ON THE LIMITED *p*-SCHUR PROPERTY OF SOME OPERATOR SPACES

M.B. DEHGHANI¹, S.M. MOSHTAGHIOUN^{1,*} AND M. DEHGHANI²

¹Department of Mathematics, yazd University, P. O. Box 89195-741, Yazd, Iran

²Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P. O. Box 87317-53153, Kashan, Iran

* Corresponding author: moshtagh@yazd.ac.ir

ABSTRACT. We introduce and study the notion of limited *p*-Schur property $(1 \le p \le \infty)$ of Banach spaces. Also, we establish some necessary and sufficient conditions under which some operator spaces have the limited *p*-Schur property. In particular, we prove that if X and Y are two Banach spaces such that X contains no copy of ℓ_1 and Y has the limited *p*-Schur property, then K(X, Y) (the space of all compact operators from X into Y) has the limited *p*-Schur property.

1. INTRODUCTION

A non-empty subset K of a Banach space X is said to be limited (resp Dunford-Pettis (DP)), if for every $weak^*$ -null (resp. weakly null) sequence (x_n^*) in the dual space X^* of X converges uniformly on K, that is,

$$\lim_{n \to \infty} \sup_{x \in K} |\langle x, x_n^* \rangle| = 0$$

where $\langle x, x^* \rangle$ denotes the duality between $x \in X$ and $x^* \in X^*$. In particular, a sequence $(x_n) \subset X$ is limited if and only if $\langle x_n, x_n^* \rangle \to 0$, for all *weak**-null sequences (x_n^*) in X^* .

Received 11th September, 2017; accepted 27th November, 2017; published 3rd January, 2018.

²⁰¹⁰ Mathematics Subject Classification. 47L05; 46B25.

Key words and phrases. Schur property; p-Schur property; limited p-Schur property; limited p-converging; weakly p-compact. ©2018 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

A subset K of a Banach space X is a limited set if and only if for any Banach space Y, every pointwise convergent sequence $(T_n) \subset L(X, Y)$ converges uniformly on K, where L(X, Y) denoted the space of all bounded operators from X into Y [17, Corollary 1.1.2].

It is easily seen that every relatively compact subset of a Banach space is limited. But the converse is not true, in general. If every limited subset of Banach space X is relatively compact, then X has the Gelfand-Phillips (*GP*) property. For example, the classical Banach space c_0 and ℓ_1 have the *GP* property and every reflexive space and dual space containing no copy of ℓ_1 have the same property.

A sequence (x_n) in Banach space X is called weakly p-summable with $1 \le p < \infty$, if for each $x^* \in X^*$, the sequence $(\langle x_n, x^* \rangle) \in \ell_p$ and a sequence (x_n) in X is said to be weakly p-convergent to $x \in X$ if the sequence $(x_n - x) \in \ell_p^{weak}(X)$, where $\ell_p^{weak}(X)$ denoted the space of all weakly p-summable sequence in X. Also a bounded set K in a Banach space is said to be relatively weakly p-compact, $1 \le p \le \infty$ if every sequence in K has a weakly p-convergent subsequence. If the limit point of each weakly p-convergent subsequence is in K, then we call K weakly p-compact set. Also, a Banach space X is weakly p-compact if the closed unit ball B_X of X is a weakly p-compact set. An operator $T \in L(X,Y)$ is said to be p-converging if it transfers weakly p-summable sequence into norm null sequences. The class of all p-converging operators from X into Y is denoted by $C_p(X,Y)$.

An operator $T \in L(X, Y)$ is limited *p*-converging if it transfers limited and weakly *p*-summable sequences into norm null sequences. we denote the space of all limited *p*-converging operators from X into Y by $C_{lp}(X, Y)$ [7].

A Banach space X has the Schur property if every weakly null sequence in X converges in norm. The simplest Banach space with the Schur property is ℓ_1 . Also a banach space X has the p-Schur property $(1 \le p \le \infty)$ if every weakly p-summable subset of X is compact. In other words, if $1 \le p < \infty$, X has the p-Schur property if and only if every sequence $(x_n) \in \ell_p^{weak}(X)$ is a norm null sequence, for example, ℓ_p has the 1-Schur property. Moreover, X has the ∞ -Schur property if and only if every sequence in $c_0^{weak}(X)$ in norm null where $c_0^{weak}(X)$ containing all weakly null sequences in X. So ∞ -Schur property coincides with the Schur property. Also one note that every Schur space has the p-Schur property [6].

The reader is referred to [2,11,14–16] for more information about these concepts.

In this note, we study the limited *p*-Schur property of some operator spaces, specially, the space of compact operators. We prove that if X and Y are two Banach spaces such that X contains no copy of ℓ_1 and Y has the limited *p*-Schur property, then K(X,Y) has the limited *p*-Schur property. Finally, we conclude that if $(X_{\alpha})_{\alpha \in I}$ are Banach spaces and $X = (\bigoplus_{\alpha \in I} X_{\alpha})_1$ their ℓ_1 -sum, then the space X has the *p*-Schur property if and only if each factor X_{α} has the same property.

