
International Journal of Analysis and Applications
ISSN 2291-8639
Volume 15, Number 2 (2017), 222-228
DOI: 10.28924/2291-8639-15-2017-222

FUNCTIONAL SEQUENTIAL AND TRIGONOMETRIC SUMMABILITY OF

REAL AND COMPLEX FUNCTIONS

M.H. HOOSHMAND∗

Abstract. Limit summability of functions was introduced as a new approach to extensions of the

summation of real and complex functions, and also evaluating antidifferences. Also, limit summand

functions generalize the (logarithm of) Gamma-type functions satisfying the functional equation
F (x + 1) = f(x)F (x). Recently, another approach to the topic entitled analytic summability of

functions, has been introduced and studied by the author. Since some functions are neither limit

nor analytic summable, several types of summabilities are needed for improving the problem. Here,
I introduce and study functional sequential summability of real and complex functions for obtaining

multiple approaches to them. We not only show that the analytic summability is a type of functional

sequential summability but also obtain trigonometric summability (for functions with a fourier series)
as another its type. Hence, we arrive at a class of real and complex function spaces with various

properties. Thereafter, we prove several properties of functional sequential, and also many criteria for
trigonometric summability. Finally, we state many problems and future directions for the researches.

1. Introduction

In the theory of indefinite sum, antidifference and finite calculus, obtaining some special solutions
of the difference functional equation

∇F (x) := F (x)− F (x− 1) = f(x) ; x ∈ E, (1.1)

is very important, where E is the domain of a real or complex function f or a subset of C (analogously
for 4F (x) := F (x+ 1)− F (x) = f(x), where 4 is the forward difference operator, e.g., see [1]).
But the author discovered an approach to the solution of the equation (on 2001) when he tried to
generalize the Bohr-Mollerup theorem and Gamma-type functions (see [2,3,5]). The following are its
summary.
Let f be a real or complex function with domain Df ⊇ N∗ = {1, 2, 3, · · · }. Put

Σf = {x|x+ N∗ ⊆ Df},
and then for any x ∈ Σf and n ∈ N∗ set

Rn(f, x) = Rn(x) := f(n)− f(x+ n),

fσn(x) = fσ`,n(x) := xf(n) +

n∑
k=1

Rk(x).

The function f is called limit summable at x0 ∈ Σf if the functional sequence {fσn(x)} is convergent
at x = x0. The function f is called limit summable on the set S ⊆ Σf if it is limit summable at all
the points of S.
Now, put

fσ(x) = fσ`(x) = lim
n→∞

fσn(x) , R(x) = R(f, x) = lim
n→∞

Rn(f, x).

Therefore Dfσ = {x ∈ Σf |f is limit summable at x}, and fσ` = fσ is the same limit function of fσn
with domain Dfσ .
The function f is called limit summable if it is summable on Σf , R(1) = 0 and Df ⊆ Df − 1. In this
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case the function fσ is referred to as the limit summand function of f . If f is limit summable, then
Dfσ = Df − 1 and

fσ(x) = f(x) + fσ(x− 1) ; ∀x ∈ Df .

Therefore, if f is limit summable then its limit summand function fσ satisfies (1.1).
The paper [2] states a framework for studying the limit summable functions including basic conditions,
many criteria for limit summability, uniqueness conditions for its summand function and so on.

Example 1.1. If |a| < 1, then the complex function f(z) = az is absolutely limit summable and
fσ(z) = a

a−1 (az − 1). Also, if 0 < b 6= 1 and 0 < a < 1, then the real function g(x) = cax + logb x is
limit summable and

gσ(x) =
ca

a− 1
(ax − 1) + logb Γ(x+ 1).

One can see the topic of limit summability in [2,3].

Since some of the important special functions are not limit summable, recently, another type of
summability entitled ”analytic summability” has been introduced in [4]. We obtain it again in this
paper (as a type of functional sequential summability).

