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A NEW NUMERICAL TECHNIQUE FOR SOLVING SYSTEMS OF NONLINEAR

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

MOUNTASSIR HAMDI CHERIF1∗ AND DJELLOUL ZIANE2

Abstract. In this paper, we apply an efficient method called the Aboodh decomposition method to

solve systems of nonlinear fractional partial differential equations. This method is a combined form of

Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated
for systems of nonlinear fractional partial differential equations is calculated in the explicit form of

a power series with easily computable terms. Some examples are given to shows that this method is

very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

1. Introduction

Over the last three decades, fractional calculus has been enormously developed and taken on in many
fields of scientific research. One of the main reasons is its application in many scientific disciplines.
The fractional calculus by its tools remains a very suitable means for the resolution of the differential
systems. These generally translate mathematical or physical models of the many natural phenomena
that surround us. Integro-differential equations and fractional differential systems have recently proved
to be very useful in the field of physics, engineering, control processing for visco-elastic systems,
diffusion, .... We find that many researchers have been interested in solving this kind of linear and
nonlinear differential equations also systems of fractional differential equations. Consequently, the
investigation of the exact solutions to nonlinear equations play an important role in the study of
nonlinear physical phenomena, although the nonlinear differential equations are the most complex in
the solution compared with linear differential equations.

Integral transformations such as Laplace, Sumudu, natural, Elzaki and Aboodh are unable to solve
the nonlinear differential equations. So, we find some researchers are working on the combined of these
transformations with many methods, among them we find the Adomian decomposition method. This
method was introduced in the 1980s by George Adomian (1923-1996), and it was applied to many
problems ( [1]- [4]). The Adomian decomposition method was coupled with Laplace transform method
[14], with Sumudu transform method [9], with Elzaki transform method [10], with natural transform
method [11] and with Aboodh transform method. Aboodh transform is derived from the classical
Fourier integral. Based on the mathematical simplicity of the Aboodh transform and its fundamental
properties, Aboodh transform was introduced by Khalid Aboodh in 2013, to facilitate the process of
solving ordinary and partial differential equations in the time domain. This transformation has deeper
connection with the Laplace and Elzaki transform [8]. The coupling of Adomian decomposition method
with Aboodh transform method has been applied for solving linear and nonlinear equations [17], to
solve system of linear and nonlinear partial differential equations [13] and for solving time-fractional

diffusion equation [16].
The objective of this study is coupling the Adomian decompositionmethod (ADM) with Aboodh

transform in the sense of fractional derivative, then we apply this modified method to solve some
examples related with systems of nolinear fractional partial differential equations.
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2. Basic definitions

In this section, we give some basic notions about fractional calculus, Aboodh transform and Aboudh
transform of fractional derivatives which are used further in this paper.

2.1. Fractional calculus. We give some basic definitions and properties of the fractional calculus
theory as the Riemann–Liouville fractional integrals and Caputo fractional derivative (see [6], [7]).

Definition 2.1. Let Ω = [a, b] (−∞ < a < b < +∞) be a finite interval on the real axis R. The
Riemann–Liouville fractional integral Iα0+f of order α ∈ R (α > 0) is defined by

(Iα0+f)(t) =
1

Γ (α)

∫ t

0

f(τ)dτ

(t− τ)1−α , t > 0, α > 0

(I0
0+f)(t) = f(t)

Here Γ(·) is the gamma function.

Theorem 2.1. Let α > 0 and let n = [α]+1. If f(t) ∈ ACn [a, b] , then the Caputo fractional derivative
(cDα

0+f)(t) exist almost evrywhere on [a, b] . If α /∈ N, (cDα
0+f)(t) is represented by

(cDα
0+f)(t) =

1

Γ (n− α)

∫ t

0

f (n)(τ)dτ

(t− τ)α−n+1
, (2.1)

where D = d
dxand n = [α] + 1.

Remark 2.1. In this paper, we consider the time-fractional derivative in the Caputo’s sense. When
α ∈ R+, the time-fractional derivative is defined as

(cDα
t u)(x, t) =

∂αu(x, t)

∂tα

=

{
1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 ∂

mu(x,τ)
∂τm , m− 1 < α < m,

∂mu(x,t)
∂tm , α = m,

where m ∈ N∗.

