ON THE BEHAVIOR NEAR THE ORIGIN OF A SINE SERIES WITH COEFFICIENTS OF MONOTONE TYPE

XHEVAT Z. KRASNIQI

Abstract

In this paper we have obtained some asymptotic equalities of the sum function of a trigonometric sine series expressed in terms of its special type of coefficients.

1. Introduction

Let us consider the sine series

$$
\begin{equation*}
\sum_{m=1}^{\infty} a_{m} \sin m x \tag{1.1}
\end{equation*}
$$

with coefficients tending to zero and such that the sequence $\left\{a_{m}\right\}$ satifsies condition $\triangle a_{m}=a_{m}-a_{m+1} \geq 0$ or $\triangle^{2} a_{m}=\triangle a_{m}-\triangle a_{m+1} \geq 0$ for all m. It is a well-known fact that under such conditions the series (1.1) converges for all x (see [12], page 95). We denote by $g(x)$ its sum.

As usually we write $g(u) \sim h(u), u \rightarrow 0$ if there exist absolute positive constants A and B such that $A h(u) \leq g(u) \leq B h(u)$ is in a neighborhood of the point $u=0$, and write $g(u) \approx h(u)$ if $\lim _{u \rightarrow 0} \frac{g(u)}{h(u)}=1$. Likewise, throughout this paper the constants in the \mathcal{O}-expression denote positive absolute constants and they may be different in different relations.

Several authors have investigated the behavior of the sum $g(x)$ near the origin expressed in terms of the coefficients a_{m}. Seemingly, the first was Young [11] who consider this problem, and he was concerned solely about estimates of $|g(x)|$ from above. Then Salem ([3], [4], Theorem 1) proved that if the sequence $\left\{m a_{m}\right\}$ is monotone decreasing, then the following order equality holds

$$
g(x) \sim \sum_{m=1}^{\ell} m a_{m} x
$$

where $x \in I_{\ell}:=\left(\frac{\pi}{\ell+1}, \frac{\pi}{\ell}\right], \ell=1,2, \ldots, \quad x \rightarrow 0$.
Later on, Aljančić, Bojanić and Tomić ([5], Theorem 2) give asymptotic expression for $g(x)$ as $x \rightarrow 0$, when the coefficients a_{m} are convex ($\left.\triangle^{2} a_{m} \geq 0\right)$ and can be represent as the values $A(m)$ of a slowly varying (in Karamata's sense) function

[^0]$A(z)$, i.e. for each $t>0$
\[

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \frac{A(t z)}{A(z)}=1 \tag{1.2}
\end{equation*}
$$

\]

Their result is equivalent to the following statement which can be deduce from one result given by Telyakovskiĭ ([6], Theorem 2) and it is formulated as a corollary in this form:

Corollary 1.1. Suppose that the coefficients a_{m} of the series (1.1) are convex and that $a_{m}=A(m)$, for a slowly varying function $A(z)$. Then the following asymptotic equality holds true:

$$
g(x) \approx a_{\ell} \frac{1}{x}, \quad x \in I_{\ell}, \quad x \rightarrow 0
$$

Telyakovskiĭ deduced this result after the proof, in the same paper, of the following two theorems:
Theorem 1.1. Assume that $a_{m} \downarrow 0$. Then for $x \in I_{\ell}$ the following estimate is valid

$$
g(x)=\sum_{m=1}^{\ell} m a_{m} x+\mathcal{O}\left(\frac{1}{\ell^{3}} \sum_{m=1}^{\ell} m^{3} a_{m}\right) .
$$

Theorem 1.2. Let $a_{m} \rightarrow 0$ and let the sequence $\left\{a_{m}\right\}$ be convex. If $x \in I_{\ell}$, where $\ell \geq 11$, then the following estimate holds true

$$
\frac{a_{\ell}}{2} \cot \frac{x}{2}+\frac{1}{2 \ell} \sum_{m=1}^{\ell-1} m^{2} \triangle a_{m} \leq g(x) \leq \frac{a_{\ell}}{2} \cot \frac{x}{2}+\frac{6}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle a_{m}
$$

Note also that the above theorems as well as some of [1] are generalized and extended in [7]-[10].

