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Abstract. In the theory of curves, a magnetic field generates a magnetic flow whose trajectories are curves

called magnetic curves. This paper aims at studying some properties for these curves which corresponding

to the Killing magnetic fields in the 3-dimensional Euclidean space. We investigate the trajectories of the

magnetic fields called T -magnetic and e-magnetic curves, also we give some characterizations of these curves.

In addition, we determine all magnetic curves for new spherical images of a spherical curve and finally, we

defray some examples to confirm our main results.

1. Introduction

The magnetic curves on a Riemannian manifold (M, g) are trajectories of charged particles moving on M

under the action of a magnetic field F . Each trajectory γ may be found by solving the Lorentz equation

∇γ′γ′ = φ(γ′), where φ is the Lorentz force corresponding to F and ∇ is the Levi Civita connection of g.

In particular, the trajectories of (charged) free particles moving without the action of a magnetic field are

geodesics, which satisfy ∇γ′γ′ = 0. Here ”free” means subject to no forces other than gravity (see [1]).

The magnetic trajectories of the uniform magnetic fields obtained by multiplying the volume form on (M, g)

by scalars were determined on some 2-dimensional spaces, as S2(c), H2(−c), E2, c > 0 (see [2, 3]). In such

an ambient, the Killing vector fields define the Killing magnetic fields. In a three-dimensional space, when a
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charged particle moves along a regular curve the tangent, normal, and binormal vectors describe kinematic

and geometric properties of this particle. These vectors and the time dimension affect the trajectory of the

charged particle during the motion in a magnetic field.

The study of magnetic curves was extended to other ambient spaces, such as complex space forms [4, 5],

Sasakian 3-manifold [6,7], and so on. Very recent results of classification for the Killing magnetic trajectories

on two special 3-dimensional manifolds, namely E3 and S2 ×R, were obtained in [8,9], respectively. Barros

and Romero proved in [10] that if (M, g) has constant curvature, then the magnetic curves corresponding

to a Killing magnetic field are centerlines of Kirchhoff elastic rods. Moreover, if the space is also simply

connected, they proved, using a variational approach to characterize Killing magnetic flows, that a Killing

magnetic flow is equivalent to the Kirchhoff elastic rod variational model. In this paper, we investigate effects

of magnetic fields on charged particle trajectories by variational approach to magnetic flow associated with

the Killing magnetic field on a three-dimensional Riemannian manifold M .

2. The basic concepts

In this section we give some facts, notations and basic meanings which we are needed through this study

(see [11–13]). The sphere of radius r > 0 and with center in the origin in the space E3 is defined by

S2 = {x = (x1, x2, x3) ∈ E3 : 〈x, x〉 = r2}.

Let γ : I → S2 ∈ E3 be a spherical curve. We say that γ is parameterized by its arc length if it satisfies

‖γ′(s)‖ = 1. Throughout this paper, we denote the parameter s of γ as the arc length parameter. Let us

denote T (s) = γ′(s), and we call T (s) a unit tangent vector of γ at s. We remark that 〈x∧y, z〉 = det(x, y, z).

Hence, x ∧ y is orthogonal to x, y. We now set a vector e(s) = γ(s) ∧ T (s) such that

〈e(s), e(s)〉 = 〈γ(s) ∧ T (s), γ(s) ∧ T (s)〉 = 〈γ(s), γ(s)〉 〈T (s), T (s)〉 = 1,

T (s) ∧ e(s) = 〈T (s), T (s)〉γ(s) + 〈T (s), γ(s)〉T (s) = γ(s),

and

γ(s) ∧ e(s) = −T (s).