2. Functional sequential summability

Let δ = {δn(x)}∞n=0 be a linearly independent functional sequence of complex (or real) functions on
E ⊆ C. Put

SE(δ) := Span(δ) = Span(δ0(x), δ1(x), δ2(x), · · · ).
Similarly, if δ = {δn(x)}∞n=0 and β = {βn(x)}∞n=0 are two functional sequences on E such that δ ∪ β is
linearly independent, then we may set

SE(δ, β) := Span(δ ∪ β),

(SE(δ1, · · · , δk) can be defined analogously).
Now, let δ = {δn(x)}∞n=0 be as mentioned and ∆ = {∆n(x)}∞n=0 a functional sequence satisfying

∆n(x)−∆n(x− 1) = δn(x) ; x ∈ E , n ∈ N0 = {0, 1, 2, · · · }. (2.1)

Since there are infinitely many such functional sequence ∆ (because (1.1) has the general solution
F (x) = Fp(x) + ϕ(x) where Fp is an its solution and ϕ any 1-periodic function), we fix one of them.
The equation implies each ∆n(x) is defined on E ∪ (E − 1).
Also, since ∆ is linearly independent (see proof of Theorem 2.2), we may put

SσE(δ; ∆) = SσE(δ) := Span(∆) = Span(∆0(x),∆1(x),∆2(x), · · · ),
and so SσE(δ) = SE(∆). Note that we use the notation SσE(δ) when ∆ is well-known in the topic and
there is no any risk of confusion.

Example 2.1. If δn(z) = zn, then δn(z) and

∆n(z) =
Bn+1(z + 1)− bn+1

n+ 1

satisfies the conditions, where Bn(z) is the Bernoulli polynomial and bn = Bn(1) (see [4]). Here SσE(δ)
is equal to the space of all polynomials with zero constant.

Note. In continuation, we consider δ, E, ∆, SE(δ) and SσE(δ) with the mentioned conditions.

Lemma 2.1. We have f ∈ SE(δ) if and only if there exists a unique F ∈ SσE(δ) satisfying the difference
functional equation (1.1).

(Notation. Hence we shall denote F by fσδ , or simply fσ when there is no any risk of confusion.)

Proof. If f ∈ SE(δ) then there exist δn1
, · · · , δnr ∈ δ and coefficients cn1

, · · · , cnr such that f =∑r
1 cnkδnk . Putting F =

∑r
1 cnk∆nk we have F ∈ SσE(δ) and F satisfies the equation. Also, if

G ∈ SσE(δ) satisfies (2.1) then G =
∑t

1 dnj∆nj , for some coefficients dm1
, · · · , dmt , and

r∑
k=1

cnkδnk = F (x)− F (x− 1) = f(x) = G(x)−G(x− 1) =

t∑
j=1

dmjδnj (x) ; x ∈ E.
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Hence, independence of δ implies t = r and {cn1 , · · · , cnr} = {dm1 , · · · , dmr}. Therefore,

G =

r∑
1

cnk∆nk = F.

The converse is obvious (by (2.1)). �

Definition 2.1. Let f(x) =
∑∞

0 cnδn(x) be convergent on E. We say the function f is (δ,∆)-
summable (or simply δ-summable) if the series

∑∞
0 cn∆n(x) is convergent on E (the terms uniformly

and absolutely δ-summable are defined analogously). Moreover, if it is the case, then we may put

fσδ(x) = fσ(x) :=

∞∑
0

cn∆n(x),

and call it δ-summand function of f on E (this symbol agrees with the above notation , i.e., if f ∈ SE(δ)
then the function fσ that is gotten from Lemma 2.2 and this definition are the same).

Now, we set

SE(δ) := {f : E → C|f is δ-summable}

SσE(δ) := {fσδ |f ∈ SE(δ)}

It is obvious that SE(δ) ⊆ SE(δ) ⊆ the space of all functions with a Fourier series on E, and SσE(δ) ⊆
SσE(δ).

Theorem 2.1. The sets SE(δ) and SσE(δ) are functions spaces and the map

σ = σδ : SE(δ)→ SσE(δ),

defined by σ(f) := fσ, is a surjective linear map with SσE(δ) ⊆ σ(SE(δ)). Also, we have
(a) fσ satisfies the difference functional equation (1.1).

(b) The surjective linear map σ is bijective (and so SE(δ) ∼= S
σ

E(δ)) if and only if δ = {δn(x)}∞n=0

is infinitely linearly independent (i.e.,
∑∞

0 cnδn(x) = 0 on E implies cn = 0, for all n ∈ N0, e.g.,
δn(x) = xn or δn(x) = einx). Therefore, if this is the case then SσE(δ) = σ(SE(δ)).