2.2. Definitions and properties of the Aboodh transform. The Aboodh transform was defined
by K. S. Aboodh [12] in 2013. In this section, we give some basic definitions and properties of this
transform (see [12], [15], [16]).

The Aboodh transform is defined for functions of exponential order. We consider functions belonging
to a class B, where B defined by

B =
{
u(t) : |u(t)| < Mekj |t|, if t ∈ (−1)j × [0, ∞, j = 1, 2;M, k1, k2 > 0

}
.

Definition 2.2. The Aboodh integral transform of the function u in B is defined by the integral
equation

A [u(t)] = U(v) =
1

v

∫ ∞
0

u(t)e−vtdt; t ≥ o, v ∈ (k1, k2). (2.2)

The variable v in this transform is used to factor the variable t in the argument of the function u.

Proposition 2.1. The Aboodh transform of the time-fractional derivative in the Caputo’s sense is
defined as

A
[
(cDα

0+u)(t); v
]

= vαA[u(t)]−
n−1∑
k=0

u(k)(0)

v2−α+k
, n− 1 < α ≤ n, n = 1, 2, . . . (2.3)

And the Aboodh transform of the function u(x, t) with Caputo fractional derivative of order α is
given by
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A
[
(cDα

0+u)(x, t); v
]

= vαA[u(x, t)]−
n−1∑
k=0

u(k)(x, 0)

v2−α+k
, n− 1 < α ≤ n, n = 1, 2, . . . (2.4)

2.2.1. Somme properties of the Aboodh transform
. 1. The Aboodh transform of the nth derivative of u(t) is given by

A[u(n)(t)] = Un(v) = vnA[u(t)]−
n−1∑
k=0

u(k)(0)

v2−n+k
(2.5)

2. Some elementary functions and their transformations
u(t) A [u(t)]
1 1

v2

t 1
v3

tn n!
vn+2 , n = 0, 1, 2, . . .

tα Γ(α+1)
vα+2 , α > 0.

3. Analysis of fractional Aboodh decomposition method

To illustrate the basic idea of this method, we consider the general system of nonlinear fractional
partial differential equations of the form

cDα
t u(x, t) +Rw(x, t) +Nu(x, t) = h1(x, t),

cDβ
t w(x, t) +Ru(x, t) +Nw(x, t) = h2(x, t),

(3.1)

where n− 1 < α, β 6 n, n = 1, 2, ... and the initial conditions[
∂n−1u(x,t)
∂tn−1

]
t=0

= fn−1(x), n = 1, 2, ...[
∂n−1w(x,t)
∂tn−1

]
t=0

= gn−1(x), n = 1, 2, ...
(3.2)

cDα
t u(x, t), cDβ

t w(x, t) are the Caputo fractional derivatives of the functions u(x, t), w(x, t) respec-
tively, R is the linear differential operator, N represent the general nonlinear differential operator, and
h1(x, t), h2(x, t) are the source terms.

Applying the Aboodh transform on both sides of (3.1) and using the differentiation property of this
transform (2.3), we obtain

A [u(x, t)] = 1
vα

∑n−1
k=0

u(k)(x,0)
v2−α+k + 1

vαA [h1(x, t)]− 1
vαA [Rw(x, t) +Nu(x, t)] ,

A [w(x, t)] = 1
vβ

∑n−1
k=0

w(k)(x,0)
v2−β+k

+ 1
vβ
A [h2(x, t)]− 1

vβ
A [Ru(x, t) +Nw(x, t)] .

