cl(X \A).

Proof. Obvious. �

Theorem 3.5. A space X is α(γ,γ′ )-connected if and only if every nonempty proper subset of X has a

nonempty α(γ,γ′ )-boundary.

Proof. Suppose that a nonempty proper subset A of an α(γ,γ′ )-connected space X has empty α(γ,γ′ )-

boundary. Since α(γ,γ′ )-Cl(A) = α(γ,γ′ )-Int(A) ∪ α(γ,γ′ )-Bd(A). Thus, A is both α(γ,γ′ )-closed and α(γ,γ′ )-

open. By Theorem 3.4, X is α(γ,γ′ )-disconnected. This contradiction, hence proves that A has a nonempty

α(γ,γ′ )-boundary.

Conversely, suppose X is α(γ,γ′ )-disconnected. Then by Theorem 3.4, X has a nonempty proper subset A

which is both α(γ,γ′ )-closed and α(γ,γ′ )-open. Then, α(γ,γ′ )-Cl(A) = A, α(γ,γ′ )-Cl(X \ A) = X \ A and

α(γ,γ′ )-Cl(A) ∩ α(γ,γ′ )-Cl(X \ A) = φ. So A has empty α(γ,γ′ )-boundary, this is a contradiction. Hence, X

is α(γ,γ′ )-connected. �

Lemma 3.1. Suppose M,N are α(γ,γ′ )-separated subsets of X. If C ⊆M ∪N and C is α(γ,γ′ )-connected,

then C ⊆M or C ⊆ N .

Proof. Since C∩M ⊆M and C∩N ⊆ N , then C∩M and C∩N are α(γ,γ′ )-separated and C = C∩(M∪N) =

(C∩M)∪ (C∩N). But C is α(γ,γ′ )-connected so (C∩M) and (C∩N) can not form an α(γ,γ′ )-disconnection

of C. Therefore, either C ∩M = φ, so C ⊆ N or C ∩N = φ, so C ⊆M . �

Theorem 3.6. Suppose C and Ci (i ∈ I) are α(γ,γ′ )-connected subsets of X and that for each i, Ci and C

are not α(γ,γ′ )-separated. Then, S = C ∪ Ci is α(γ,γ′ )-connected.

Proof. Suppose that S = M ∪N , where M and N are α(γ,γ′ )-separated. By Lemma 3.1, either C ⊆ M or

C ⊆ N . Without loss of generality, assume C ⊆ M . By the same reasoning we conclude that for each i,
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either Ci ⊆ M or Ci ⊆ N . But if some Ci ⊆ N , then C and Ci would be α(γ,γ′ )-separated. Hence every

Ci ⊆M . Therefore, N = φ and the pair M,N is not an α(γ,γ′ )-disconnection of S. �

Corollary 3.1. Suppose that for each i ∈ I, Ci is an α(γ,γ′ )-connected subset of X and that for all i 6= j,

Ci ∩ Cj 6= φ. Then, ∪{Ci : i ∈ I} is α(γ,γ′ )-connected.

Proof. If I = φ, then ∪{Ci : i ∈ I} = φ is α(γ,γ′ )-connected. If I 6= φ, pick i0 ∈ I and let Ci0 be the central

set C in Theorem 3.6. For all i ∈ I, Ci ∩Ci0 6= φ, so Ci and Ci0 are not α(γ,γ′ )-separated. By Theorem 3.6,

∪{Ci : i ∈ I} is α(γ,γ′ )-connected. �

Corollary 3.2. Suppose that for all x, y ∈ X, there exists an α(γ,γ′ )-connected set Cxy ⊆ X with x, y ∈ Cxy.

Then, X is α(γ,γ′ )-connected.

Proof. Certainly X = φ is α(γ,γ′ )-connected. If X 6= φ, choose a ∈ X. By hypothesis there is, for each

y ∈ X, an α(γ,γ′ )-connected set Cay containing both a and y. By Corollary 3.1, X = ∪{Cay : y ∈ X} is

α(γ,γ′ )-connected. �

Corollary 3.3. Suppose C is an α(γ,γ′ )-connected subset of X and A ⊆ X. If C ⊆ A ⊆ α(γ,γ′ )-Cl(C), then

A is α(γ,γ′ )-connected.

Proof. For each a ∈ A, {a} and C are not α(γ,γ′ )-separated. By Theorem 3.6, A = C ∪
⋃
{{a} : a ∈ A} is

α(γ,γ′ )-connected. �

Remark 3.6. In particular, the α(γ,γ′ )-closure of an α(γ,γ′ )-connected set is α(γ,γ′ )-connected.

Theorem 3.7. Let f : (X, τ)→ (Y, σ) be a function. Consider the following statements.

(1) f is (α(γ,γ′ ), α(β,β′ ))-continuous.

(2) f−1(V ) ⊆ α(γ,γ′ )-Int(f
−1(V )) for every α(β,β′ )-open set V of Y .

(3) f(α(γ,γ′ )-Cl(A)) ⊆ α(β,β′ )-Cl(f(A)) for every subset A of X.