Therefore, we have an orthonormal frame {γ(s), T (s), e(s)} along γ. Its Frenet–Serret formula is given as

follows:

γ′(s) = T (s),

T ′(s) = −γ(s) + κg(s)e(s),

e′(s) = −κg(s)T (s),
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where κg is the geodesic curvature of the curve γ in S2 and given by κg = det(γ(s), T (s), T ′(s)). For any

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, the scalar product and the vector product of x and y respectively

defined:

g(x, y) = x1y1 + x2y2 + x3y3,

x ∧ y =

∣∣∣∣∣∣∣∣∣
i j k

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣ ,
where ∧ is the cross-product of S2 and (i, j, k) is the canonical basis of R3. If x 6= 0, the norm ‖x‖ is defined

as

‖x‖ =
√
g(x, x).

Now, for our study it is important to consider the following [6, 14]:

Definition 2.1. A magnetic field on a Riemannian manifold (M, g) is defined as a closed 2-form F on M ,

related to a skew-symmetric (1, 1)−tensor field φ, called the Lorentz force of F , by:

g(φ(X), Y ) = F (X,Y ), ∀ X,Y ∈ χ(M).

For a trivial magnetic field, F = 0, i.e. in the case of vanishing Lorentz force, the magnetic curves are

given by the trajectories of the charged particles moving freely, only under the influence of gravity. The

Lorentz equation becomes ∇γ′γ′ = 0 and its solutions are the geodesics. The magnetic trajectories of F are

curves γ on M which satisfy the Lorentz equation

∇γ′γ′ = φ(γ′).

Let V be a Killing vector field on M, then the Lorentz force can be written as

φ(X) = V ×X. (2.1)

In this case, the Lorentz force equation can be given as

∇γ′γ′ = V × γ′.

Proposition 2.1. Let γ : I → S2 ⊂ M3 be a curve in a three-dimensional oriented Riemannian Manifold

(M3, g) and V be a vector field along the curve γ. One can take a variation of γ in the direction of V , say,

a map Γ : I × (−ε, ε)→M3 which satisfies Γ(s, 0) = γ(s),
(
∂Γ
∂s (s, t)

)
= V (s).

In this setting, we have the following functions:

1. the speed function v(s, t) =
∥∥∂Γ
∂s (s, t)

∥∥ ,
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2. the curvature function κg(s, t) of γt(s). The variations of those functions at t = 0,

V (v) =

(
∂v

∂t
(s, t)

)∣∣∣∣
t=0

= g(∇TV, T )v,

V (κg) =

(
∂κg
∂t

(s, t)

)∣∣∣∣
t=0

= g(∇2
TV, e)− 2κg g(∇TV, T ) + g(Ω(V, T )T, e),

where Ω is curvature tensor of M3.

Proposition 2.2. Let V (s) be the restriction to γ(s) of a Killing vector field ,say V of M3. Then

V (v) = V (κg) = 0.

3. Some Magnetic Curves in 3D Oriented Riemannian Manifolds

3.1. T−Magnetic Curve. In this section, we give some characterizations for T-magnetic curves in a Rie-

mannian manifolds.

Definition 3.1. Let γ : I → S2 ⊂M3 be a spherical curve in 3D oriented Riemannian space, (M3, g) and F

be a magnetic field on M . We call the curve γ is a T -magnetic curve if T satisfy the Lorentz force equation,

∇
T
T = φ(T ) = V × T.

Proposition 3.1. Let γ be a T -magnetic curve in 3D oriented Riemannian space (M3, g) with the Frenet

apparatus {γ, T, e, κg}. Then, we have the sphere Frenet–Serret formula:
γ′

T ′

e′

 =


0 1 0

−1 0 κg

0 −κg 0



γ

T

e

 ,
and then the Lorentz force in the Frenet frame can be written as

φ(γ)

φ(T )

φ(e)

 =


0 1 δ

−1 0 κg

−δ −κg 0



γ

T

e

 .
where δ is a certain function defined by δ = g(φ(γ), e).

Proof. Let γ be a unit speed T -magnetic curve in 3D oriented Riemannian space (M3, g) with the Frenet

apparatus {γ, T, e, κg}. From the definition of a magnetic curve, one can write

φ(T ) = −γ + κge.

Since φ(γ) ∈ span{γ, T, e}, we have

φ(γ) = λ1γ + λ2T + λ3e.