(3.3)

Taking the inverse Aboodh transform on both sides of equations in system (3.3) and then by using
initial conditions (3.2), we have

v(x, t) = G(x, t)−A−1
(

1
vαA[Rw(x, t) +Nu(x, t)]

)
,

w(x, t) = H(x, t)−A−1
(

1
vβ
A[Ru(x, t) +Nw(x, t)]

)
,

(3.4)

where G(x, t) and H(x, t) are represents the terms arising from the nonhomogeneous terms and the
prescribed initial conditions. Now, we represent solutions as the following infinite series

u(x, t) =

∞∑
n=0

un(x, t) , w(x, t) =

∞∑
m=0

wn(x, t) (3.5)

and the nonlinear terms can be decomposed as

Nu(x, t) =

∞∑
n=0

Cn, Nw(x, t) =

∞∑
n=0

Dn (3.6)

where Cn and Dn are Adomian polynomials [5], and they can be calculated by the formulas given
below
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Cn =
1

n!

∂n

∂λn

[
N

( ∞∑
i=0

λiui

)]
λ=0

, Dn =
1

n!

∂n

∂λn

[
N

( ∞∑
i=0

λiwi

)]
λ=0

, i = 0, 1, 2, · · · (3.7)

Using (3.5) and (3.6), we can rewrite (3.4) as∑∞
n=0 un(x, t) = G(x, t)−A−1

[
1
vαA [R

∑∞
n=0 wn +

∑∞
n=0 Cn]

]∑∞
n=0 wn(x, t) = H(x, t)−A−1

[
1
vβ
A [R

∑∞
n=0 un +

∑∞
n=0Dn]

] . (3.8)

By comparing both sides of (3.8), we get

u0(x, t) = G(x, t),
u1(x, t) = −A−1

[
1
vαA [Rw0(x, t) + C0]

]
,

u2(x, t) = −A−1
[

1
vαA [Rw1(x, t) + C1]

]
.

...

(3.9)

and

w0(x, t) = H(x, t),
w1(x, t) = −A−1

[
1
vβ
A [Ru0(x, t) +D0]

]
,

w2(x, t) = −A−1
[

1
vβ
A [Ru1(x, t) +D1]

]
,

...

(3.10)

We continue in this manner to obtain the general recursive relations

un+1(x, t) = −A−1
[

1
vαA [Rwn(x, t) + Cn]

]
, n > 1

wn+1(x, t) = −A−1
[

1
vβ
A [Run(x, t) +Dn]

]
, n > 1

. (3.11)

Finally, the approximate solution is calculated by

u(x, t) = lim
N→∞

N∑
n=0

un(x, t) w(x, t) = lim
N→∞

N∑
n=0

wn(x, t). (3.12)

4. Applications

In this section, we apply the Aboodh decomposition transform method for solving systems of non-
linear fractional partial differential equations.

Example 4.1. Consider the system of nonlinear partial differential equations with time-fractional
derivatives

cDα
t u(x, t) + w(x, t)ux(x, t) + u(x, t) = 1, 0 ≤ α < 1

cDβ
t w(x, t)− u(x, t)wx(x, t)− w(x, t) = 1, 0 ≤ β < 1

(4.1)

with the initial conditions

u(x, 0) = ex

w(x, 0) = e−x
(4.2)

For α = β = 1, the exact solution of (4.1) is given by

u(x, t) = ex−t

w(x, t) = et−x
(4.3)

Applying the Aboodh transform on both sides of (4.1) and using its differentiation property, we get

A [u(x, t)] = ex

v2 + 1
vαA [1− w(x, t)ux(x, t)− u(x, t)] ,

A [w(x, t)] = e−x

v2 + 1
vβ
A [1 + u(x, t)wx(x, t) + w(x, t)] .

(4.4)

Taking the inverse Aboodh transform on both sides of (4.4), we obtain



192 CHERIF AND ZIANE

u(x, t) = ex + tα

Γ(α+1) −A
−1
(

1
vαA [w(x, t)ux(x, t) + u(x, t)]

)
,

w(x, t) = e−x + tβ

Γ(β+1) +A−1
(

1
vβ
A [u(x, t)wx(x, t) + w(x, t)]

)
.

(4.5)

We represent the approximate solution as the following infinite series

u(x, t) =

∞∑
n=0

un(x, t), w(x, t) =

∞∑
m=0

wn(x, t) (4.6)

Note that these nonlinear terms

wux =

∞∑
n=0

Cn , uwx =

∞∑
n=0

Dn (4.7)

are the Adomian polynomials (see [5]). The first few components of Cn and Dn polynomials are
given by

C0 = w0u0x,
C1 = w0u1x + w1u0x,

C2 = w0u2x + w2u0x + w1u1x,
...