For an integer $k \geq 0$ and a real sequence $\left\{a_{m}\right\}_{m=0}^{\infty}$ denote

$$
\begin{aligned}
\triangle_{k} a_{m} & =\sum_{i=0}^{k}(-1)^{i} C_{k}^{i} a_{m+i} & \left(\triangle_{0} a_{m}=a_{m}\right), \\
\{\triangle\}_{k} a_{m} & =\sum_{i=0}^{k} C_{k}^{i} a_{m+i} & \left(\{\triangle\}_{0} a_{m}=a_{m}\right) .
\end{aligned}
$$

Definition 1.1 ([2]). A sequence $\left\{a_{m}\right\}_{m=0}^{\infty}$ is said to be (k, s)-monotone if $a_{m} \rightarrow 0$ as $m \rightarrow \infty$ and $\triangle_{k}\left(\{\triangle\}_{s} a_{m}\right) \geq 0$, for some $k \geq 0, s \geq 0$ and all m.

It is easy to see that that if a sequence $\left\{a_{m}\right\}\left(a_{m} \rightarrow 0\right.$ as $\left.m \rightarrow \infty\right)$ is nonincreasing, then it is $(1, s)$-monotone for all $s=0,1,2, \ldots$. The converse statement is not always true. For example, if we consider the sequence $\left\{a_{m}\right\}$ such that $a_{m} \rightarrow 0$ as $m \rightarrow \infty$ and $a_{2 m}=0, a_{2 m+1} \geq a_{2 m+3}$ for $m=0,1,2, \ldots$, then this sequence is not non-increasing but it is $(1,1)$-monotone.

Chronologically this definition arises the following question: What is the behavior near the origin of the series (1.1) with (k, s)-monotone coefficients? The answer to this question is the main goal of this paper. Precisely, we shall answer to this question only considering the cases when the series (1.1) has: $(1,1)$-monotone, or $(1,2)$-monotone, or (2,1)-monotone, or (2,2)-monotone coefficients.

For the proof of our results we need the following two lemmas proved in [2].

Lemma 1.1. Let $\left\{a_{m}\right\}_{m=0}^{\infty}$ be a sequence such that $a_{m} \rightarrow 0$ as $m \rightarrow \infty$ and $\triangle^{k} a_{m} \geq 0$ for some $k \geq 1$ and all m. Then for all $r=0,1, \ldots, k-1$ and all m the following inequality $\Delta^{r} a_{m} \geq 0$ holds.

Lemma 1.2. Let $\left\{a_{m}\right\}_{m=0}^{\infty}$ be $a(k, s)$-monotone sequence. If $k=1, s=1$ or $s=2$, then

$$
g(x)=\frac{a_{0}}{2}\left(1-\tan \frac{x}{2}\right)+\frac{1}{\left(2 \cos \frac{x}{2}\right)^{s}} \sum_{m=1}^{\infty}\{\triangle\}_{s} a_{m-1} \sin (m s-2+s) \frac{x}{2}
$$

allmost everywhere.
Lemma 1.3. Let $\bar{B}_{m}(x)=\sum_{i=0}^{m} \sin (i-1) \frac{x}{2}$. Then the following estimates hold:

$$
\left|\bar{B}_{m}(x)\right| \leq \frac{2 \pi}{x}, \quad 0<x \leq \pi
$$

Proof. After some elementary calculation we have

$$
\begin{aligned}
\left|\bar{B}_{m}(x)\right| & =\left|\frac{1}{2 \sin \frac{x}{2}} \sum_{i=0}^{m}\left[\cos (i-2) \frac{x}{2}-\cos \frac{i x}{2}\right]\right| \\
& =\left|\frac{\cos \frac{x}{2}+\cos x-\cos (m-1) \frac{x}{2}-\cos \frac{m x}{2}}{2 \sin \frac{x}{2}}\right| \\
& \leq \frac{2}{\left|\sin \frac{x}{2}\right|} \leq \frac{2 \pi}{x}, \quad 0<x \leq \pi .
\end{aligned}
$$

2. Main Results

The following theorem considers sine series with $(1,1)$-monotone sequence.
Theorem 2.1. Assume that $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a (1,1)-monotone sequence. Then for $x \in I_{\ell}$ the following estimate is valid
(2.1) $g(x)=\frac{1}{2 \cos \frac{x}{2}}\left\{\frac{1}{2} \sum_{m=1}^{\ell} m\{\triangle\}_{1} a_{m} x+\mathcal{O}\left(\frac{1}{\ell^{3}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m}\right)\right\}$.