Int. J. Anal. Appl. 16 (2) (2018) 197

By using the following equalities:

λ1 = g(φ(γ), γ) = 0,

λ2 = g(φ(γ), T ) = −g(φ(T ), γ) = 1,

λ3 = g(φ(γ), e) = δ,

we get

φ(γ) = T + δe.

Similarly, we can easily obtain that

φ(e) = −δγ − κgT,

hence, this completes the proof. �

Proposition 3.2. Let γ be a spherical curve in 3D oriented Riemannian space (M3, g). The curve γ is a

T -magnetic trajectory of a magnetic field V if and only if the vector field V along γ can be written as

V = κgγ − δT + e. (3.1)

Proof. Let γ be a unit speed T -magnetic trajectory of a magnetic field V . Using Proposition 3.1 and Eq.

(1.1), we can easily see that

V = κgγ − δT + e.

Conversely, we assume that Eq.(3.1) holds. Then we get V × T = φ(T ), and so the curve γ is a T -magnetic

trajectory of the magnetic vector field V . �

Theorem 3.1. (Main result) Let γ be a spherical T-magnetic curve and V be a Killing vector field on a

simply connected space form (M3(C), g). If the curve γ is one of the T-magnetic trajectories of (M3(C), g, V ),

then its curvature hold the following equations:

δ = const.,

δκ′g = C,

where C is the curvature of the Riemannian space M3.

Proof. Let V be a magnetic field in a Riemannian manifold M3. Then V satisfies Eq.(3.1). Differentiating

this equation with respect to s, we have

∇TV = (κ′g + δ)γ − δ′T − δκge, (3.2)

Now, if V is Killing, Proposition 2.2 implies that V (v) = 0 and so, from Eq.(3.2), one obtains that ∇TV has

no tangential component, i.e.,

δ = const.
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and differentiation of Eq.(3.2) and using the sphere Frenet–Serret formulas, gives us

∇2
TV = (κ′g + δ)′γ + (κ′g + δ + δκ2

g)T − (δκg)
′e, (3.3)

Eqs.(3.2), (3.3) together with V (κg) = 0 in Proposition 2.2 lead to

−(δκg)
′ + g(Ω(V, T )T, e) = 0.

In particular, if M3 has constant curvature C, then g(Ω(V, T )T, e) = Cg(V, e) = C and so,

C − δκ′g = 0. (3.4)

Thus, the theorem is proved. �

3.2. e−Magnetic Curve.

Definition 3.2. Let γ : I → S2 ⊂ M3 be a curve in 3D oriented Riemannian space, (M3, g) and F be a

magnetic field on M . We call the curve γ is a e-magnetic curve if e satisfy the Lorentz force equation:

∇
T
e = φ(e) = V × e.

Proposition 3.3. Let γ be a e-magnetic curve in 3D oriented Riemannian space (M3, g) with the Frenet

apparatus {γ, T, e, κg}. Then, we have the sphere Frenet–Serret formula:
γ′

T ′

e′

 =


0 1 0

−1 0 κg

0 −κg 0



γ

T

e

 ,
and then the Lorentz force in the Frenet frame can be written as

φ(γ)

φ(T )

φ(e)

 =


0 ρ 0

−ρ 0 κg

0 −κg 0



γ

T

e

 ,
where ρ is a certain function defined by ρ = g(φ(γ), T ).

Proof. Let γ be a unit speed e-magnetic curve in 3D oriented Riemannian space (M3, g), with the Frenet

apparatus {γ, T, e, κg}. Since we have

φ(γ) = µ1γ + µ2T + µ3e,

then using the following equalities:

µ1 = g(φ(γ), γ) = 0,

µ2 = g(φ(γ), T ) = −g(φ(T ), γ) = Ω2,

µ3 = g(φ(γ), e) = −g(φ(e), γ) = 0.
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One can get

φ(γ) = ρT.