And

D0 = u0w0x,
D1 = u0w1x + u1w0x,

D2 = u0w2x + u2w0x + u1w1x,
...

Substituting (4.6) and (4.7) in (4.5), we have∑∞
n=0 un(x, t) = ex + tα

Γ(α+1) −A
−1
(

1
vαA [

∑∞
n=0 Cn +

∑∞
n=0 un(x, t)]

)∑∞
n=0 wn(x, t) = e−x + tβ

Γ(β+1) +A−1
(

1
vβ
A [
∑∞
n=0Dn +

∑∞
m=0 wn(x, t)]

) . (4.8)

By comparing both sides of (4.8), we can easily generate the recursive relations

u0(x, t) = ex + tα

Γ(α+1)

u1(x, t) = −A−1
(

1
vαA [C0 + u0(x, t)]

)
u2(x, t) = −A−1

(
1
vαA [C1 + u1(x, t)]

)
u3(x, t) = −A−1

(
1
vαA [C2 + u2(x, t)]

)
...

un+1(x, t) = −A−1
(

1
vαA [Cn + un(x, t)]

)
, n ≥ 0.

(4.9)

And

w0(x, t) = e−x + tβ

Γ(β+1)

w1(x, t) = A−1
(

1
vβ
A [D0 + w0(x, t)]

)
w2(x, t) = A−1

(
1
vβ
A [D1 + w1(x, t)]

)
w3(x, t) = A−1

(
1
vβ
A [D2 + w2(x, t)]

)
...

wn+1(x, t) = A−1
(

1
vβ
A [Dn + wn(x, t)]

)
, n ≥ 0.

(4.10)

The first few components of the unknown functions un(x, t) and wn(x, t) are given as follows
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u1(x, t) = − 1+ex

Γ(α+1) t
α − ex

Γ(α+β+1) t
α+β − t2α

Γ(2α+1)

w1(x, t) = −1+e−x

Γ(β+1) t
β − e−x

Γ(α+β+1) t
α+β + t2β

Γ(2β+1)

.

And

u2(x, t) =
2 + ex

Γ(2α+ 1)
t2α +

ex − 1

Γ(α+ β + 1)
tα+β +

(
1 + 2ex +

Γ(α+ β + 1)ex

Γ(α+ 1)Γ(β + 1)

)
t2α+β

Γ(2α+ β + 1)
+

Γ(α+ 2β + 1)ex

Γ(β + 1)Γ(α+ β + 1)Γ(2α+ 2β + 1)
t2α+2β − ex

Γ(α+ 2β + 1)
tα+2β +

t3α

Γ(3α+ 1)

w2(x, t) =
−2 + e−x

Γ(2β + 1)
t2β +

1 + e−x

Γ(α+ β + 1)
tα+β +

(
2− e−x +

Γ(α+ β + 1)e−x

Γ(α+ 1)Γ(β + 1)

)
tα+2β

Γ(α+ 2β + 1)
+

Γ(2α+ β + 1)e−x

Γ(α+ 1)Γ(α+ β + 1)Γ(2α+ 2β + 1)
t2α+2β +

e−x

Γ(2α+ β + 1)
t2α+β +

t3β

Γ(3β + 1)

In the same manner, we can find the other components.