Proof. By the Lemma $1.2\left(a_{0}=0\right)$ we have

$$
\begin{equation*}
g(x)=\frac{1}{2 \cos \frac{x}{2}} \sum_{m=1}^{\infty}\{\triangle\}_{1} a_{m-1} \sin (m-1) \frac{x}{2} \tag{2.2}
\end{equation*}
$$

Then the use of Abel's transformation gives
$H(x)=\lim _{p \rightarrow \infty}\left\{\sum_{m=1}^{p-1} \triangle\left(\{\triangle\}_{1} a_{m-1}\right) \bar{B}_{m}(x)+\{\triangle\}_{1} a_{p-1} \bar{B}_{p}(x)+\{\triangle\}_{1} a_{0} \sin \frac{x}{2}\right\}$

$$
\begin{equation*}
=\sum_{m=1}^{\infty} \triangle\left(\{\triangle\}_{1} a_{m-1}\right) \bar{B}_{m}(x)+\{\triangle\}_{1} a_{0} \sin \frac{x}{2}:=H_{\ell}^{(1)}(x)+H_{\ell}^{(2)}(x), \tag{2.3}
\end{equation*}
$$

where

$$
H_{\ell}^{(1)}(x)=\sum_{m=1}^{\ell+1} \triangle\left(\{\triangle\}_{1} a_{m-1}\right) \bar{B}_{m}(x)+\{\triangle\}_{1} a_{0} \sin \frac{x}{2},
$$

and

$$
H_{\ell}^{(2)}(x)=\sum_{m=\ell+2}^{\infty} \triangle\left(\{\triangle\}_{1} a_{m-1}\right) \bar{B}_{m}(x)
$$

Let us estimate first $H_{\ell}^{(1)}(x)$. Based on Lemma 1.3, our assumption $\triangle\left(\{\triangle\}_{1} a_{m}\right) \geq$ 0 for all m, the well-known relation $\sin t=t+\mathcal{O}\left(t^{3}\right)$, as $t \rightarrow 0$, and $x \in I_{\ell}$ we have

$$
\begin{aligned}
H_{\ell}^{(1)}(x) & =\sum_{m=1}^{\ell+1}\left(\{\triangle\}_{1} a_{m-1}-\{\triangle\}_{1} a_{m}\right) \bar{B}_{m}(x)+\{\triangle\}_{1} a_{0} \sin \frac{x}{2} \\
& =\sum_{m=0}^{\ell}\{\triangle\}_{1} a_{m}\left[\bar{B}_{m+1}(x)-\bar{B}_{m}(x)\right]-\{\triangle\}_{1} a_{\ell+1} \bar{B}_{\ell+1}(x) \\
& =\sum_{m=1}^{\ell}\{\triangle\}_{1} a_{m} \sin \frac{m x}{2}+\frac{2 \pi}{x}\{\triangle\}_{1} a_{\ell+1} \\
& =\frac{1}{2} \sum_{m=1}^{\ell} m\{\triangle\}_{1} a_{m} x+\mathcal{O}\left(\frac{1}{\ell^{3}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m}\right)+\mathcal{O}\left(\ell\{\triangle\}_{1} a_{\ell}\right) .
\end{aligned}
$$

By virtue of monotonicity of $\{\triangle\}_{1} a_{m}$ we obtain

$$
\ell\{\triangle\}_{1} a_{\ell} \leq \frac{4}{\ell^{3}}\left\{\frac{\ell(\ell+1)}{2}\right\}^{2}\{\triangle\}_{1} a_{\ell} \leq \frac{4}{\ell^{3}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m}
$$