Similarly, we can easily calculate that

φ(T ) = −ργ + κge,

φ(e) = −κgT,

therefore, it completes the proof. �

Proposition 3.4. Let γ be a spherical curve in 3D oriented Riemannian space (M3, g).The curve γ is then

the e-magnetic trajectory of a magnetic field V if and only if the magnetic vector field V can be written along

the curve γ as

V = κgγ + ρe. (3.5)

Proof. Let γ be a unit speed e-magnetic trajectory of a magnetic field V . Using proposition 3.3 and Eq.(1.1),

we can easily see that

V = κgγ + ρe.

Conversely, we assume that Eq.(3.5) holds. Then we get V × e = φ(e), and so the curve γ is an e-magnetic

trajectory of the magnetic vector field V . This completes the proof. �

Theorem 3.2. (Main result) Let V be a Killing vector field on a simply connected space form (M3(C), g).

Then, the unit speed e-magnetic trajectories of (M3(C), g, V ) are curves with curvature satisfying

κg = 0,

ρ = 1,

C = 1,

where C is the curvature of the Riemannian space M3.

Proof. Let V be a magnetic field in a Riemannian manifold M3. Then V satisfies Eq.(3.5). Differentiating

Eq.(3.5) with respect to s, we have

∇TV = κ′gγ + (κg − ρκg)T + ρ′e, (3.6)

and differentiation of Eq.(3.6) and using the sphere Frenet–Serret formulas, gives us

∇2
TV = (κ′′g + ρκg − κg)γ + (κ′g + (κg − ρκg)′ − ρ′κg)T + (ρ′′ + κ2

g − ρκ2
g)e, (3.7)
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Now, if V is Killing, Proposition 2.2 implies that V (v) = 0 and so, from Eq.(3.6), one obtains that ∇TV has

no tangential component, i.e.,

κg − ρκg = 0,

If Eq.(3.6) and Eq.(3.7) are then considered with V (κg) = 0 in Proposition 2.2, we obtain

Ω′′2 + κ2
g − ρκ2

g + g(Ω(V, T )T, e) = 0.

In particular, if M3 has constant curvature C, then g(Ω(V, T )T, e) = Cg(V, e) = Cρ and so,

ρ′′ + κ2
g − ρκ2

g + Cρ = 0,

Which gives the required result. �

4. Magnetic curves of spherical indicatrices

In this section we introduce a new representation of spherical indicatrices of magnetic curves we start as

follows: (see [15–17])

Definition 4.1. Let γ be a curve in the sphere S2 with Frenet vectors γ, T and e. The unit tangent vectors

along the curve γ(s) generate a curve γt = T on the sphere of radius 1 about the origin. The curve γt is

called the tangent indicatrix of the curve γ. If γ = γ(s) is a natural representations of the curve γ, then

γt(s) = T (s) will be a representation of γt. Similarly, one can consider the principal normal indicatrix

γe = e(s).

Lemma 4.1. Let γt be the tangent indicatrix of γ and {γt, Tt, et} be its frenet frame, then we have Frenet

formula: 
γ′t(st)

T ′t (st)

e′t(st)

 =


0 1 0

−1 0 κgt(st)

0 −κgt(st) 0



γt(st)

Tt(st)

et(st)

 ,
where 

γt = T,

Tt = −1√
1+κ2

g

γ +
κg√
1+κ2

g

e,

et =
κg√
1+κ2

g

γ + 1√
1+κ2

g

e,

and

st =

∫ √
1 + κ2

gds, κgt =
κ′g√

1 + κ2
g

,

where st is the natural representation of γt and κgt its the geodesic curvature.
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Lemma 4.2. Consider γe = e is the the principal normal indicatrix of γ and {γe, Te, ee} is the Frenet vectors

of it, then we have the Frenet equations:
γ′e(se)

T ′e(se)

e′e(se)

 =


0 1 0

−1 0 κge(se)

0 −κge(se) 0



γe(se)

Te(se)

ee(se)

 ,
where 

γe = e,

Te = −T,

ee = γ,

and

se =

∫
κg ds, κge =

1

κg
.

