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Abstract. In this paper, we consider n-weak amenability of full matrix algebras and we prove that the

Rees semigroup algebra is permanently weakly amenable.

1. Introduction

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then a linear map D : A −→ X is a

derivation if

D(ab) = a ·D(b) +D(a) · b

for every a, b ∈ A. Let x ∈ X, and set δx(a) = a · x − x · a for every a ∈ A. Then δx is a derivation;

these derivations are inner derivations. The space of continuous derivations from A into X is denoted by

Z1(A,X), and the subspace consisting of the inner derivations is N 1(A,X); the first cohomology group of

A with coefficients in X is H1(A,X) = Z1(A,X)/N 1(A,X).

A Banach algebra A is weakly amenable if H1(A,A∗) = {0}. For example, the group algebra L1(G) is

weak amenable for each locally compact group G [7].

Let k ∈ N; a Banach algebra A is called k-weakly amenable if H1(A,A(k)) = {0}. Dales, Ghahramani and

Grønbæk brought the concept of k-weak amenability of Banach algebras [5]. A Banach algebra A is called
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permanently weakly amenable if H1(A,A(k)) = {0}, for each k ∈ N. In [5], authors showed that for a locally

compact group G, L1(G) is n-weakly amenable for all odd numbers n, but for even case this was open. This

open problem solved in [4] and a new prove introduced by Zhang [9].

The above mentioned problem open for semigroups and semigroup algebras. For Rees semi group algebras,

Mewomo [8], proved that these algebras are (2k+1)-weakly amenable, in this paper, we investigate permanent

weak amenability of n× n matrix Banach algebras. Finally, we prove that the Rees semigroup algebras are

permanently weak amenable.

2. Characterization of Derivations

Consider the algebra Mn of n × n matrices. Let A be a Banach algebra. The Banach algebra Mn(A) is

the collection of n×n matrices with components in A. We identify the dual of Mn(A) with Mn(A∗) and we

have

(a · Λ)ij =

n∑
s=1

ajs · λis, (Λ · a)ij =

n∑
s=1

λsj · asi, (2.1)

for each a = (aij) ∈Mn(A) and Λ = (λij) ∈Mn(A∗).

Derivations from Mn(A) into Mn(A∗) is studied in [1]. Set Eij which it is a n×n matrix, such that whose

(i, j)th entry is 1 and other entries are 0. For each a ∈ A, the matrix a⊗Eij is a matrix that whose (i, j)th

entry is a and others entries are 0.

Lemma 2.1. Let A be a Banach algebra and let D : A −→ A∗ be a continuous derivation, then D induces

a continuous derivation D : Mn(A) −→ Mn(A∗). Moreover, if D is an inner derivation, then D is inner

derivation.

Proof. Define D : Mn(A) −→Mn(A∗) by D((a)ij) = (D(aij)) or D((a)ij) = (D(aji)). Clearly, continuity of

D implies continuity of D. Similar to argumentation in [6, pp. 17], we have D(ab) = a ·D(b) + D(a) · b for

every a, b ∈Mn(A). Thus, D is a module derivation. As well as, if D is inner, by a similar method in proof

of Theorem 2.7 of [6], D is inner. �

By (2.1),

〈λ⊗ Ekl, (Λij) · (aij)〉 = 〈(aij) · (λ⊗ Ekl), (Λij)〉

= 〈
n∑

s=1

(asl · λ⊗ Ekl), (Λij)〉 =

n∑
s=1

〈asl · λ,Λks〉

= 〈λ,
n∑

s=1

Λks · asl〉, (2.2)

for each λ ∈ A∗, (Λij) ∈Mn(A∗∗), (aij) ∈Mn(A) and 0 ≤ k, l ≤ n. Hence, (2.2) implies that

((Λij) · (aij))kl =

n∑
s=1

Λks · asl, (2.3)
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for each (Λij) ∈Mn(A∗∗), (aij) ∈Mn(A) and 0 ≤ k, l ≤ n. Similarly

((aij) · (Λij))kl =

n∑
s=1

aks · Λsl, (2.4)

for each (Λij) ∈Mn(A∗∗), (aij) ∈Mn(A) and 0 ≤ k, l ≤ n.

By induction on m, for each (aij) ∈Mn(A) and (λij) ∈Mn(A(m)) we have

((λij) · (aij))kl =

n∑
s=1

λsl · ask, ((aij) · (λij))kl =

n∑
s=1

als · λks, (2.5)

when m is odd and in the case where m is even, we have the following actions:

((λij) · (aij))kl =

n∑
s=1

λks · asl, ((aij) · (λij))kl =

n∑
s=1

aks · λsl. (2.6)

Now; we are ready to prove the following Lemma that plays an important role in our main results.