Thus,

$$
\begin{equation*}
H_{\ell}^{(1)}(x)=\frac{1}{2} \sum_{m=1}^{\ell} m\{\triangle\}_{1} a_{m} x+\mathcal{O}\left(\frac{1}{\ell^{3}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m}\right) . \tag{2.4}
\end{equation*}
$$

Furthermore, since $x \in I_{\ell}$ and $\left|\bar{B}_{m}(x)\right|=\mathcal{O}\left(\frac{1}{x}\right)$ by the Lemma 1.2, we notice that

$$
\begin{align*}
H_{\ell}^{(2)}(x) & =\mathcal{O}\left(\frac{1}{x} \sum_{m=\ell+2}^{\infty}\left(\{\triangle\}_{1} a_{m-1}-\{\triangle\}_{1} a_{m}\right)\right) \\
& =\mathcal{O}\left((\ell+1)\{\triangle\}_{1} a_{\ell+1}\right)=\mathcal{O}\left(\ell\{\triangle\}_{1} a_{\ell}\right) \\
& =\mathcal{O}\left(\frac{1}{\ell^{3}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m}\right) . \tag{2.5}
\end{align*}
$$

Finally, relations (2.2)-(2.5) prove completely estimation (2.1).
Corollary 2.1. Let $\left\{a_{m}\right\}_{m=1}^{\infty}$ be a (1,1)-monotone sequence and the series

$$
\sum_{m=1}^{\infty} m\left(a_{m}+a_{m+1}\right)
$$

converges. Then the following asymptotic equality

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x}=\frac{1}{4} \sum_{m=1}^{\infty} m\left(a_{m}+a_{m+1}\right)
$$

holds true.

Proof. In accordance with Theorem 2.1 it is enough to prove that

$$
\frac{1}{\ell^{2}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m} \rightarrow 0, \quad \text { as } \quad \ell \rightarrow \infty
$$

Indeed, for an arbitrary natural number M we can write

$$
\frac{1}{\ell^{2}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m} \leq \frac{1}{\ell^{2}} \sum_{m=1}^{M} m^{3}\{\triangle\}_{1} a_{m}+\sum_{m=M+1}^{\infty} m\{\triangle\}_{1} a_{m}
$$

If a number $\varepsilon>0$ be chosen, then by hypotesis a number $M=M(\varepsilon)$ exists, such that

$$
\sum_{m=M+1}^{\infty} m\{\triangle\}_{1} a_{m}<\frac{\varepsilon}{2}
$$

Likewise, for all sufficiently large ℓ

$$
\frac{1}{\ell^{2}} \sum_{m=1}^{M} m^{3}\{\triangle\}_{1} a_{m}<\frac{\varepsilon}{2}
$$

Then obviously, for such ℓ we have

$$
\frac{1}{\ell^{2}} \sum_{m=1}^{\ell} m^{3}\{\triangle\}_{1} a_{m}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

The following statements can be proved similarly therefore we will skip their proofs.

Theorem 2.2. Assume that $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a (1,2)-monotone sequence. Then for $x \in I_{\ell}$ the following estimate is valid

$$
g(x)=\frac{1}{\left(2 \cos \frac{x}{2}\right)^{2}}\left\{\sum_{m=0}^{\ell}(m+1)\{\Delta\}_{2} a_{m} x+\mathcal{O}\left(\frac{1}{\ell^{3}} \sum_{m=0}^{\ell}(m+1)^{3}\{\triangle\}_{2} a_{m}\right)\right\}
$$

Corollary 2.2. Suppose that $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a (1,2)-monotone sequence and the series

$$
\sum_{m=0}^{\infty}(m+1)\left(a_{m}+2 a_{m+1}+a_{m+2}\right)
$$

converges. Then the following asymptotic equality

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x}=\frac{1}{4} \sum_{m=0}^{\infty}(m+1)\left(a_{m}+2 a_{m+1}+a_{m+2}\right)
$$

holds true.
The proof of the next statement is more complicated and that is why we will sketch it in more details.