The parameter se is the natural representation of γe and κge is the geodesic curvature of that one.

Through what has been studied previously about magnetic curves it is easy to market the following:

4.1. Tt-Magnetic Curve.

Definition 4.2. Let γt : I → S2 ⊂ M3 be a curve in 3D oriented Riemannian space, (M3, g) and F be a

magnetic field on M . We call the curve γt is a Tt-magnetic curve if Tt satisfy the Lorentz force equation,

∇
Tt
Tt = φ(Tt) = Vt × Tt.

Proposition 4.1. Let γt be a Tt-magnetic curve in 3D oriented Riemannian space (M3, g) with the Frenet

apparatus {γt, Tt, et}. Then, the Lorentz force in the Frenet frame can be written as


φ(γt)

φ(Tt)

φ(et)

 =


0 1 ζ

−1 0
κ′
g√

1+κ2
g

−ζ − κ′
g√

1+κ2
g

0



γt

Tt

et

 .

where ζ is a certain function defined by ζ = g(φ(γt), et).

Proposition 4.2. Let γt be the tangent indicatrix of γ and {γt, Tt, et} be its frenet frame in 3D oriented

Riemannian space (M3, g). The curve γt is a Tt-magnetic trajectory of a magnetic field Vt if and only if the

vector field Vt along γt can be written as

Vt =
κg + ζ√
1 + κ2

g

γ +
κ′g√

1 + κ2
g

T +
1− ζκg√

1 + κ2
g

e.
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Theorem 4.1. Let γt be a Tt-magnetic curve and Vt be its Killing vector field on a simply connected space

form (M3(K), g). If the curve γ is one of the Tt-magnetic trajectories of (M3(K), g, Vt), then its curvature

hold the following equations:

κ′′g (1 + κ2
g)− κg(κ′g)2 =

K

ζ
, ζ = const.,

where K is the curvature of the Riemannian space M3.

4.2. et-Magnetic Curve.

Definition 4.3. Let γt : I → S2 ⊂ M3 be a curve in 3D oriented Riemannian space, (M3, g) and F be a

magnetic field on M . We call the curve γt is a et-magnetic curve if et satisfy the Lorentz force equation:

∇
Tt
et = φ(et) = Vt × et.

Proposition 4.3. Let γt be a et-magnetic curve in 3D oriented Riemannian space (M3, g) with the Frenet

apparatus {γt, Tt, et}. Then, the Lorentz force in the Frenet frame can be written as


φ(γt)

φ(Tt)

φ(et)

 =


0 $ 0

−$ 0
κ′
g√

1+κ2
g

0 − κ′
g√

1+κ2
g

0



γt

Tt

et

 .

where $ is a certain function defined by $ = g(φ(γt), Tt).

Proposition 4.4. Let γt be the tangent indicatrix of γ in three-dimensional oriented Riemannian space

(M3, g). The curve γt is a et-magnetic trajectory of a magnetic field Vt if and only if the vector field Vt

along γt can be written as

Vt =
κg$√
1 + κ2

g

γ +
κ′g√

1 + κ2
g

T +
$√

1 + κ2
g

e.

Theorem 4.2. Let γt be the et-magnetic curve and Vt be a Killing vector field on a simply connected space

form (M3(K), g). If the curve γt is one of the et-magnetic trajectories of (M3(K), g, Vt), then the following

equations hold:

κg = const.,

$ = 1,

K = 0,

where K is the curvature of the Riemannian space M3.
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5. Examples

In this section, we give some examples on T − magnetic and e − magnetic curves and calculate their

spherical indicatrices to illustrate our main results and draw their pictures by using Mathematica computer

program.

Example 5.1. Let us consider the following spherical curve α : I → S2, ( see Fig. 1)

α(s) =

(
−4

5
sin

[
5

4
s

]
,

4

5
cos

[
5

4
s

]
,

3

5

)
, (5.1)

Differentiating (5.1), we get the tangent T vector as follows:

T = α′(s) =

(
− cos

[
5

4
s

]
,− sin

[
5

4
s

]
, 0

)
.

