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Abstract. In this paper, we firstly introduce kinematics properties of the moving particle lying on a

surface S. We assume that the particle corresponds to a different type of surface curves such that they are

characterized by using the Darboux vector field W in Minkowski spacetime. Based on this result, we present

geometrical understanding of the energy of the particle in each Darboux vector fields whether they lie on a

spacelike surface or a timelike surface. Then, we also determine the bending elastic energy functional for the

same particle on a surface S by assuming the particle has a bending feature of elastica. Finally, we prove

that bending energy formula can be represented by the energy of the particle in each Darboux vector field

W.

1. Introduction

The study of computing an energy for a given vector field depending on the structure of the geometrical

spaces has earned such attention in the last couple years. It has been shown that tis type of computations has

numerous applications in various fields. Thus, multidisciplinary subjects have been evolved. For instance,

Wood [1] studied energy on the unit vector field firstly. Gil-Medrano [2] worked on a relation between energy

and volume of vector fields. Chacon et al. in [3], [4] investigated the energy distribution and corrected energy

Received 2017-10-17; accepted 2017-12-16; published 2018-03-07.

2010 Mathematics Subject Classification. 53C41, 53A10.

Key words and phrases. energy; Minkowski Space; Darboux vector field; surface curve.

c©2018 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

254

https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-16-2018-254


Int. J. Anal. Appl. 16 (2) (2018) 255

of distributions on Riemannian manifolds. Altin [5] computed the energy of Frenet vector fields for given

non-lightlike curves.

The corresponding theory for the functional of curvature-based energy is considered to be at its early

stages of evolution. Some prolific fields and pioneering studies for this theory can be found in mathematical

physics, membrane chemistry, computer-aided geometric design and geometric modelling, shell engineering,

biology and thin plate ( [6], [7], [8], [9], [10]). Darboux frame is considered as a natural moving frame. It

is implemented in surface geometry to characterize features of the curve lying on the surface. It is also

used to understand characterization of functionals, which play a significant role to construct surface curves.

Some of the well-known functionals and related works can be given as follows. Bending energy functional

has appeared firstly Bernoulli-Euler elastica formulation for energy [11]. MVS energy functional is used

for aesthetic surface design [12]. MVS cross energy functional computes the deviation of the surface from a

cylinder or a perfect sphere [13]. The energy of infinitesimally small surface area can be defined by average

energy of surface curves which pass through that surface. Thus, we work on curves lying on appropriate

surfaces to compute these functionals. Moreover, total surface energy can be obtained by integrating the

energy of the small area element over the entire surface [14].

In this study, we compute energy on the moving particle lying on the surface which is defined in Minkowski

spacetime. Minkowski spacetime has a close connection between mass-energy and motion-energy concept,

which are topics of special relativity ( [15], [16], [17], [18]). Furthermore, we aim to present usefulness of

geometrical perspective on the computation of the energy by calculating curvature-based energy for surface

curves. Moreover, we introduce the relation between energy on surface curves in each Darboux vector field W

and curvature-based bending energy functional. The method we use for computing the energy of Darboux

vector fields is that we consider a vector field as a map from manifold M to the Riemannian manifold

(TM, ρs), where TM is tangent bundle of a Riemannian manifold and ρs is a Sasaki metric induced from

TM naturally.

The designation of the paper is as follows. We firstly present fundamental definitions of Darboux frame

equations for different types of surface curves in Minkowski space. Then we give a geometrical interpretation

of the energy for unit vector fields. Guided by this fundamental information, we compute energy of the

moving particle corresponding to a surface curve in Minkowski space.

2. Kinematics of the Particle on a Surface

Let Γ be a particle moving on a surface S such that the precise location of the particle is specified by

Γ = Γ (t) , where t is a time parameter. Changing the time parameter describes the motion and trajectory.