Theorem 2.3. Assume that $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a (2,2)-monotone sequence. Then for $x \in I_{\ell}, \ell \geq 11$ the following estimate is valid

$$
\begin{aligned}
\frac{\{\triangle\}_{2} a_{\ell-1}}{2} \cot \frac{x}{2} & +\frac{1}{2 \ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \\
& \leq g(x)\left(2 \cos \frac{x}{2}\right)^{2} \leq \frac{\{\triangle\}_{2} a_{\ell-1}}{2} \cot \frac{x}{2}+\frac{6}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right)
\end{aligned}
$$

Proof. By the Lemma 1.1 the condition $\triangle_{2}\left(\{\triangle\}_{2} a_{m}\right) \geq 0$ implies $\triangle\left(\{\triangle\}_{2} a_{m}\right) \geq 0$. Therefore by the Lemma 1.2 we have

$$
g(x)=\frac{1}{\left(2 \cos \frac{x}{2}\right)^{2}} \sum_{m=1}^{\infty}\{\triangle\}_{2} a_{m-1} \sin m x
$$

Applying Abel's transformation we obtain

$$
\begin{equation*}
g(x)=\frac{1}{\left(2 \cos \frac{x}{2}\right)^{2}} \sum_{m=1}^{\infty} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \widetilde{D}_{m}(x) \tag{2.6}
\end{equation*}
$$

where $\widetilde{D}_{m}(x)=\sum_{i=1}^{m} \sin i x$ is the conjugate Dirichlet kernel.
For $x \in(0, \pi]$ and $m=0,1,2, \ldots$, introduce the functions

$$
\varphi_{m}(x):=-\frac{\cos (m+1 / 2) x}{2 \sin x / 2}
$$

and

$$
\psi_{m}(x):=\sum_{i=0}^{m} \varphi_{i}(x)=-\frac{\sin (m+1) x}{4 \sin ^{2}(x / 2)} .
$$

Denoting $H(x):=\sum_{m=1}^{\infty} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \widetilde{D}_{m}(x)$ one can write

$$
\begin{aligned}
H(x)= & \sum_{m=1}^{\ell-1} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \widetilde{D}_{m}(x) \\
& +\sum_{m=\ell}^{\infty} \triangle\left(\{\triangle\}_{2} a_{m-1}\right)\left(\frac{1}{2} \cot \frac{x}{2}+\varphi_{m}(x)\right) \\
= & \frac{\{\triangle\}_{2} a_{\ell}}{2} \cot \frac{x}{2}+\sum_{m=1}^{\ell-1} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \widetilde{D}_{m}(x)+\sum_{m=\ell}^{\infty} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \varphi_{m}(x) \\
(2.7)= & \frac{a_{\ell-1}+2 a_{\ell}+a_{\ell+1}}{2} \cot \frac{x}{2}+E_{\ell}(x)+F_{\ell}(x) .
\end{aligned}
$$

We shall make use of the representation (2.7) for $x \in I_{\ell}$, and from now and till the end of the proof of our theorem we supose that $x \in I_{\ell}$ but we shall not remind of it.

The following estimate is true in view of the monotonous decay of $\triangle\left(\{\triangle\}_{2} a_{m-1}\right)$ and the positivity of $\widetilde{D}_{m}(x)$ for $m \leq \ell$:
$E_{\ell}(x) \geq \triangle\left(\{\triangle\}_{2} a_{\ell-1}\right) \sum_{m=1}^{\ell-1}\left(\frac{1}{2} \cot \frac{x}{2}+\varphi_{m}(x)\right)$
$(2.8)=\triangle\left(\{\triangle\}_{2} a_{\ell-1}\right)\left(\frac{\ell}{2} \cot \frac{x}{2}+\psi_{\ell-1}(x)\right)=\frac{\triangle\left(\{\triangle\}_{2} a_{\ell-1}\right)}{4 \sin ^{2}(x / 2)}(\ell \sin x-\sin \ell x)$.