(4) α(γ,γ′ )-Cl(f
−1(B)) ⊆ f−1(α(β,β′ )-Cl(B)) for every subset B of Y .

Then, the following implications are true: (1)⇒ (2)⇒ (3)⇒ (4).

Proof. (1) ⇒ (2). Let V be any α(β,β′ )-open set of Y and x ∈ f−1(V ). Then, f(x) ∈ V . Since f is

(α(γ,γ′ ), α(β,β′ ))-continuous, there exists an α(γ,γ′ )-open set U of X containing x such that f(U) ⊆ V and

hence U ⊆ f−1(V ), this implies that x ∈ α(γ,γ′ )-Int(f
−1(V )). Thus, it follows that f−1(V ) ⊆ α(γ,γ′ )-

Int(f−1(V )).

(2) ⇒ (3). Let A be any subset of X and f(x) /∈ α(β,β′ )-Cl(f(A)). Then, by Proposition 2.2, there exists

an α(β,β′ )-open set V of Y containing f(x) such that V ∩ f(A) = φ and hence f−1(V ) ∩ A = φ. Also

f(x) ∈ V implies x ∈ f−1(V ). Then by (2) we obtain that x ∈ α(γ,γ′ )-Int(f
−1(V )). Hence, there exists an
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α(γ,γ′ )-open set U of X containing x such that U ⊆ f−1(V ). Then U ∩ A = φ and so x /∈ α(γ,γ′ )-Cl(A).

This implies f(x) /∈ f(α(γ,γ′ )-Cl(A)). Thus, f(α(γ,γ′ )-Cl(A)) ⊆ α(β,β′ )-Cl(f(A)).

(3) ⇒ (4). Let B be any subset of Y . Since f(f−1(B)) ⊆ B, so, we have α(β,β′ )-Cl(f(f−1(B))) ⊆ α(β,β′ )-

Cl(B). Also, f−1(B) ⊆ X, then by (3), we have f(α(γ,γ′ )-Cl(f
−1(B))) ⊆ α(β,β′ )-Cl(f(f−1(B))) ⊆ α(β,β′ )-

Cl(B). Thus, α(γ,γ′ )-Cl(f
−1(B)) ⊆ f−1(α(β,β′ )-Cl(B)). �

Corollary 3.4. Let f : X → Y be an (α(γ,γ′ ), α(β,β′ ))-continuous and injective function. If K is α(γ,γ′ )-

connected in X, then f(K) is α(β,β′ )-connected in Y.

Proof. Suppose that f(K) is α(β,β′ )-disconnected in Y . There exist two α(β,β′ )-separated sets P and Q of Y

such that f(K) = P∪Q. Set A = K∩f−1(P ) and B = K∩f−1(Q). Since f(K)∩P 6= φ, then K∩f−1(P ) 6= φ

and so A 6= φ. Similarly B 6= φ. Now, A ∪B = (K ∩ f−1(P )) ∪ (K ∩ f−1(Q)) = K ∩ (f−1(P ) ∪ f−1(Q)) =

K ∩ f−1(P ∪ Q) = K ∩ f−1(f(K)) = K. Since f is (α(γ,γ′ ), α(β,β′ ))-continuous, then by Theorem 3.7 ,

α(γ,γ′ )-Cl(f
−1(Q)) ⊆ f−1(α(β,β′ )-Cl(Q)) and B ⊆ f−1(Q), then α(γ,γ′ )-Cl(B) ⊆ f−1(α(β,β′ )-Cl(Q)). Since

P ∩α(β,β′ )-Cl(Q) = φ, then A∩α(γ,γ′ )-Cl(B) ⊆ A∩f−1(α(β,β′ )-Cl(Q)) ⊆ f−1(P )∩f−1(α(β,β′ )-Cl(Q)) = φ

and then A ∩ α(γ,γ′ )-Cl(B) = φ. Similarly, B ∩ α(γ,γ′ )-Cl(A) = φ. Thus, A and B are α(γ,γ′ )-separated.

Therefore, K is α(γ,γ′ )-disconnected, this is contradiction. Hence, f(K) is α(β,β′ )-connected. �

Theorem 3.8. If f : (X, τ) → (Y, σ) is an onto (α(γ,γ′ ), α(β,β′ ))-continuous function and X is α(γ,γ′ )-

connected, then Y is α(β,β′ )-connected.

Proof. Suppose that Y is α(β,β′ )-disconnected and A,B is an α(β,β′ )-disconnection of Y . By Remark 3.5, A

and B are both α(β,β′ )-open sets. Since f is (α(γ,γ′ ), α(β,β′ ))-continuous, so by Theorem 2.1, f−1(A) and

f−1(B) are both nonempty α(γ,γ′ )-open sets in X. Now, f−1(A) ∪ f−1(B) = f−1(A ∪ B) = f−1(Y ) = X,

and f−1(A) ∩ f−1(B) = f−1(A ∩ B) = f−1(φ) = φ. Then by Remark 3.5, f−1(A), f−1(B) is a pair of

α(γ,γ′ )-disconnection of X. This contradiction shows that Y is α(β,β′ )-connected. �

Corollary 3.5. For a bijective (α(γ,γ′ ), α(β,β′ ))-closed function f : X → Y , if C is α(β,β′ )-connected in Y ,

then f−1(C) is α(γ,γ′ )-connected in X.