Thus, the trajectory corresponds to a curve ζ in the surface for a moving particle. It is convenient to remind

the arc-length parameter s, which is used to compute the distance traveled by a particle along its trajectory.
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It is defined by

ds

dt
= ‖v‖ ,

where v = v (t) =dζ
dt is the velocity vector and dζ

dt 6= 0. In particle dynamics, the arc-length parameter s

is considered as a function of t. Thanks to the arc-length, it is also determined Serret-Frenet frame, which

allows us determining the characterization of the intrinsic geometrical features of the regular curve. This

coordinate system is constructed by three orthonormal vectors e(α) and the curve ζ itself, assuming the curve

is sufficiently smooth at each point. The index within the parenthesis is the tetrad index that describes a

particular member of the tetrad. In particular, e(0) is the unit tangent vector, e(1), e(2) is the unit normal and

binormal vector of the curve ζ, respectively. Orthonormality conditions are summarized by e(α)e(β) = ηαβ ,

where ηαβ is a Euclidean metric such that: diag(1, 1, 1) . Thus, we have the following formulas for the Frenet

frame equations.

De(0)

ds
= κe(1),

De(1)

ds
= −κe(0) + τe(2),

De(2)

ds
= −τe(1),

where κ and τ are curvature and torsion of the curve, respectively.

In addition to Frenet frame, it can be defined a new frame called as Darboux frame on the oriented surface

S. For the trajectory of the moving particle, which corresponds to a curve ζ on the surface, the Darboux

vectors e(0),n, P = e(0) × n, are defined. They are the unit tangent of the curve, unit normal of the surface,

and normal of the tangent, respectively. They satisfy following equations and properties.

Case 1. Let S be an oriented spacelike surface and moving particle Γ lying on S has a unit spacelike

tangent vector e(0), then we have

De(0)

ds
= κgP + κnn,

DP

ds
= −κge(0) + τgn, (2.1)

Dn

ds
= κne(0) + τgP,

where κg, κn, τg are geodesic curvature, normal curvature and geodesic torsion of the curve, [19].

Case 2. Let S be an oriented timelike surface and moving particle lying on S has a unit spacelike tangent

vector e(0), then we have
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De(0)

ds
= κgP− κnn,

DP

ds
= κge(0) + τgn, (2.2)

Dn

ds
= κne(0) + τgP,

where κg, κn, τg are geodesic curvature, normal curvature and geodesic torsion of the curve, [19].

Case 3. Let S be an oriented timelike surface and moving particle lying on S has a unit timelike tangent

vector e(0), then we have

De(0)

ds
= κgP + κnn,

DP

ds
= κge(0) − τgn, (2.3)

Dn

ds
= κne(0) + τgP,

where κg, κn, τg are geodesic curvature, normal curvature and geodesic torsion of the curve, [19].

Since we identify e(0) as a unit vector as a tangent to the curve at each point on the curve, we have

e(0) = dΓu/ds, where Γu is the point on the trajectory of curve ζ. Thus e(0),P and n generate the Darboux

frame W and Equation 2.1, 2.2, and 2.3 are known as Darboux equations for each case.

3. Energy on the Unit Vector Fields in Space

We first give the fundamental definitions and propositions which are used to compute the energy of the unit

vector field.

Definition 3.1. For two Riemannian manifolds (M,ρ) and (N,h) the energy of a differentiable map f :

(M,ρ)→ (N,h) can be defined as

εnergy (f) =
1

2

∫
M

n∑
a=1

h (df (ea) , df (ea)) v, (3.1)

where {ea} is a local basis of the tangent space and v is the canonical volume form in M [1].

Proposition 3.1. Let Q : T
(
T 1M

)
→ T 1M be the connection map. The following two conditions hold:

i) ω ◦Q = ω ◦ dω and ω ◦Q = ω ◦ ω̃, where ω̃ : T
(
T 1M

)
→ T 1M is the tangent bundle projection;

ii) for % ∈ TxM and a section ξ : M → T 1M ; we have

Q (dξ (%)) = D%ξ, (3.2)

where D is the Levi-Civita covariant derivative [1].
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Definition 3.2. For ς1, ς2 ∈ Tξ
(
T 1M

)
, we define

ρS (ς1, ς2) = ρ (dω (ς1) , dω (ς2)) + ρ (Q (ς1) , Q (ς2)) . (3.3)

This yields a Riemannian metric on TM . As known ρS is called the Sasaki metric that also makes the

projection ω : T 1M →M a Riemannian submersion.