2. Main results

Recall that the Banach space X has the limited p-Schur property if every limited weakly p-compact subset of X is relatively compact. More precisely, the Banach space X has the limited p-Schur property if and only if every limited sequence $(x_n) \in \ell_p^{weak}(X)$ is norm null. It is easy to see that every Banach space with the p-Schur property and every Banach space with GP property is limited p-Schur [7]. Moreover, a Banach space X has the GP property if and only if every limited weakly null sequence in X is norm null [2, Proposition 6.8]. Therefore the limited Schur (i.e., limited ∞ -Schur) property is equivalent to the GP property. Also, if a Banach space X have the limited p-Schur and DP_p^* properties, then it has the p-Schur property. Indeed, a Banach space X is said to have the DP^* -property of order $p(DP_p^*)$ if all weakly p-compact sets in X are limited [10].

Recall that if M is a closed subspace of L(X, Y), then for arbitrary elements $x \in X$ and $y^* \in Y^*$, the evaluation operators $\phi_x : M \to Y$ and $\psi_{y^*} : M \to X^*$ on M are defined by

$$\phi_x(T) = Tx, \quad \psi_{y^*}(T) = T^*y^*, \quad (T \in M).$$

Theorem 2.1. Let X and Y be two Banach spaces such that X is weakly p-compact and Y has the p-Schur property. Then L(X,Y) has the limited p-Schur property.

Proof. Suppose that (T_n) is a limited weakly *p*-summable sequence in L(X, Y). We have to prove that (T_n) is norm null. We first observe that for every $x \in X$ the evaluation operator ϕ_x from L(X, Y) to Y maps the sequence (T_n) to the sequence (T_nx) . So the latter is also a limited weakly *p*-summable sequence in Y. Therefore $||T_nx|| \to 0$, since Y has the limited *p*-Schur property.

Now, suppose that (T_n) is not norm null. Then there is a sequence (x_n) in X and $\varepsilon > 0$ such that

$$||T_n x_n|| > 2\varepsilon$$

for all $n \in \mathbb{N}$. Since X is weakly p-compact we may assume that there exists $x \in X$ such that $(x_n - x) \in \ell_p^{weak}(X)$. As $||T_n x|| \to 0$, we may finally suppose that $f_n = ||T_n x_n - T_n x|| > \varepsilon$ for all $n \in \mathbb{N}$. Now, choose functional y_n^* in B_{Y^*} so that $\langle T_n x_n - T_n x, y_n^* \rangle = f_n$, and define $\Lambda_n \in L(X, Y)^*$ by

$$\langle T, \Lambda_n \rangle = \langle Tx_n - Tx, y_n^* \rangle,$$

for all $T \in L(X, Y)$. Since $|\langle T, \Lambda_n \rangle| \leq ||Tx_n - Tx|| \to 0$, because $(x_n - x) \in \ell_p^{weak}(X)$, we see that (Λ_n) is a weak*-null sequence. But $\langle T_n, \Lambda_n \rangle = f_n > \varepsilon > 0$ for all $n \in \mathbb{N}$. Contradicting the assumption that (T_n) is limited.

Corollary 2.1. Let X and Y be two Banach spaces. If X is reflexive and Y has the Schur property, then L(X,Y) has the GP property.

Proof. Let $p = \infty$ in Theorem 2.1.

Corollary 2.2. Let X and Y be two Banach spaces. If X is a weakly p-compact and Y^{*} has the p-Schur property, then $(X \widehat{\otimes}_{\pi} Y)^*$ has the limited p-Schur property.

Proof. It follows easily from the fact that $L(X, Y^*) = (X \widehat{\otimes}_{\pi} Y)^*$.

Corollary 2.3. Let X and Y be two Banach spaces. If X^* has the p-Schur property and Y^* is weakly p-compact, then L(X,Y) has the limited p-Schur property.

Proof. The mapping $T \mapsto T^*$ maps L(X, Y) onto a closed subspace of $L(Y^*, X^*)$, which has the limited *p*-Schur property by virtue of Theorem 2.1.

In the following theorem we give a necessary and sufficient condition for which a Banach space has the limited *p*-Schur property.

Theorem 2.2. The Banach space X has the limited p-Schur property if and only if $L(X,Y) = C_{lp}(X,Y)$, for every Banach space Y.

Proof. Suppose that X has the limited p-Schur property. If $T \in L(X, Y)$ and $(x_n) \in \ell_p^{weak}(X)$ is a limited sequence, then $||x_n|| \to 0$. Hence $||Tx_n|| \to 0$.