Proof. Suppose that f−1(C) is α(γ,γ′ )-disconnected in X. There exist two α(γ,γ′ )-separated sets M and N

of X such that f−1(C) = M ∪ N . Set K = C ∩ f(M) and L = C ∩ f(N). Since C = f(M) ∪ f(N),

then C ∩ f(M) 6= φ and so K 6= φ. Similarly L 6= φ. Now, K ∪ L = (C ∩ f(M)) ∪ (C ∩ f(N)) =

C ∩ (f(M) ∪ f(N)) = C ∩ f(M ∪ N) = C ∩ f(f−1(C)) = C. Since f is (α(γ,γ′ ), α(β,β′ ))-closed, then by

Proposition 2.3, α(β,β′ )-Cl(f(N)) ⊆ f(α(γ,γ′ )-Cl(N)) and L ⊆ f(N), then α(β,β′ )-Cl(L) ⊆ f(α(γ,γ′ )-Cl(N)).

Since M ∩α(γ,γ′ )-Cl(N) = φ, then K∩α(β,β′ )-Cl(L) ⊆ K∩f(α(γ,γ′ )-Cl(N)) ⊆ f(M)∩f(α(γ,γ′ )-Cl(N)) = φ

and then K ∩ α(β,β′ )-Cl(L) = φ. Similarly, L ∩ α(β,β′ )-Cl(K) = φ. Thus, K and L are α(β,β′ )-separated.

Therefore, C is α(β,β′ )-disconnected, this is contradiction. Hence, f−1(C) is α(γ,γ′ )-connected. �
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Definition 3.4. A set C is called a maximal α(γ,γ′ )-connected set if it is α(γ,γ′ )-connected and if C ⊆ D ⊆ X

where D is α(γ,γ′ )-connected, then C = D. A maximal α(γ,γ′ )-connected subset C of a space X is called an

α(γ,γ′ )-component of X. If X is itself α(γ,γ′ )-connected, then X is the only α(γ,γ′ )-component of X.

Theorem 3.9. For each x ∈ X, there is exactly one α(γ,γ′ )-component of X containing x.

Proof. For any x ∈ X, let Cx =
⋃
{A : x ∈ A ⊆ X and A is α(γ,γ′ )-connected}. Then, {x} ∈ Cx, since Cx is

a union of α(γ,γ′ )-connected sets each containing x, Cx is α(γ,γ′ )-connected by Corollary 3.1. If Cx ⊆ D and

D is α(γ,γ′ )-connected, then D was one of the sets A in the collection whose union defines Cx, so D ⊆ Cx

and therefore Cx = D. Therefore, Cx is an α(γ,γ′ )-component of X that contains x. �

Corollary 3.6. A space X is the union of its α(γ,γ′ )-components.

Proof. Follows from Theorem 3.9. �

Corollary 3.7. Two α(γ,γ′ )-components are either disjoint or coincide.

Proof. Let Cx and Cy be α(γ,γ′ )-components and Cx 6= Cy. If p ∈ Cx ∩ Cy, then by Corollary 3.1, Cx ∪ Cy

would be an α(γ,γ′ )-connected set strictly larger than Cx. Therefore, Cx ∩ Cy = φ. �

Theorem 3.10. Each α(γ,γ′ )-connected subset of X is contained in exactly one α(γ,γ′ )-component of X.

Proof. Let A be an α(γ,γ′ )-connected subset ofX which is not in exactly one α(γ,γ′ )-component ofX. Suppose

that C1 and C2 are α(γ,γ′ )-components of X such that A ⊆ C1 and A ⊆ C2. Since C1 ∩ C2 6= φ and by

Corollary 3.1, C1∪C2 is another α(γ,γ′ )-connected set which contains C1 as well as C2, a contradiction to the

fact that C1 and C2 are α(γ,γ′ )-components. This proves that A is contained in exactly one α(γ,γ′ )-component

of X. �

Theorem 3.11. A nonempty α(γ,γ′ )-connected subset of X which is both α(γ,γ′ )-open and α(γ,γ′ )-closed is

α(γ,γ′ )-component.

Proof. Suppose that A is α(γ,γ′ )-connected subset of X which is both α(γ,γ′ )-open and α(γ,γ′ )-closed. By

Theorem 3.10, A is contained in exactly one α(γ,γ′ )-component C of X. If A is a proper subset of C, then

C = (C∩A)∪(C∩(X\A)) and (C∩A), (C∩(X\A)) is an α(γ,γ′ )-disconnection of C, which is a contradiction.

Thus, A = C. �

Theorem 3.12. Every α(γ,γ′ )-component of X is α(γ,γ′ )-closed.

Proof. Suppose that C is an α(γ,γ′ )-component ofX. Then, by Remark 3.6, α(γ,γ′ )-Cl(C) is α(γ,γ′ )-connected

containing α(γ,γ′ )-component C of X. This implies that C = α(γ,γ′ )-Cl(C) and hence C is α(γ,γ′ )-closed. �
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