Lemma 2.2. Let A be a unital Banach algebra. Then every derivation from Mn(A) into Mn(A(m)) (A(m)

is the m-th dual of A) is the sum of an inner derivation and a derivation induced by a derivation from A

into A(m).

Proof. Let eA be the identity element of A. Suppose that D : Mn(A) −→ Mn(A(m)) is a continuous

derivation. For each i, j and k, l, define Dkl
ij : A −→ A(m) by Dkl

ij (a) := (D(a ⊗ Eij))kl, for each a ∈ A.

Clearly, Dkl
ij is linear. We prove this Lemma in two cases.

Case 1. Let m be an odd positive number. For every a, b ∈ A and each 1 ≤ t ≤ n, we have

(
[
D(a⊗ Eit)

]
· (b⊗ Etj))kl =

n∑
s=1

(D(a⊗ Eit))sl · (b⊗ Etj)sk

=

n∑
s=1

Dsl
it (a) · bδtsδjk = Dtl

it(a) · bδjk,

and

((a⊗ Eit) ·
[
D(b⊗ Etj)

]
)kl =

n∑
s=1

(a⊗ Eit)ls · (D(b⊗ Etj))ks

=

n∑
s=1

aδilδts ·Dks
tj (b) = aδil ·Dkt

tj (b),

where δ is the Kronecker’s delta. Then

Dkl
ij (ab) = aδil ·Dkt

tj (b) +Dtl
it(a) · bδjk. (2.7)

Thus, Dii
ii is a derivation from A into A(m). From (2.5) and (2.7), the following statements hold

Djl
ij(a) = Dil

ii(eA) · a (i 6= l), Dki
ij (a) = a ·Dkj

jj (eA) (j 6= k), (2.8)
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and again by (2.7) and for 1 ≤ i, j, l ≤ n, we have

Djj
jj (a) = Dij

ji(eA) · a+Dji
ij (a) = Dij

ji(eA) · a+Dli
il(eA) · a+Djl

lj (a)

= Dij
ji(eA) · a+Dli

il(eA) · a+Dll
ll(a) + a ·Djl

lj (eA), (2.9)

and

Dij
ji(a) = a ·Dij

ji(eA) +Djj
jj (a). (2.10)

Hence Dij
ji(eA) = −Dji

ij (eA) for every 1 ≤ i, j ≤ n, and consequently by (2.9), the following relation holds

Dji
ij (a) = Dli

il(eA) · a− a ·Dlj
jl(eA) +Dll

ll(a). (2.11)

Together with (2.9) and (2.10) we have

Dji
ij (a) = Dij

ji(a)−Dij
ji(eA) · a− a ·Dij

ji(eA), (2.12)

for every a ∈ A. By (2.7) and (2.10) the following equality holds

Dij
kl(a) = Dij

ki(eA) · a+Dii
il(a) = Dij

ki(eA) · a+Dji
ij (eA) · a+Dij

jl(a)

= Dij
ki(eA) · a+Dji

ij (eA) · a+ a ·Dij
jl(eA) +Djj

jj (a)

= Dij
ki(eA) · a+ a ·Dij

jl(eA)−Dij
ji(eA) · a− a ·Dij

ji(eA) +Dij
ji(a), (2.13)

for every a ∈ A. Then by (2.8), (2.12) and (2.13), we have

(D(ars))ij =

n∑
k,l=1

Dij
kl(akl) =

n∑
k=1

Dij
ki(eA) · aki +

n∑
l=1

Dii
il(ail)

=

n∑
k=1

Dij
ki(eA) · aki +

n∑
l=1

ajl ·Dij
jl(eA)

−Dij
ji(eA) · aji − aji ·Dij

ji(eA) +Dij
ji(aji)

=

n∑
k=1

Dkj
kk(eA) · aki +

n∑
k=1

ajk ·Dik
kk(eA) +Dji

ij (aji), (2.14)

for every (ars) ∈Mn(A). As well as,

(D(EkkEii))ik =

n∑
k=1

Dsk
kk(eA)δsi +

n∑
k=1

δksD
is
ii (eA) = Dik

kk(eA) +Dik
ii (eA) = 0.