Conversely, If Y = X, then the identity operator on X is belongs to C_{lp} . Therefore X has the limited *p*-Scuhr property.

Similarly, we can prove that the Banach space X has the limited p-Schur property if and only if $L(Y, X) = C_{lp}(Y, X)$ for every Banach space Y.

Theorem 2.3. If X^* has the limited p-Schur property and Y has the Schur property, then L(X,Y) has the limited p-Schur property.

Proof. Since X^* has the limited *p*-Schur property, Theorem 2.2 implies that each $\psi_{y^*} : L(X,Y) \to X^*$ is limited *p*-converging. It follows that L(X,Y) has the limited *p*-Schur property. In fact, if L(X,Y) does not have the limited *p*-Schur property, then there exists a limited weakly *p*-summable sequence $(T_n) \subseteq L(X,Y)$ such that $||T_n|| > \varepsilon$ for all $n \in \mathbb{N}$ and some $\varepsilon > 0$. Choose a sequence $x_n \in B_X$ such that $||T_n x_n|| > \varepsilon$. On the other hand, ψ_{y^*} is limited *p*-converging, for all $y^* \in Y^*$. Therefore $||T_n^*y^*|| = ||\psi_{y^*}T_n|| \to 0$. It follows that

$$|\langle T_n x_n, y^* \rangle| \le ||T_n^* y^*|| ||x_n|| \to 0.$$

Hence $(T_n x_n)$ is weakly null and so is norm null. This contradiction shows that L(X, Y) has the limited *p*-Schur property.

Example 2.1. If X^* has the limited p-Schur property, then $\ell_1^{weak}(X^*)$ has the same property. Indeed, if one denote $\ell_1^{weak^*}(X^*)$ as the space of all sequences $(x_n^*) \subset X^*$ such that $(\langle x, x_n^* \rangle) \in \ell_1$, for all $x \in X$, then by [5, P. 427], $\ell_1^{weak}(X^*) = \ell_1^{weak^*}(X^*)$. Also, $\ell_1^{weak^*}(X^*)$ is isometrically isomorphism to $L(X, \ell_1)$; see e.g., [8, Proposition 19.4.3]. Since ℓ_1 has the Schur property, it follows that $L(X, \ell_1) = \ell_1^{weak}(X^*)$ has the limited p-Schur property.

If we take $p = \infty$ in Theorem 2.3 we obtain the following result.

Corollary 2.4. If X^* has the GP property and Y has the Schur property, then L(X,Y) has the GP property.

Theorem 2.4. Let X and Y be Banach spaces. If X has the limited p-Schur property and Y has the GP property, then the space $K_{w^*}(X^*, Y)$ of all compact weak*-weak continuous operators from X^* into Y has the limited p-Schur property.

Proof. Let (T_n) be a limited weakly *p*-summable sequence in $K_{w^*}(X^*, Y)$. We have to show that $||T_n|| \to 0$. We can choose a sequence (x_n^*) in X^* such that $||x_n^*|| = 1$ and $||T_n x_n^*|| \ge \frac{1}{2} ||T_n||$ for all $n \in \mathbb{N}$. Now, we prove that $(T_n x_n^*)$ is weakly null limited sequence in *Y*. Fix any $y^* \in Y^*$. Then for all $T \in K_{w^*}(X^*, Y)$, the operator $y^* \circ T$ is a weak^{*} continuous linear functional on X^* so that $y^* \circ T \in X \subset X^{**}$. Thus the operator $T \mapsto y^* \circ T$ from $K_{w^*}(X^*, Y)$ into *X* shows that the sequence $(y^* \circ T_n)$ is limited weakly *p*-summable in *X*. So $||y^* \circ T_n|| \to 0$ and for each $y^* \in Y^*$ we have

$$\langle y^*, T_n x_n^* \rangle = \langle y^* \circ T_n, x_n^* \rangle \to 0$$

and so $(T_n x_n^*)$ is weakly null.

Now, assume that (y_n^*) is a weak*-null sequence in Y^* and define a sequence (Λ_n) in $K_{w^*}(X^*,Y)^*$ by $\langle T, \Lambda_n \rangle = \langle Tx_n^*, y_n^* \rangle$. If $T \in K_{w^*}(X^*,Y)$, then $T(B_{X^*})$ is relatively compact and so it is a limited set in Y. It follows that

$$\lim_{n \to \infty} \sup_{x^* \in B_{X^*}} \langle Tx^*, y_n^* \rangle = 0.$$

Therefore $||y_n^* \circ T|| \to 0$. Thus $\langle y_n^* \circ T, x_n^* \rangle \to 0$ and so (Λ_n) is weak*-null in $K_{w^*}(X^*, Y)^*$. Since (T_n) is limited, we have

$$\langle T_n x_n^*, y_n^* \rangle = \langle T_n, \Lambda_n \rangle \to 0$$

and so $(T_n x_n^*)$ is limited. Finally, the *GP* property of *Y* yields that $||T_n x_n^*|| \to 0$ which implies $||T_n|| \to 0$. \Box

Note that the map $T \mapsto T^{**}$ is an isometric isomorphism from K(X,Y) into $K_{w^*}(X^*,Y)$. Therefore we have the following result.