Proof. It is obvious that SE(δ) and SσE(δ) are vector spaces and σ is a surjective linear map from

SE(δ) to SσE(δ). Then, Lemma 2.2 implies SσE(δ) ⊆ σ(SE(δ)). Now, note that linearly independence
(resp. infinitely linearly independence) of δ on E implies linearly independence (resp. infinitely linearly
independence) of ∆ on E ∪ (E − 1). Because if

∑
cnj∆nj (t) = 0 for all t ∈ E ∪ (E − 1) then∑

cnj∆nj (x) = 0 ,
∑

cnj∆nj (x− 1) = 0 ; ∀x ∈ E.

Therefore ∑
cnj (∆nj (x)−∆nj (x− 1)) =

∑
cnjδnj (x) = 0 ; ∀x ∈ E,

and so all cnj are zero.

Now, if f, g ∈ SE(δ) then f(x) =
∑∞

0 cnδn(x), g(x) =
∑∞

0 dnδn(x), for all x ∈ E, and fσ(x) =∑∞
0 cn∆n(x), gσ(x) =

∑∞
0 dn∆n(x), for all x ∈ E ∪ (E − 1). So

fσ(x)− fσ(x− 1) =

∞∑
0

cn(∆n(x)−∆n(x− 1)) =

∞∑
0

cnδn(x) = f(x) ; ∀x ∈ E.

Also, if σ(f) = σ(g), then
∑∞

0 (cn − dn)∆n(x) = 0 on E ∪ (E − 1) and so cn − dn = 0 (because δ is
infinitely linearly independent), which means σ is injective. Hence the proof is complete. �
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2.1. Analytic summability. Let δn(z) = zn (z ∈ C) and consider all terms of Example 2.1 on
an open domain D = E ⊆ C. Then SD(δ) is a subspace of all analytic functions on D. Also,
f(z) =

∑∞
0 cnz

n ∈ SD(δ) is δ-summable if and only if the series

∞∑
0

cn
Bn+1(z + 1)− bn+1

n+ 1

is convergent on D, and this is the same ”Analytic summability of f” from [4]. Therefore (according
to [4]) we denote it by fσA instead of fσδ and call this f ”Analytic summable”, and also denote the

space by SD(A). Theorem 2.4 implies σA is a surjective linear map from SD(A) to SσD(A), and so

SD(A) ∼= S
σ

D(A) that is a new result about analytic summability. One can see many criteria, results
and open problems about this type of functional sequential summability in it.

Example 2.2. The exp function is analytic summable in C and

expσ(z) =

∞∑
n=0

1

n!
σ(zn) = lim

N→∞

N∑
n=0

n+1∑
k=1

1

n!

n!

k!(n+ 1− k)!
bn+1−kz

k

= lim
N→∞

N+1∑
n=1

N∑
k=n−1

1

n!

bk+1−n

(k + 1− n)!
zn =

∞∑
n=1

1

n!
(

∞∑
j=0

bj
j!

)zn

=
e

e− 1

∞∑
n=1

zn

n!
=

e

e− 1
(ez − 1).

So expσA
(z) = e

e−1 (ez − 1) (details can bee seen in [4]).

3. Trigonometric summability

Now, we can introduce another important type of functional sequential summability in two ways:
(a) Consider γ = {einx}∞n=−∞ (x ∈ R, n ∈ Z). Here, the indices set N0 is replaced by Z. Therefore, in

the definition of functional sequential summability, f has the Fourier series form f(x) =
∑∞
−∞ cne

inx.

Putting Γn(x) = ein

ein−1 (einx − 1) for n 6= 0 and Γ0(x) = c0x , one see that Γn satisfies the conditions

(for all real numbers x). Hence, f is γ-summable on E if and only if the following series is convergent
∞∑
−∞

cnΓn(x) ; x ∈ E. (3.1)

(b) Put δ = {cos(nx)}∞n=0 and β = {sin(nx)}∞n=0 (x ∈ R). The sequence δ ∪ β is infinitely linearly
independent. For every positive integer n, put

∆n(x) =
cos(nx) + cos(n)− cos(nx+ n)− 1

2(1− cos(n))
,

Bn(x) =
sin(nx) + sin(n)− sin(nx+ n)

2(1− cos(n))
,

and also ∆0(x) = 1, B0(x) = 0.
It is easy to see that they satisfy the conditions.
It is obvious that f is δ, β-summable on E (i.e., f ∈ SE(δ, β)) if and only if it has the Fourier series of
the form f(x) = a0

2 +
∑∞
n=1 an cos(nx) + bn sin(nx) and the following series is convergent

∞∑
n=0

an∆n(x) + bnBn(x). (3.2)

Now, let

f(x) =

∞∑
−∞

cne
inx =

a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx).