This shows that Dik
kk(eA) = −Dik

ii (eA). Now; for every 1 ≤ k, j ≤ n define Dkj = Dkj
kk. By the above

obtained results we have

(D(ars))ij =

n∑
k=1

Dkj(eA) · aki −
n∑

k=1

ajk ·Dik(eA) +Dji
ij (aji)

= ((Drs(eA)) · (ars)− (ars) · (Drs(eA)))ij +Dji
ij (aji). (2.15)
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Set

D(eA) =


Dl1

1l(eA) . . . 0

... Dl2
2l(eA)

...

0 . . . Dln
nl(eA)


n×n

.

Then by (2.11) and (2.15) we have

D((ars)) =
(
Dij(eA) +D(eA)

)
· (aij)− (aij) ·

(
Dij(eA) +D(eA)

)
+(Dll

ll(aij)),

where (Dll
ll(aij)) is a diagonal matrix.

Case 2. Now; let m be an even positive number. Then by (2.6) we have

(
[
D(a⊗ Eit)

]
· (b⊗ Etj))kl =

n∑
s=1

(D(a⊗ Eit))ks · (b⊗ Etj)sl

=

n∑
s=1

Dks
it (a) · bδtsδjl = Dkt

it (a) · bδjl,

and

((a⊗ Eit) ·
[
D(b⊗ Etj)

]
)kl =

n∑
s=1

(a⊗ Eit)ks · (D(b⊗ Etj))sl

=

n∑
s=1

aδikδts ·Dsl
tj(b) = aδik ·Dtl

tj(b),

for every a, b ∈ A. Then

Dkl
ij (ab) = aδik ·Dtl

tj(b) +Dkt
it (a) · bδjl. (2.16)

Thus, Dii
ii is a derivation from A into A(m). By (2.6) and (2.16), the following equalities hold

Dkj
ij (a) = Dki

ii (eA) · a (k 6= i), Dil
ij(a) = a ·Djl

jj(eA) (j 6= l), (2.17)

and for 1 ≤ i, j, l ≤ n, (2.16) follows

Dii
ii(a) = Dji

ji(a) +Dij
ij (eA) · a = Dij

ij (eA) · a+Djl
jl(eA) · a+Dli

li(a)

= Dij
ij (eA) · a+Djl

jl(eA) · a+Dll
ll(a) + a ·Dli

li(eA), (2.18)

and

Dji
ji(a) = Dii

ii(a) +Dji
ji(eA) · a, (2.19)

for every a ∈ A. Therefore Dij
ij (eA) = −Dji

ji(eA), for every 1 ≤ i, j ≤ n. Then (2.18) implies that

Dji
ji(a) = Djl

jl(eA) · a− a ·Dil
il(eA) +Dll

ll(a). (2.20)

As well as,

Dij
kl(a) = Dij

kj(eA) · a+Djj
il (a) = Dij

kj(eA) · a+ a ·Dij
il (eA) +Dji

ji(a), (2.21)
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for every a ∈ A. By using the relations (2.17) and (2.21), for every (ars) ∈Mn(A), we have

(D(ars))ij =

n∑
k,l=1

Dij
kl(akl) =

n∑
l=1

Dij
kj(eA) · akj +

n∑
k=1

Djj
il (ail)

=

n∑
k=1

Dij
kj(eA) · akj +

n∑
k=1

ail ·Dij
il (eA) +Dji

ji(aji)

=

n∑
k=1

Dik
kk(eA) · akj +

n∑
k=1

aik ·Dkj
kk(eA) +Dji

ji(aji). (2.22)

Since

(D(EkkEii))ik =

n∑
k=1

Dks
kk(eA)δis +

n∑
k=1

δisD
sk
ii (eA) = Dki

kk(eA) +Dik
ii (eA) = 0, (2.23)

Dki
kk(eA) = −Dik

ii (eA). Now; define Dkj = Dkj
kk for every 1 ≤ j, k ≤ n. Then by the above obtained results

we have

(D(ars))ij =

n∑
k=1

Dik(eA) · akj −
n∑

k=1

aik ·Djk(eA) +Dji
ji(aji)

= ((Drs(eA)) · (ars)− (ars) · (Drs(eA)))ij +Dji
ji(aji). (2.24)

Similar to Case 1, set

D(eA) =


D1l

1l(eA) . . . 0

... D2l
2l(eA)

...

0 . . . Dnl
nl(eA)


n×n

.

Now; by applying (2.20) and (2.24) the following holds

D((ars)) =
(
Dij(eA) +D(eA)

)
· (aij)− (aij) ·

(
Dij(eA) +D(eA)

)
+(Dll

ll(aij)).