Finally , the series solution of the unknown functions u(x, t) and w(x, t) of (4.1) are given by

u(x, t) = ex − ex

Γ(α+ 1)
tα +

1 + ex

Γ(2α+ 1)
t2α − 1

Γ(α+ β + 1)
tα+β +(

1 + 2ex +
Γ(α+ β + 1)ex

Γ(α+ 1)Γ(β + 1)

)
t2α+β

Γ(2α+ β + 1)
+

Γ(α+ 2β + 1)ex

Γ(β + 1)Γ(α+ β + 1)Γ(2α+ 2β + 1)
t2α+2β − ex

Γ(α+ 2β + 1)
tα+2β +

t3α

Γ(3α+ 1)
+ ...

w(x, t) = e−x +
e−x

Γ(β + 1)
tβ +

−1 + e−x

Γ(2β + 1)
t2β +

e−x

Γ(α+ β + 1)
tα+β +(

2− e−x +
Γ(α+ β + 1)e−x

Γ(α+ 1)Γ(β + 1)

)
tα+2β

Γ(α+ 2β + 1)
+

Γ(2α+ β + 1)e−x

Γ(α+ 1)Γ(α+ β + 1)Γ(2α+ 2β + 1)
t2α+2β +

e−x

Γ(2α+ β + 1)
t2α+β +

t3β

Γ(3β + 1)
+ ...

When α = 1 and β = 1, the series solutions of (4.1) are

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ... = ex
(

1− t+ t2

2! −
t3

3! + ...
)

= ex−t

w(x, t) = w0(x, t) + w1(x, t) + w2(x, t) + ... = e−x
(

1 + t+ t2

2! + t3

3! + ...
)

= e−x+t

which is the exact solution of nonlinear system given in (4.3).
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Example 4.2. We consider the following system of nonlinear partial differential equations with time-
fractional derivatives

cDα
t u = −u− hxwy + hywx, 0 ≤ α < 1

cDβ
t h = h, 0 ≤ β < 1

cDγ
t w = w − uxwx − uywy, 0 ≤ γ < 1

(4.11)

with the initial conditions

u(x, y, 0) = x+ y ; h(x, y, 0) = 1 + x− y; w(x, y, 0) = −x+ y (4.12)

Taking Aboodh transform with its differentiation property of (4.11) subject to the initial conditions
(4.12), we have

A [u] = x+y
v2 + 1

vαA [−u− hxwy + hywx] ,

A [h] = 1+x−y
v2 + 1

vβ
A [h] ,

A [w] = −x+y
v2 + 1

vγA [w − uxwx − uywy] .

(4.13)

Now, we apply the inverse Aboodh transform on both sides of (4.13), we obtain

u(x, y, t) = x+ y +A−1
(

1
vαA [−u− hxwy + hywx]

)
,

h(x, y, t) = 1 + x− y +A−1
(

1
vβ
A [h]

)
,

w(x, y, t) = −x+ y +A−1
(

1
vγA [w − uxwx − uywy]

)
.

(4.14)

We represent solutions as the following infinite series

u(x, y, t) =

∞∑
n=0

un(x, y, t), h(x, y, t) =

∞∑
n=0

hn(x, y, t), w(x, y, t) =

∞∑
n=0

wn(x, y, t). (4.15)

Note that these nonlinear terms

hxwy =

∞∑
n=0

An ; hywx =

∞∑
m=0

Bn ; uxwx =

∞∑
n=0

Cn ; uywy =

∞∑
m=0

Dn (4.16)

are the Adomian polynomials [5].
Substituting (4.15) and (4.16) in (4.14), we have∑∞

n=0 un(x, y, t) = x+ y +A−1
(

1
vαA [−

∑∞
n=0 un −

∑∞
n=0An +

∑∞
m=0Bn]

)
,∑∞

m=0 hn(x, y, t) = 1 + x− y +A−1
(

1
vβ
A [
∑∞
n=0 hn]

)
,∑∞

n=0 wn(x, y, t) = −x+ y +A−1
(

1
vγA [

∑∞
n=0 wn −

∑∞
m=0 Cn −

∑∞
n=0Dn]

)
.

(4.17)

By comparing both sides of equations (4.17), we can easily generate the recursive relations

u0(x, y, t) = x+ y
u1(x, y, t) = A−1

(
1
vαA [−u0 −A0 +B0]

)
u2(x, y, t) = A−1

(
1
vαA [−u1 −A1 +B1]

)
u3(x, y, t) = A−1

(
1
vαA [−u2 −A2 +B2]

)
...

un+1(x, y, t) = A−1
(

1
vαA [−un −An +Bn]

)
, n ≥ 0.