Corollary 2.5. Let X and Y be two Banach spaces. If X^* has the limited p-Schur property and Y has the GP property, then K(X,Y) has the limited p-Schur property.

Since $X \widehat{\otimes}_{\varepsilon} Y$ may be identified with a closed subspace of $K_{w^*}(X^*, Y)$ via the isometric embedding $X \widehat{\otimes}_{\varepsilon} Y \hookrightarrow K_{w^*}(X^*, Y)$ which is defined by $x \otimes y \mapsto \theta_{x \otimes y}$, where $\theta_{x \otimes y}(x^*) = \langle x, x^* \rangle y$, we have the following corollary.

Corollary 2.6. If X has the limited p-Schur property and Y has the GP property, then injective tensor product $X \widehat{\otimes}_{\varepsilon} Y$ has the limited p-Schur property.

Theorem 2.5. [9, 13] Let X and Y be two Banach spaces and $M \subseteq K(X,Y)$ such that for all $x \in X$, $M(x) := \{Tx : T \in M\}$ is relatively compact in Y. Then under each of the following conditions, M is a relatively compact subset of K(X,Y).

- (a) X^{**} has the GP property and for every weak*-null sequence $(x_n^{**}) \subseteq X^{**}$, $(T^{**}x_n^{**})$ is norm null uniformly with respect $T \in M$.
- (b) X contains no copy of ℓ_1 and for every weakly null sequence $(x_n) \subseteq X$, (Tx_n) is norm null uniformly with respect $T \in M$.

Recall that the operator $T \in L(X, Y)$ is said to be limited operator if $T(B_X)$ is a limited set in Y. The class of all limited operator from X into Y is denoted by L(X, Y). On the other hand, $T \in L(X, Y)$ if and only if $T^* : Y^* \to X^*$ is weak*-norm sequential continuous cf. [2].

Theorem 2.6. Let X be a Banach space such that X^* has the GP property. If F is a closed subspace of K(X,Y) and for every $x^{**} \in X^{**}$, the evaluation operator $\phi_{x^{**}}$ on F is limited p-converging, then F has the limited p-Schur property.

Proof. First, observe that the evaluation operator $\phi_{x^{**}}$, as a generalization of ϕ_x is denoted by $\phi_{x^{**}}(T) = T^{**}x^{**}$, for all $T \in M$ and $x^{**} \in X^{**}$.

Let $M \subset F$ be a limited weakly *p*-compact set. Since for every $x \in X$, the evaluation map ϕ_x is limited *p*converging, we conclude that $M(x) = \{Tx : T \in M\}$ is relatively compact. Since the adjoint of every limited operator is weak^{*}-norm sequentially continuous, it follows that for every compact operator $T \in K(X, Y)$, the operator T^* is also compact and so is limited. This shows that T^{**} is weak^{*}-norm sequentially continuous and therefore for each weak^{*}-null sequence (x_n^{**}) in X^{**} , the sequence $(T^{**}x_n^{**})$ is norm null, that is $\phi_{x^{**}}$ is a pointwise norm null sequence of bounded linear operators. Hence $(\phi_{x_n^{**}})$ converges uniformly on the limited set M [17, Corollary 1.1.2]. It follows that

$$\lim_{n \to \infty} \sup_{T \in M} \|\phi_{x_n^{**}}(T)\| = 0.$$

Then by Theorem 2.5 (a) M is relatively compact and so F has the p-Schur property.

If one use Theorem 2.5 (b) instead of Theorem 2.5 (a), we can prove the following theorem.

Theorem 2.7. Let X be a Banach space containing no copy of ℓ_1 . If F is a closed subspace of K(X,Y) such that for each $x \in X$, the evaluation operator ϕ_x is limited p-converging, then F has the limited p-Schur property.

Recall that a subset H of L(X, Y) is uniformly completely continuous, if for every weakly null sequence (x_n) in X,

$$\lim_{n \to \infty} \sup_{T \in H} \|Tx_n\| = 0.$$

We remember the following theorem, which has a main role in the proof of the Theorem 2.9.

Theorem 2.8. [13] If X contains no copy of ℓ_1 , then a subset $H \subseteq K(X, Y)$ is relatively compact if and only if H is uniformly completely continuous and for each $x \in X$, the set $\phi_x(H)$ is relatively compact in Y.

Theorem 2.9. If X contains no copy of ℓ_1 and Y has the limited p-Schur property, then K(X,Y) has the limited p-Schur property.