Let us estimate $F_{\ell}(x)$ from above. Applying Abel's transformation we have

$$
\begin{align*}
\left|F_{\ell}(x)\right|= & \mid \lim _{n \rightarrow \infty}\left\{\sum_{m=\ell}^{n-1} \triangle_{2}\left(\{\triangle\}_{2} a_{m-1}\right) \psi_{m}(x)\right. \\
& \left.+\triangle\left(\{\triangle\}_{2} a_{n-1}\right) \psi_{n}(x)-\triangle\left(\{\triangle\}_{2} a_{\ell-1}\right) \psi_{\ell-1}(x)\right\} \mid \\
\leq & \sum_{m=\ell}^{\infty} \triangle_{2}\left(\{\triangle\}_{2} a_{m-1}\right)\left|\psi_{m}(x)-\psi_{\ell-1}(x)\right| \\
\leq & \frac{\triangle\left(\{\triangle\}_{2} a_{\ell-1}\right)}{4 \sin ^{2}(x / 2)}(1+\sin \ell x) \tag{2.9}
\end{align*}
$$

From (2.8) and (2.9), in a similiar way as Telyakovskiĭ did [6], for $\ell \geq 11$ we can show that

$$
\frac{1}{2} E_{\ell}(x)+F_{\ell}(x)>0
$$

Further, if $m<\ell$, then

$$
\widetilde{D}_{m}(x) \geq \sum_{i=1}^{m} \frac{2}{\pi} i x \geq \frac{m(m+1)}{\ell+1}>\frac{m^{2}}{\ell}
$$

Therefore,

$$
\begin{equation*}
\frac{1}{2} E_{\ell}(x) \geq \frac{1}{2 \ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \tag{2.10}
\end{equation*}
$$

From (2.10), (2.7), and (2.6) we obtain the estimate of $g(x)$ from below

$$
g(x) \geq \frac{1}{\left(2 \cos \frac{x}{2}\right)^{2}}\left(\frac{a_{\ell-1}+2 a_{\ell}+a_{\ell+1}}{2} \cot \frac{x}{2}+\frac{1}{2 \ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right)\right)
$$

Since

$$
\widetilde{D}_{m}(x) \leq m^{2} x \leq \frac{\pi m^{2}}{\ell}
$$

then

$$
\begin{equation*}
E_{\ell}(x) \leq \frac{\pi}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \tag{2.11}
\end{equation*}
$$

For the estimate (2.9) we can write

$$
\left|F_{\ell}(x)\right| \leq \frac{\triangle\left(\{\triangle\}_{2} a_{\ell-1}\right)}{2 \sin ^{2}(x / 2)} \leq \triangle\left(\{\triangle\}_{2} a_{\ell-1}\right) \frac{\pi^{2}}{2 x^{2}} \leq \frac{(\ell+1)^{2}}{2} \triangle\left(\{\triangle\}_{2} a_{\ell-1}\right)
$$

and for $\ell \geq 11$

$$
\frac{(\ell+1)^{2}}{2}<\frac{2,4}{\ell} \sum_{m=1}^{\ell-1} m^{2}
$$

hence, by reason of the monotonicity of $\triangle\left(\{\triangle\}_{2} a_{\ell-1}\right)$ we get

$$
\begin{equation*}
\left|F_{\ell}(x)\right| \leq \frac{2,4}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \tag{2.12}
\end{equation*}
$$

Estimates (2.12), (2.13), and (2.7) give the estimate of $g(x)$ from above

$$
g(x) \leq \frac{1}{\left(2 \cos \frac{x}{2}\right)^{2}}\left(\frac{a_{\ell-1}+2 a_{\ell}+a_{\ell+1}}{2} \cot \frac{x}{2}+\frac{6}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right)\right)
$$

The proof is completed.
It follows from Theorem 2.3 that for $x \in I_{\ell}$ in a sufficiently small neighbourhood of the origin we have

$$
(2.13)(x)=\frac{1}{2(1+\cos x)}\left(\frac{\{\triangle\}_{2} a_{\ell-1}}{2} \cot \frac{x}{2}+O\left(\frac{1}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right)\right)\right) .
$$

Corollary 2.3. Assume that $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a (2,2)-monotone sequence. Then the following order equality is true

$$
g(x) \sim(\ell-1)\{\triangle\}_{2} a_{\ell-1}+\frac{1}{\ell} \sum_{m=1}^{\ell-1} m\{\triangle\}_{2} a_{m-1}
$$