It is easy to see that the series (3.1) is convergent if and only if (3.2) is convergent, and so we arrive
at the following definition.
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Definition 3.1. Let E, f , γ and δ, β be as the above. We call f trigonometric summable (on E) if
the series (3.2) (or equivalently (3.1)) is convergent. Also, we put

fσtrg (x) = fσ(x) :=
a0
2
x+

∞∑
n=1

an∆n(x) + bnBn(x) = c0x+

∞∑
−∞

cnΓn(x) ; x ∈ E,

and call it trigonometric summand of f (on E).

Now, we prove many equivalent conditions for trigonometric summability and also several criteria
for trigonometric summability of functions with a Fourier series.

Theorem 3.1. (Some criteria for trigonometric summability of real and complex functions) Let

f(x) =
a0
2

+

∞∑
n=1

an cos(nx) + bn sin(nx) =

∞∑
−∞

cne
inx

is defined on E ⊆ R. For n 6= 0 put

An = an − cot(
n

2
)bn , Bn = bn + cot(

n

2
)an , Cn = cn − i cot(

n

2
)cn.

Also, set A0 = a0, B0 = C0 = 0. Then
(a) The following statements are equivalent:
- f is trigonometric summable on E;
- The series

∑∞
n=1An cos(nx) +Bn sin(nx)−An is convergent (to 2fσ(x)− a0x) on E ;

- The series
∑∞
−∞ Cne

inx − Cn is convergent (to fσ(x)− c0x) on E;

- The series
∑∞
n=1 csc(n2 ) sin(nx2 )(an cos(nx+1

2 ) + bn sin(nx+1
2 )) is convergent (to fσ(x)− 1

2a0x).
(b) If the Fourier series

∑∞
n=1Bn cos(nx2 ) − An sin(nx2 ) (i.e., the series is gotten from the Fourier

series of f , replacing an, bn and x by Bn, An and −x2 respectively) is absolutely convergent, then f is
absolutely trigonometric summable and

|fσ(x)− 1

2
a0x| ≤

∞∑
n=1

|Bn cos(n
x

2
)−An sin(n

x

2
)|.

(c) If the Fourier series
∑∞
n=1

an
sin(n2 ) cos(nx+1

2 ) + bn
sin(n2 ) sin(nx+1

2 ) (i.e., the series is gotten from the

Fourier series of f , replacing an, bn and x by an
sin(n2 ) , bn

sin(n2 ) and x+1
2 respectively) is absolutely con-

vergent, then f is absolutely trigonometric summable and

|fσ(x)− 1

2
a0x| ≤

∞∑
n=1

| an
sin(n2 )

cos(n
x+ 1

2
) +

bn
sin(n2 )

sin(n
x+ 1

2
)|.

Proof. By using the identity sin(n)
1−cos(n) = cot(n2 ), we obtain (for all n ≥ 1)

2∆n(x) = cos(nx)− 1 + cot(
n

2
) sin(nx) = 2 sin(

nx

2
){cot(

n

2
) cos(

nx

2
)− sin(

nx

2
)}

= csc(
n

2
) sin(nx+

n

2
)− 1 = 2 csc(

n

2
) sin(

nx

2
) cos(

nx+ n

2
),

2Bn(x) = sin(nx) + cot(
n

2
)(1− cos(nx)) = 2 sin(

nx

2
){cos(

nx

2
) + cot(

n

2
) sin(

nx

2
)}

= cot(
n

2
)− csc(

n

2
) cos(nx+

n

2
) = 2 csc(

n

2
) sin(

nx

2
) sin(

nx+ n

2
),

2Γn(x) = (1− i cot(
n

2
))(einx − 1).