Proof. If Y has the limited p-Schur property, then Theorem 2.2 shows that each $\phi_x : K(X,Y) \to Y$ is limited p-converging. Now, suppose that $H \subset K(X,Y)$ is a limited weakly p-compact set. Therefore $\phi_x(H)$ is relatively compact for all $x \in X$. On the other hand, if (x_n) is weakly null in X, then complete continuity of each operator $T \in H$ implies that $\|\phi_{x_n}(T)\| = \|Tx_n\| \to 0$. Therefore (ϕ_{x_n}) is a norm null sequence at each element $T \in H$ and then it is uniformly convergent on the limited set H [17, Corolarry 1.1.2]. Hence

$$\lim_{n \to \infty} \sup_{T \in H} \|Tx_n\| = \lim_{n \to \infty} \sup_{T \in H} \|\phi_{x_n}(T)\| = 0.$$

This shows that H is uniformly completely continuous. Hence Theorem 2.5 (a) shows that H is relatively compact in K(X, Y) and so K(X, Y) has the limited *p*-Schur property.

Recall that if $1 \le p \le \infty$, the Banach space X has the Dunford-Pettis property of order p (DP_p) if for each Banach space Y, every weakly compact operator $T: X \to Y$ is *p*-converging. For more information about DP_p property of Banach spaces the reader is referred to [3].

Corollary 2.7. If $2 < q < \infty$ and $\frac{1}{q} + \frac{1}{q^*} = 1$, then $(\ell_q \widehat{\otimes}_{\varepsilon} \ell_q)^*$ and $(\ell_q \widehat{\otimes}_{\pi} \ell_q)^*$ have the limited p-Schur property, for all 1 .

Proof. Since $1 < q^* < 2$ and $q^* < q < \infty$, by Pitt's Theorem; (see [1, Theorem 2.1.4]), every bounded operator $T : \ell_q \to \ell_{q^*}$ is compact. Therefore $(\ell_q \widehat{\otimes}_{\pi} \ell_q)^* = L(\ell_q, \ell_{q^*}) = K(\ell_q, \ell_{q^*})$ and $(\ell_q \widehat{\otimes}_{\varepsilon} \ell_q)^* = I(\ell_q, \ell_{q^*}) \subset K(\ell_q, \ell_{q^*})$, where $I(\ell_q, \ell_{q^*})$ is the space of all integral operators from ℓ_q into ℓ_{q^*} [5, P. 119]. Hence it is enough to show that $K(\ell_q, \ell_{q^*})$ has the limited *p*-Schur property, for all 1 . In fact, by [3, Example 3.3] $<math>\ell_{q^*}$ has the DP_p property, for all $1 . It follows from [6, Theorem 2.31] that <math>\ell_{q^*}$ has the (limited) *p*-Schur property, for all $1 . On the other hand, <math>\ell_q$ contains no copy of ℓ_1 . Therefore Theorem 2.9 (or Corollary 2.5) shows that $K(\ell_q, \ell_{q^*})$ has the limited *p*-Schur property, for all 1 .

We also notice that by Theorem 2.2, if the closed subspace M of L(X, Y) has the limited p-Schur property, then all operators on M, such as evaluation operators, are limited p-converging. Therefore the converse of Theorem 2.6 is also true. Moreover, in the following two theorems 2.11 and 2.12, we will give another sufficient conditions for the limited p-Schur property of closed subspace M of some operator spaces with respect to the limited p-converging of evaluation operators.

To obtain our next result we need the following well known theorem.

Theorem 2.10. [9] Let X and Y be two Banach spaces and H be a subset of L(X, Y) such that

- (1) $H(B_X) = \{Tx : T \in H, x \in B_X\}$ is relatively compact.
- (2) $\psi_{y^*}(H)$ is relatively compact for all $y^* \in Y^*$.

Then H is relatively compact.

Theorem 2.11. Let M be a closed linear subspace of L(X, Y) such that the closed linear span of the set $M(X) = \{Tx : T \in M, x \in X\}$ has the GP property. If all evaluation operator ψ_{y^*} are limited p-converging, then M has the limited p-Schur property.

Proof. Suppose that H is a limited weakly p-compact subset of M. By Theorem 2.10, it is enough to show that $H(B_X)$ and all $\psi_{y^*}(H)$ are relatively compact in Y and X^* , respectively. For every $y^* \in Y^*$, the evaluation operator ψ_{y^*} is limited p-converging. Therefore $\psi_{y^*}(H)$ is relatively compact. On the other hand, if (y_n^*) is a weak*-null sequence in Y^* , then the weak*-norm sequential continuity of the adjoint of each $T \in H$ implies that $\|\psi_{y_n^*}(T)\| = \|T^*y_n^*\| \to 0$ as $n \to \infty$. Therefore $(\psi_{y_n^*})$ converges pointwise on H an so it is converges uniformly on the subset H of M. Hence

$$\sup\{|\langle Tx, y_n^*\rangle| : T \in H, x \in B_X\} = \sup\{|\langle x, T^*y_n^*\rangle| : T \in H, x \in B_X\}$$
$$= \sup_{T \in H} ||T^*y_n^*|| \to 0.$$

Thus $H(B_X)$ is limited and so is relatively compact.