Proof. Since $\lim _{x \rightarrow 0} x \cot x=1$, then it is enough to prove that

$$
\frac{1}{\ell} \sum_{m=1}^{\ell-1}(2 m-1)\{\triangle\}_{2} a_{m-1}-(\ell-1)\{\triangle\}_{2} a_{\ell-1} \leq \frac{1}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right)
$$

and

$$
\frac{1}{\ell} \sum_{m=1}^{\ell-1} m^{2} \triangle\left(\{\triangle\}_{2} a_{m-1}\right) \leq \frac{1}{\ell} \sum_{m=1}^{\ell-1}(2 m-1)\{\triangle\}_{2} a_{m-1}
$$

Indeed, putting $\{\triangle\}_{2} a_{m-1}:=b_{m-1}$, we can write

$$
\begin{align*}
\frac{1}{\ell} \sum_{m=1}^{\ell-1} m^{2} \Delta b_{m-1} & =\frac{1}{\ell}\left[b_{0}+3 b_{1}+5 b_{2}+\cdots+(2 \ell-3) b_{\ell-2}-(\ell-1)^{2} b_{\ell-1}\right] \\
14) & \leq \frac{1}{\ell} \sum_{m=1}^{\ell-1}(2 m-1) b_{m-1} \leq \frac{1}{\ell} \sum_{m=1}^{\ell-1}(2 m-1)\{\Delta\}_{2} a_{m-1}, \tag{2.14}
\end{align*}
$$

because by the Lemma 1.1, $b_{m-1} \geq 0$ holds true.
On the other hand we get

$$
(\ell-1)^{2} b_{\ell-1} \leq \ell(\ell-1) b_{\ell-1}
$$

therefore the proof of the corollary is completed.
Remark 2.1. Similar statement with Theorem 2.3 holds true for the series (1.1) with (2,1)-monotone coefficients.

References

[1] A. Yu. Popov, Estimates for the sums of sine series with monotone coefficients of certain classes, (Russian) Mat. Zametki 74 (2003), no. 6, 877-888; translation in Math. Notes 74 (2003), no. 5-6, 829-840.
[2] B. V. Simonov, On trigonometric series with (k, s)-monotone coefficients in weighted spaces, Izv. Vyssh. Uchebn. Zaved., Mat. 2003, no. 5, 42-54.
[3] R. Salem, Détermination de l'ordre de grandeur á l'origine de certains séries trigonometriques, C. R. Acad. Sci. Paris 186 (1928), 1804-1806.
[4] R. Salem, Essais sur les series trigonometriques, Paris, 1940.
[5] S. Aljančić, R. Bojanić and M. Tomić, Sur le comportement asymtotique au voisinage de zéro des séries trigonométriques de sinus á coefficients monotones, Publ. Inst. Math. Acad. Serie Sci., 10 (1956), 101-120.
[6] S. A. Telyakovskĭ̌, On the behavior near the origin of the sine series with convex coefficients, Publ. Inst. Math. Nouvelle serie, 58 (72) (1995), 43-50.
[7] Xh. Z. KrasniqI, Certain estimates for double sine series with multiple-monotone coefficients, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27 (2011), no. 2, 233-243.
[8] Xh. Z. Krasniqi, On the behavior near the origin of double sine series with monotone coefficients. Math. Bohem. 134 (2009), no. 3, 255-273.
[9] Xh. Z. Krasniqi, Some estimates of r-th derivative of the sums of sine series with monotone coefficients of higher order near the origin. Int. J. Math. Anal. (Ruse) 3 (2009), no. 1-4, 59-69.
[10] Xh. Z. KrasniqI, N. L. Braha, On the behavior of r-derivative near the origin of sine series with convex coefficients. JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 1, Article 22, 6 pp. (electronic).
[11] W. H. Young, On the mode of oscillation of a Fourier series and of its allied series, Proc. London Math. Soc. 12 (1913), 433-452.
[12] N. Bary, Trigonometric series, Moscow, 1961 (in Russian).
University of Prishtina "Hasan Prishtina", Faculty of Education, Department of Mathematics and Informatics, Avenue "Mother Theresa" 5, 10000 Prishtina, Kosova

[^0]: 2010 Mathematics Subject Classification. 42A20, 42A32.
 Key words and phrases. Sine series, (k, s)-monotone, convex sequence, asymptotic equality.