Hence proof is complete. �

Weak amenability and (2k + 1)-weak amenability of Mn(A) considered in [3, 8]. Now; by above Lemma

we have the following result:

Theorem 2.1. Let A be a unital Banach algebra. Then A is permanently weakly amenable if and only if

Mn(A) is permanently weakly amenable.

Proof. Let Mn(A) be permanently weakly amenable and let D : A −→ A(k) be a continuous derivation,

k ∈ N. Then by Lemma 2.1, D induces a continuous derivation D : Mn(A) −→ Mn(A(k)). Hence, by our

assumption D is inner and Lemma 2.1, implies that D is inner.

Conversely, suppose that A is permanently weakly amenable. Let D : Mn(A) −→ Mn(A(k)) be a contin-

uous module derivation, k ∈ N. Then by Lemma 2.2, it is equal to the sum of an inner derivation and a
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derivation induced by a derivation from A into A(k). Since A is permanently weakly module, D is equal to

sum of two inner derivations. Thereby, Mn(A) is permanently weakly module amenable. �

Example 2.1. Let G be a discrete group. Then by [4], [5] and Theorem 2.1, Mn(`1(G)) is permanently

weakly amenable.

Example 2.2. Let A be a unital C∗-algebra. Then Mn(A) is permanently weakly amenable.

3. Rees semigroup algebras

Let G be a group, and m,n ∈ N; the zero adjoined to G is o. A Rees semigroup has the form S =

M(G,P,m, n); here P = (aij) ∈ Mn,m(G) is the collection of n ×m matrices with components in G. For

x ∈ G, 1 ≤ i ≤ m and 1 ≤ j ≤ n, let (x)ij be the element of Mm,n(Go) with x in the (i, j)-th place and o

elsewhere. As a set, S consists of the collection of all these matrices (x)ij . Multiplication in S is given by

the formula

(x)ij(y)kl = (xajky)il (x, y ∈ G, 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n).

It is known that S is a semigroup. Now; consider the semigroup Mo(G,P,m, n), where the elements

of this semigroup are those of M(G,P,m, n), together with the element o, identified with the matrix that

has o in each place (so that o is the zero of Mo(G,P,m, n)), and the components of P are belong to Go.

The matrix P is called the sandwich matrix in each case. The semigroup Mo(G,P,m, n) is a Rees matrix

semigroup with a zero over G. We writeMo(G,P, n) forMo(G,P, n, n) in the case where m = n. As well as,

P is called regular if every row and column contains at least one entry in G. The semigroupMo(G,P,m, n)

is regular as a semigroup if and only if the sandwich matrix P is regular.

According to [6] we have the following equalities as Banach spaces

`1(S) =Mo(`1(G), P,m, n) =M(`1(G), P,m, n)⊕ Cδ0.

Bowling and Duncan proved that for any Rees semigroup S, `1(S) is weakly amenable [3, Theorem 2.5]

and after them Mewomo in [8], proved that `1(S) is (2k + 1)-weakly amenable where S =Mo(G,P, n), for

k, n ∈ N. Now; we are completing them works as follows:

Theorem 3.1. Let S =Mo(G,P, n), n ∈ N. Then `1(S) is permanently weakly amenable.

Proof. It is sufficient we show that `1(S) is (2k)-weakly amenable, for k ∈ N. For any locally compact group

G, `1(G) is permanently weakly amenable ( [4, pp. 3179] and [5, Theorem 4.1]). Theorem 2.1 implies that

Mn(`1(G)) is (2k)-weakly amenable. Since Mn(`1(G)) = `1(S), `1(S) is (2k)-weakly amenable. �

Let S be a semigroup. The weak amenability of `1(S) is considered by Blackmore in [2]. He proved that

`1(S) to be weakly amenable whenever S is completely regular, in the sense that, for each s ∈ S, there exists
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t ∈ S with sts = s and st = ts. Suppose that S has a zero o. Then S is o-simple if S[2] 6= {o} and the only

ideals in S are {o} and S. The semigroup S is called completely o-simple if it is o-simple and contains a

primitive idempotent.

Corollary 3.1. Let S be an infinite, completely o-simple semigroup with finitely many idempotents. Then

`1(S) is permanently weakly amenable.

Proof. By Corollary 4.2 of [8], it suffices to show that `1(S) is (2k)-weakly amenable, for k ∈ N. The

semigroup S is isomorphic as a semigroup to a regular Rees matrix semigroup with a zero Mo(G,P, n),

n ∈ N [6, Theorem 3.13]. Now; apply Theorem 3.1. �
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