Then we obtain the principal normal vector of α:

e(s) =

(
3

5
sin

[
5

4
s

]
,
−3

5
cos

[
5

4
s

]
,

4

5

)
,

Also, the geodesic curvature of α given by:

κg =
3

4
.

We have that κg = const., so α is a T -magnetic curve and it is also a et-magnetic curve. From the above

calculations, the spherical image of the tangent indicatrix of α is ( see Fig. 2(A))

αt = T =

(
− cos

[
5

4
s

]
,− sin

[
5

4
s

]
, 0

)
.

Its natural representation and the geodesic curvature are

st =
5

4
s, κgt = 0.

Also, the spherical image of the principal normal indicatrix of α is ( see Fig. 2(B))

αe = e =

(
3

5
sin

[
5

4
s

]
,
−3

5
cos

[
5

4
s

]
,

4

5

)
,

It has the natural representation and the geodesic curvature as follows:

se =
3

4
s, κge =

4

3
.

Example 5.2. Let β be a T -magnetic curve in S2 given by ( see Fig. 3)

β(s) =

(
1√
2

cos
[√

2s
]
,

1√
2
,

1√
2

sin
[√

2s
])

.

By differentiating, we get

β′ = T =
(
− sin

[√
2s
]
, 0, cos

[√
2s
])
,
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which implies that 〈β′, β′〉 = 〈T, T 〉 = 1. From which, the principal normal vector of the T -magnetic curve

is given as follows:

e =

(
1√
2

cos
[√

2s
]
,
−1√

2
,

1√
2

sin
[√

2s
])

.

Besides, the geodesic curvature and the certain function of β are respectively,

κg = −1, δ = 0.
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Which mean that κg is constant so β is also a et-magnetic curve. Moreover, the spherical image of the

tangent indicatrix of the T -magnetic curve β is ( see Fig. 4(A))

βt = T =
(
− sin

[√
2s
]
, 0, cos

[√
2s
])
.

From this curve the natural representation and the geodesic curvature are respectively,

st =
√

2s, κgt = 0.

Also, the spherical image of the principal normal indicatrix of the T -magnetic curve β is ( see Fig. 4(B))

βe = e =

(
1√
2

cos
[√

2s
]
,
−1√

2
,

1√
2

sin
[√

2s
])

,

which has the natural representation and the geodesic curvature as

se = −s, κge = −1.
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Example 5.3. We consider a e-magnetic curve γ in S2 is defined by ( see Fig. 5)

γ(s) = (cos [s] , sin [s] , 0) .

By differentiating this vector we have

φ(γ) = T = (− sin [s] , cos [s] , 0) ,
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which implies that 〈φ(γ), φ(γ)〉 = 〈T, T 〉 = 1. From which, the principal normal vector of the e-magnetic

curve is given as follows:

e = (0, 0, 1) .

Besides, the geodesic curvature

κg = 0,

which means that γ is a e-magnetic curve and the certain function of γ is ρ = 1.

Moreover, the spherical image of the tangent indicatrix and the principal normal indicatrix of the e-magnetic

curve are respectively, ( see Fig. 6)

γt = T = (− sin [s] , cos [s] , 0) ,

γe = e = (0, 0, 1) ,

For γt the natural representation and the geodesic curvature are respectively,

st = s, κgt = 0.

From the above we can see that the geodesic curvature κg is constant which mean that the curve is also

et-magnetic curve.
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Remark: For the principal normal indicatrix γe of the spherical curve γ, similar procedure as we have

done for the tangent indicatrix of γ to get magnetic curves of γe.

6. Conclusion

In summary, we examine the conditions of spherical curve γ to be T -magnetic curve or e-magnetic curve

and give some characterizations of these curves. Furthermore, for this curve, we investigate spherical images

of the tangent indicatrix and binormal indicatrix. Finally as an application for this work, two examples have

been given and plotted to confirm our main results.
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