4. Bending Energy Functional by Darboux Vector Fields

In the theory of relativity, all the energy moving through an object contributes to the total mass of the body

that measures how much it can resist to acceleration. Each kinetic and potential energy makes a highly

proportional contribution to the mass [20], [21], [22], [23] . In this study not only we compute the energy

on surface curves but we also investigate its close correlation with bending energy of elastica which is a

variational problem proposed firstly by Daniel Bernoulli to Leonard Euler in 1744. Euler bending elastic

energy formula for a space curve in the 3-dimensional Frenet curvature along the curve is known as

HB =
1

2

∫ ∥∥De(0)
e(0)

∥∥2 ds, (4.1)

where s is an arclength, [10]. Furthermore, we know that geodesic curvature and normal curvature are not

independent and sum of their squares on a minimal surface gives

KG = −
(
κ2n + τ2g

)
(4.2)

where KG is Gaussian curvature [10].

Case 1. Let S be an oriented spacelike surface and moving particle lying on S has a unit spacelike tangent

vector e(0)

Theorem 4.1. Let Γ be a moving particle on surface S such that it corresponds to a curve ζ. Then, energy

on the particle in tangent vector field by using Sasaki metric is stated by

εnergye(0) =
1

2
(s+

∫ s

0

(
κ2g − κ2n

)
ds).

Proof. From Equation 3.1 and 3.2 we know

εnergye(0) =
1

2

∫ s

0

ρS
(
de(0)(e(0)), de(0)(e(0))

)
ds.

Using also Equation 3.3 we have

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ(dω(e(0)(e(0))), dω(e(0)(e(0))))

+ρ(Q(e(0)(e(0))), Q(e(0)(e(0)))).
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Since e(0) is a section, we get

d(ω) ◦ d(e(0)) = d(ω ◦ e(0)) =d(idC) = idTC .

We also know

Q(e(0)(e(0))) = De(0)
e(0)=κgP + κnn

Thus, we find from the Equation 2.1

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ

(
e(0), e(0)

)
+ ρ

(
De(0)

e(0), De(0)
e(0)

)
= 1 + κ2g − κ2n

So we can easily obtain

εnergye(0) =
1

2
(s+

∫ s

0

(
κ2g − κ2n

)
ds).

This completes the proof. �

Conclusion 4.1. Let ζ be a spacelike curve lying on spacelike surface S. Then we have
∥∥De(0)

e(0)

∥∥2 = κ2g−κ2n.

Thus, we obtain following relation for the bending energy of elastica:

HB = εnergye(0) −
1

2
s.

Proof. It is obvious from the Equation 4.1 and Theorem 4.1. �

Theorem 4.2. Let Γ be a moving particle on surface S such that it corresponds to a curve ζ. Then, energy

on the particle in vector field of the normal of the surface by using Sasaki metric is stated by

εnergy (n) =
1

2
(s+

∫ s

0

(
κ2n + τ2g

)
ds).

Proof. If we follow the similar steps as in the Theorem 4.1, the proof is obvious. �

Conclusion 4.2. Let ζ be a spacelike curve lying on spacelike surface S.Then we have for a Gaussian

curvature KG

εnergy (n) =
1

2
(s−

∫ s

0

KGds).

Proof. It is obvious from Equation 4.1 and Theorem 4.2.
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Theorem 4.3. Let Γ be a moving particle on surface S such that it corresponds to a curve ζ. Then, energy

on the particle in tangent’ s normal vector field by using Sasaki metric is stated by

εnergy (P) =
1

2
(s+

∫ s

0

(
κ2g − τ2g

)
ds).

Proof. If we follow the similar steps as in the Theorem 4.1, the proof is obvious.

Case 2. Let S be an oriented timelike surface and moving particle lying on S has a unit spacelike tangent

vector e(0).

Theorem 4.4. Let Γ be a moving particle on surface S such that it corresponds to a curve ζ. Then, energy

on the particle in tangent vector field by using Sasaki metric is stated by

εnergye(0) =
1

2
(s+

∫ s

0

(
−κ2g + κ2n

)
ds).

Proof. From Equation 3.1 and 3.2 we know

εnergye(0) =
1

2

∫ s

0

ρS
(
de(0)(e(0)), de(0)(e(0))

)
ds.

Using the Equation 3.3 and knowing e(0) is a section we obtain that

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ(dω(e(0)(e(0))), dω(e(0)(e(0))))

+ρ(Q(e(0)(e(0))), Q(e(0)(e(0)))),

and

d(ω) ◦ d(e(0)) = d(ω ◦ e(0)) =d(idC) = idTC .