Now, we give a sufficient condition for the limited *p*-Schur property of subspaces of $L_{w^*}(X^*, Y)$ of all bounded weak*-weak continuous operator from X^* to Y. Clearly, if $T \in L_{w^*}(X^*, Y)$, then T^* transfers Y^* into X. The proof of this theorem is similar to the proof of Theorem 3.6 of [6]. So we omit its proof.

Theorem 2.12. Let X and Y be Banach spaces such that X has the Schur property. If M is a closed subspace of $L_{w^*}(X^*, Y)$ such that every evaluation operator ϕ_{x^*} is limited p-converging on M, then M has the limited p-Schur property.

Recall that according to [6], a bounded subset K of a Banach space X is p-Limited if

$$\lim_{n} \sup_{x \in K} |\langle x, x_n^* \rangle| = 0,$$

for every $(x_n^*) \in \ell_p^{weak}(X^*)$.

A subset K of a dual space X^* of X is L_p -set if $\lim_{n} \sup_{x^* \in K} |\langle x_n, x^* \rangle| = 0$ for every sequence $(x_n) \in \ell_p^{weak}(X)$. Also, a sequence (x_n^*) in X^* is an L_p -set if and only if $\lim_{n\to\infty} \langle x_n, x_n^* \rangle = 0$ for all $(x_n) \in \ell_p^{weak}(X)$ [7]. It is clear that for every limited subset and every *p*-limited subset of a dual space is an L_p -set. Moreover, the following result has been proved in [7].

Theorem 2.13. A Banach space X is weakly p-compact if and only if every L_p -set in X^* is relatively compact.

Theorem 2.14. Let X and Y be Banach spaces. If X contains no copy of ℓ_1 , Y^* is weakly p-compact and for every $h \in L(X, Y^{**})$, for every weakly null sequence $(x_n) \subset X$, the sequence (hx_n) is an L_p -set, then K(X,Y) has the GP property and so has the limited p-Schur property.

Proof. Let $M \subset K(X, Y)$ be a limited set. We have to prove that M is relatively compact. Since $M(x) = \{Tx : T \in M\}$ is a limited set in Y and so is an L_p -set, therefore M(x) is a relatively compact set, by Theorem 2.13. Assume that condition (b) of Theorem 2.5 in not verified. So there are a positive number ε , a weakly null sequence $(x_n) \subset X$ and a sequence $(T_n) \subset M$ such that for all $n \in \mathbb{N}$, $||T_nx_n|| > \varepsilon$. Now we prove that (T_nx_n) is weakly null. For every $y^* \in Y^*$, the set $\{T_n^*y^* : n \in \mathbb{N}\}$ is a Dunford-Pettis subset of X^* . Since (x_n) is weakly null, it follows that

$$\langle T_n x_n, y^* \rangle = \langle T_n^* y^*, x_n \rangle \to 0$$

for every $y^* \in Y^*$. So the sequence $(T_n x_n)$ is weakly null.

Now, we prove that $(T_n x_n)$ is a *p*-limited set. Suppose that $(y_n^*) \in \ell_p^{weak}(Y^*)$ and $h \in (X \widehat{\otimes}_{\pi} Y^*)^* = L(X, Y^{**})$. As (hx_n) is an L_p -set in Y^{**} we have $h(x_n \otimes y_n^*) = \langle hx_n, y_n^* \rangle \to 0$ and so $(x_n \otimes y_n^*)$ is weakly null in $X \otimes_{\pi} Y^*$. Since $X \widehat{\otimes}_{\pi} Y^*$ embeds into $K(X, Y)^*$, it follows that $(x_n \otimes y_n^*)$ is also weakly null in space $K(X, Y)^*$. Then it must be that

$$\lim_{n \to \infty} \langle T_n x_n, y_n^* \rangle = \lim_{n \to \infty} \langle T_n, x_n \otimes_\pi y_n^* \rangle = 0,$$

because (T_n) is a limited set and so is a DP set. So we have actually proved that $(T_n x_n)$ is a *p*-limited set and so L_p -set. It follows from Theorem 2.13 that it must be a relatively compact set. Since it is a weakly null sequence, there is a norm null subsequence and it is a contradiction.