Therefore,
∞∑
n=1

an∆n(x) + bnBn(x) =

∞∑
n=1

An cos(nx) +Bn sin(nx)−An

=

∞∑
−∞

Cn(einx − 1) =

∞∑
−∞,n6=0

cnΓn(x),
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and
∞∑
n=1

An(cos(nx)− 1) +Bn sin(nx) = 2

∞∑
n=1

sin(n
x

2
){Bn cos(n

x

2
)−An sin(n

x

2
)}

=

∞∑
n=1

sin(
nx

2
)(

an
sin(n2 )

cos(n
x+ 1

2
) +

bn
sin(n2 )

sin(n
x+ 1

2
)).

Now one can obtain the results, directly. �

The above theorem together with the identity A2
n + B2

n = (a2n + b2n) csc2(n2 ) imply the following
corollary.

Corollary 3.1. Let an and bn are two sequences of real or complex numbers.

(a) If one of the series
∑∞
n=1

|an|+|bn|
| sin(n2 )| ,

∑∞
n=1

√
a2n+b

2
n

| sin(n2 )| is convergent, then the function f(x) := a0
2 +∑∞

n=1 an cos(nx) + bn sin(nx) (is defined in R) is absolutely and uniformly trigonometric summable on
whole R and

fσ(x) = 1
2a0x+ 1

2

∑∞
n=1An cos(nx) +Bn sin(nx)−An

= 1
2a0x+

∑∞
n=1 csc(n2 ) sin(nx2 )(an cos(nx+1

2 ) + bn sin(nx+1
2 ))

= 1
2a0x+

∑∞
n=1 sin(nx2 )(Bn cos(nx2 )−An sin(nx2 ))

= c0x+
∑∞
−∞ Cne

inx − Cn

and

f ′σ(x) =

∞∑
n=1

nBn cos(nx)− nAn sin(nx).

Hence, f ′σ(x) has a Fourier series in R.

Note. If
∑∞
n=1 an − cot(n2 )bn (=

∑∞
n=1An) is convergent then trigonometric summability of the

function f(x) = a0
2 +

∑∞
n=1 an cos(nx) + bn sin(nx) is equivalent to convergence of the Fourier series∑∞

n=1An cos(nx) +Bn sin(nx) , and so fσ(x)− 1
2a0x (if exists) has a Fourier series.

Example 3.1. Consider the real function

f(x) := 1 +

∞∑
n=1

sin(n2 )

n2
cos(nx) +

sin(n2 )

n2
sin(nx)

It is defined on whole R and by using the above results, f is absolutely and uniformly trigonometric
summable and

fσ(x) = x− π2

12
+

1

2

∞∑
n=1

(
csc(n2 )− cos(n2 )

n2
) cos(nx) + (

cos(n2 ) + csc(n2 )

n2
) sin(nx)

= x+

∞∑
n=1

csc2(n2 )

n2
sin(

nx

2
)(cos(n

x+ 1

2
) + sin(n

x+ 1

2
))

= x+

∞∑
−∞

Cne
inx − Cn.

Also

f ′σ(x) = 1 +

∞∑
n=1

(
cos(n2 ) + csc(n2 )

n
) cos(nx) + (

cos(n2 )− csc(n2 )

n
) sin(nx) ; x ∈ R,

and

|fσ(x)− x| ≤
∞∑
n=1

2

n2
=
π2

3
⇒ |fσ(x)| ≤ π2

3
+ |x| ; x ∈ R.
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At last, there are some important questions for future studies of trigonometric, analytic and limit
summability of functions (similar to the open problems of [4]).

Open problem 1. Let f be an analytic function defined on open domain D = E . If f is both
analytic and trigonometric summable, then is it true that fσtrg = fσA on D?
Open problem 2. Let f be a function with a Fourier series on E with the property N∗ ⊆ E ⊆ Σf .
If f is both limit and trigonometric summable, then is it true that fσl = fσtrg on E?
Open problem 3. If f is trigonometric summable on E = Df , then under what conditions is it a
unique solution of the equation (1.1) with the initial property fσ(0) = 0 ? (compare to the uniqueness
Theorem 3.1, Corollary 3.4 of [2] and Theorem A, Corollary 3.4 of [3]).

Finally, as another future direction for the researches, one may study and discover other functional
sequential summability (by taking some appropriate functional sequences δ = {δn(x)}∞n=0 ), and also
intersection of the spaces of limit, trigonometric and analytic summable functions. Note that every
constant function f(x) = c lies in the intersection and σ`(c) = σA(c) = σrg(c) = cx.
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