It is also true that

Q(e(0)(e(0))) = De(0)
e(0)=κgP− κnn

Moreover we find from the Equation 2.2

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ

(
e(0), e(0)

)
+ ρ

(
De(0)

e(0), De(0)
e(0)

)
= 1− κ2g + κ2n.

Thus we can easily obtain

εnergye(0) =
1

2
(s+

∫ s

0

(
−κ2g + κ2n

)
ds).

Conclusion 4.3. Let ζ be a spacelike curve lying on timelike surface S. Then we have
∥∥De(0)

e(0)

∥∥2 =

−κ2g + κ2n. Thus, we obtain following relation for the bending energy of elastica:

HB = εnergye(0) −
1

2
s.
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Proof. It is obvious from the Equation 4.1 and Theorem 4.4. �

Theorem 4.5. Energy on the moving particle in surface’s normal and tangent’s normal vector field by

using Sasaki metric is stated by

εnergy (n) =
1

2
(s+

∫ s

0

(
κ2n − τ2g

)
ds),

εnergy (P) =
1

2
(s+

∫ s

0

(
κ2g + τ2g

)
ds).

Proof. If we follow the similar steps as in the Theorem 4.4, the proof is obvious.

Case 3. Let S be an oriented timelike surface and moving particle lying on S has a unit timelike tangent

vector e(0).

Theorem 4.6. Let Γ be a moving particle on surface S such that it corresponds to a curve ζ. Then, energy

on the particle in tangent vector field by using Sasaki metric is stated by

εnergye(0) =
1

2
(−s+

∫ s

0

(
κ2g + κ2n

)
ds).

Proof. From Equation 3.1 and 3.2 we know

εnergye(0) =
1

2

∫ s

0

ρS
(
de(0)(e(0)), de(0)(e(0))

)
ds.

By using the Equation 3.3 we have

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ(dω(e(0)(e(0))), dω(e(0)(e(0))))

+ρ(Q(e(0)(e(0))), Q(e(0)(e(0)))).

Since e(0) is a section, we also get

d(ω) ◦ d(e(0)) = d(ω ◦ e(0)) =d(idC) = idTC .

Moreover, it is clear that

Q(e(0)(e(0))) = De(0)
e(0)=κgP + κnn.

Thus, we find from Equation 2.3

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ

(
e(0), e(0)

)
+ ρ

(
De(0)

e(0), De(0)
e(0)

)
= −1 + κ2g + κ2n
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and finally

εnergye(0) =
1

2
(−s+

∫ s

0

(
κ2g + κ2n

)
ds).

Conclusion 4.4. Let ζ be a timelike curve lying on timelike surface S. Then we have
∥∥De(0)

e(0)

∥∥2 = κ2g+κ2n.

Thus, we obtain following relation for the bending energy of elastica:

HB = εnergye(0) +
1

2
s.

Proof. It is obvious from the Equation 4.1 and Theorem 4.6. �

Theorem 4.7. Energy on the moving particle in surface’s normal and tangent’s normal vector field by

using Sasaki metric is stated by

εnergy (n) =
1

2
(−s+

∫ s

0

(
−κ2n + τ2g

)
ds),

εnergy (P) =
1

2
(−s+

∫ s

0

(
−κ2g + τ2g

)
ds).

Proof. If we follow the similar steps as in the Theorem 4.6, the proof is obvious. �

5. Conclusion

In this study, we studied energy on the particle in the Darboux vector fields in Minkowski spacetime con-

sidering kinematics of the particle. Furthermore, we set a connection between energy on the particle in

these vector fields and elastica of bending functional. This is important for our future work since a simple

characterization on the energy of a vector field can be described as it is up to constants, in other words, it is

square L2 norm of the vector field’s covariant derivative. Thanks to this definition, not only we will correlate

the concept of the energy with a volume for the moving particle in these vector fields in space.

As is known, elastic energy may occur by applying different forces besides bending such as twisting and

stretching. In our next studies, we also determine the correlation between energy on the particle in each

Darboux vector field and stretching and twisting energy functional.

Computing the energy on the moving particle has a wide range of application in the theoretical and

applied physics. Therefore, it will also be investigated the energy on the moving particle in different force

fields thanks to classical mechanics by obtaining dynamics of the particle in space including work done and

force acting on the particle besides the energy. We believe that this study also will lead up to further research

on the relativistic dynamics of the particle in different spacetimes in terms of computing the energy on a

particle in different force fields.
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