In [18] the authors have been proved that for Banach spaces $(X_{\alpha})_{\alpha \in I}$, if $X = (\bigoplus_{\alpha \in I} X_{\alpha})_1$ is their ℓ_1 -direct sum, then X has the Schur property if and only if each factor X_{α} has the same property. Here, by a similar idea, we prove that the same condition holds for (limited) *p*-Schur property. **Theorem 2.15.** Let $(X_{\alpha})_{\alpha \in I}$ be Banach spaces and $X = (\bigoplus_{\alpha \in I} X_{\alpha})_1$. Then the space X has the p-Schur property if and only if each X_{α} has the p-Schur property.

Proof. If $X = (\bigoplus_{\alpha \in I} X_{\alpha})_1$ has the *p*-Schur property, then clearly, every closed subspace of X has the *p*-Schur property. Hence each X_{α} has the *p*-Schur property. On the other hand, a straightforward computations shows that a Banach space has the *p*-Schur property if and only if all of its closed separable subspaces have the *p*-Schur property. Therefore we can assume that each X_{α} is separable and take $I = \mathbb{N}$. Hence $X = (\bigoplus X_k)_1$ is separable and so has the GP property.

If $(x_n) \in \ell_p^{weak}(X)$, where $x_n = (b_{n,k})_{k \in \mathbb{N}}$, then $(b_{n,k}) \in \ell_p^{weak}(X_k)$ for all $k \in \mathbb{N}$. Since X_k has the *p*-Schur property, therefore $||b_{n,k}|| \to 0$ as $n \to \infty$, for all $k \in \mathbb{N}$. We have to prove that $||x_n|| \to 0$ or the weakly null sequence (x_n) is relatively compact. Let $\{f_n\}_{n \in \mathbb{N}}$ be a w^* -null sequence in B_{X^*} . If we show that $\lim_{n \to \infty} \langle x_n, f_n \rangle = 0$, then the proof is completed, thanks to the GP property of X.

Each f_n is of the form $f_n = (a_{n,k})_{k \in \mathbb{N}}$ and for all $k \in \mathbb{N}$, $a_{n,k} \xrightarrow{w^*} 0$ in X_k^* as $n \to \infty$. To prove that $\lim_{n \to \infty} \langle x_n, f_n \rangle = 0$, it is enough to show that

$$\sup_{n} \sum_{k>M} |\langle a_{n,k}, b_{n,k} \rangle| \to 0 \text{ as } M \to \infty.$$

Therefore we have to show that for each $\varepsilon > 0$ there exists $M \in \mathbb{N}$ such that

$$\sum_{k>M} |\langle a_{n,k}, b_{n,k} \rangle| < \varepsilon, \tag{2.1}$$

for all sufficiently large enough $n \in \mathbb{N}$. Let (2.1) is false. Then there is an $\varepsilon > 0$ such that

$$\sum_{k>M} |\langle a_{n,k}, b_{n,k} \rangle| \ge \varepsilon, \tag{2.2}$$

for all $M \in \mathbb{N}$ and some sufficiently large enough $n \in \mathbb{N}$. Consider a sequence of positive number, (δ_k) such that $\sum_{k=1}^{\infty} \delta_k < \frac{\varepsilon}{4}$. By the technique given in the proof of main theorem of [18] one can construct two strictly increasing sequences, $(n_k)_{k\geq 1}$ and $(M_k)_{k\geq 0}$ such that

 $(1) \sum_{\substack{j>M_k\\M_{k-1}}} ||b_{n_k,j}|| \le \delta_k \text{ for each } k \ge 1$ $(2) \sum_{\substack{j=1\\j>M_{k-1}}}^{M_{k-1}} |\langle a_{n,j}, b_{n_{k-1}}, j \rangle| \le \delta_k \text{ for each } n \ge n_k$ $(3) \sum_{\substack{j>M_{k-1}\\j>M_{k-1}}} |\langle a_{n_k,j}, b_{n_k}, j \rangle| \ge \varepsilon.$

Now, let us choose a sequence (λ_j) such that $|\lambda_j| = 1$, for all j and

$$\lambda_j \langle a_{n_k,j}, b_{n_k,j} \rangle = |\langle a_{n_k,j}, b_{n_k,j} \rangle|_{\mathcal{A}}$$

where $k \ge 1$ and $M_{k-1} + 1 \le j \le M_k$. Let

$$h = (h_j)_{j \ge 1} = (\lambda_1 a_{n_1,1}, \lambda_2 a_{n_1,2}, \dots, \lambda_{M_1} a_{n_1,M_1}, \lambda_{M_1+1} a_{n_2,M_1+1}, \dots)$$

Then $||h|| = \sup_{j \ge 1} ||h_j|| \le 1$ and

$$\langle h, x_{n_k} \rangle = \sum_{j=1}^{\infty} \langle h_j, b_{n_k,j} \rangle = \sum_{i=1}^{k-1} \sum_{j=M_{i-1}+1}^{M_i} \lambda_j \langle a_{n_i,j}, b_{n_i,j} \rangle$$
$$+ \sum_{j=M_{k-1}+1}^{M_k} |\langle a_{n_k,j}, b_{n_k,j} \rangle| + \sum_{j=M_k}^{\infty} \lambda_j \langle a_{n_k,j}, b_{n_k,j} \rangle.$$

with due attention to $||a_{n_k,j}|| \leq 1$ and inequalities (1), (2) and (3):

$$\begin{aligned} |\langle h, x_{n_k} \rangle| &\geq -\sum_{i=1}^{k-1} \delta_i + \sum_{j=M_{k-1}+1}^{M_k} |\langle a_{n_k,j}, b_{n_k,j} \rangle| - \delta_k \\ &\geq -\sum_{i=1}^{k-1} \delta_i + \sum_{j>M_{k-1}} |\langle a_{n_k,j}, b_{n_k,j} \rangle| - \sum_{j\leq M_{k-1}} |\langle a_{n_k,j}, b_{n_k,j} \rangle| - \delta_k \\ &\geq -\sum_{i=1}^{k-1} \delta_i + \sum_{j>M_{k-1}} |\langle a_{n_k,j}, b_{n_k,j} \rangle| - 2\delta_k \\ &\geq \varepsilon - \sum_{i=1}^{k-1} \delta_i - 2\delta_k \ge \varepsilon - 2\sum_{i=1}^{\infty} \delta_i > \frac{\varepsilon}{2}. \end{aligned}$$

This contradiction shows that (2.1) is true. So

$$\lim_{M \to \infty} \sup_{n \in \mathbb{N}} \sum_{k=1}^{M} |\langle a_{n,k}, b_{n,k} \rangle| = 0$$

Therefore $\lim_{n \to \infty} \sum_{k=1}^{\infty} |\langle a_{n,k}, b_{n,k} \rangle| = \sum_{k=1}^{\infty} \lim_{n \to \infty} |\langle a_{n,k}, b_{n,k} \rangle| = 0 \text{ Since } |\langle f_n, x_n \rangle| \leq \sum_{k=1}^{\infty} |\langle a_{n,k}, b_{n,k} \rangle| \text{ we conclude that } \lim_{n \to \infty} |\langle f_n, x_n \rangle| = 0 \text{ and so } ||x_n|| \to 0.$

By a similar technique we have the following theorem.

Theorem 2.16. Suppose that $(X_{\alpha})_{\alpha \in I}$ are Banach spaces and $X = (\bigoplus_{\alpha \in I} X_{\alpha})_1$. Then the space X has the limited p-Schur property if and only if each X_{α} has the limited p-Schur property.

References

- F. Albiac and N.J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006.
- [2] J. Bourgain and J. Diestel, Limited operators and strict consingularity, Math. Nachr. 119 (1984) 55-58.
- [3] J. Castillo and F. Sanchez, Dunford-Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43-59.
- [4] D. Chen, J. Alejandro Chvez-Domnguez, and Li. Lei. Unconditionally p-converging operators and Dunford-Pettis Property of order p, arXiv preprint arXiv:1607.02161 (2016).
- [5] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993.
- [6] Mohammad B. Dehghani and S. Mohammad Moshtaghioun, On the p-Schur property of Banach spaces, Ann. Funct. Anal. (2017), 14 pages.

- M.B. Dehghani and S.M. Moshtaghioun, Limited p-converging operators and its relation with some geometric properties of Banach spaces, (2017), Submitted.
- [8] J. Diestel, H. Jachowr and A. Tonge, Absolutely summing operators, Cambridge University Press, 1995.
- [9] G. Emmanuele, On relative compactness in K(X,Y), J. Math. Anal. Appl. 379 (2013) 88-90.
- [10] J. H. Fouire and E. D. Zeekoei, DP* properties of order p on Banach spaces, Quaest. Math. 37 (2014), no. 3, 349-358.
- [11] I. Ghencia and P. Lewis, The Dunford-Pettis property, the Gelfand-Phillips property and L-set, Colloq. Math. 1.6 (2006), 311-324.
- [12] H. Jarchow, Locally convex spaces, B.G. Teubner, 1981.
- [13] F. Mayoral, Compact sets of compact operators in absence of ℓ_1 , Proc. Amer. Math. Soc. 129 (2001), 7982.
- [14] S.M. Moshtaghioun and J. Zafarani, Weak sequentional convergence in the dual of operator ideas, J. Oper. Theory 49 (2003), 143-151.
- [15] A. Pelczynski, Banach Spaces in which every unconditionally converging operator is weakly compact, Bull. L'Acad. Polon.
 Sci. 10 no. 2, (1962), 641-648.
- [16] R. Ryan, The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. 35 no. 11-12, (1987), 785-792.
- [17] T. Schlumprecht, Limited sets in Banach spaces, Ph. D. Dissertation, München, (1987).
- [18] B. Tanbay, Direct sums and the Schur property, Turk. J. Math. 22 (1999), 349-354.