(4.18)

And
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h0(x, y, t) = 1 + x− y
h1(x, y, t) = A−1

(
1
vβ
A [h0]

)
h2(x, y, t) = A−1

(
1
vβ
A [h1]

)
h3(x, y, t) = A−1

(
1
vβ
A [h2]

)
...

hn+1(x, y, t) = A−1
(

1
vβ
A [hn]

)
, n ≥ 0.

(4.19)

Finally

w0(x, y, t) = −x+ y
w1(x, y, t) = A−1

(
1
vγA [w0 − C0 −D0]

)
w2(x, y, t) = A−1

(
1
vγA [w1 − C1 −D1]

)
w3(x, y, t) = A−1

(
1
vγA [w2 − C2 −D2]

)
...

wn+1(x, y, t) = A−1
(

1
vγA [wn − Cn −Dn]

)
, n ≥ 0.

(4.20)

The first few components of the unknown functions un(x, y, t), hn(x, y, t) and wn(x, y, t) are given
as follows

u1(x, y, t) = A−1
(

1
vαA [−u0 − h0xw0y + h0yw0x]

)
= −(x+ y) tα

Γ(α+1)

h1(x, y, t) = A−1
(

1
vβ
A [h0]

)
= (1 + x− y) tβ

Γ(β+1)

w1(x, y, t) = A−1
(

1
vγA [w0 − u0xw0x − u0yw0y]

)
= (−x+ y) tλ

Γ(λ+1)

The second component of each solution series is given by the following formulas

u2(x, y, t) = A−1
(

1
vαA [−u1 − h0xw1y − h1xw0y + h0yw1x + h1yw0x]

)
= (x+ y) t2α

Γ(2α+1)

h2(x, y, t) = A−1
(

1
vβ
A [h1]

)
= (1 + x− y) t2β

Γ(2β+1)

w2(x, y, t) = A−1
(

1
vγA [w1 − u0xw1x − u1xw0x − u0yw1y − u1yw0y]

)
= (−x+ y) t2λ

Γ(2λ+1)

We continue the calculations to find

u3(x, y, t) = A−1
(

1
vαA [−u2 −A2 +B2]

)
= −(x+ y) t2α

Γ(2α+1)

...

un(x, y, t) = (−1)n(x+ y) tnα

Γ(nα+1) .

(4.21)

h3(x, y, t) = A−1
(

1
vβ
A [h2]

)
= (1 + x− y) t3β

Γ(3β+1)

...

hn(x, y, t) = (1 + x− y) tnβ

Γ(nβ+1) .

(4.22)
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w3(x, y, t) = A−1
(

1
vγA [w2 − C2 −D2]

)
= (−x+ y) t3λ

Γ(3λ+1)

...

wn(x, y, t) = (−x+ y) tnλ

Γ(nλ+1) .

(4.23)

Finally , the series solutions of the system (4.11) are given by

u(x, y, t) =
∑∞
n=0 un(x, y, t)

= (x+ y)
(

1− tα

Γ(α+1) + t2α

Γ(2α+1) −
t3α

Γ(3α+1) + ...± tnα

Γ(nα+1) ± ...
)

= (x+ y)
∑∞
n=0

(−tα)n

Γ(nα+1) = (x+ y)Eα(−tα).

(4.24)

h(x, y, t) =
∑∞
n=0 hn(x, y, t)

= (1 + x− y)
(

1 + tβ

Γ(β+1) + t2β

Γ(2β+1) + t3β

Γ(3β+1) + ...+ tnβ

Γ(nβ+1) + ...
)

= (1 + x− y)
∑∞
n=0

(tβ)n

Γ(nβ+1) = (1 + x− y)Eβ(tβ).

(4.25)

w(x, y, t) =
∑∞
n=0 wn(x, y, t)

= (−x+ y)
(

1 + tλ

Γ(λ+1) + (tλ)2

Γ(2λ+1) + (tλ)3

Γ(3λ+1) + ...+ (tλ)n

Γ(nλ+1) + ...
)

= (−x+ y)
∑∞
n=0

(tλ)n

Γ(nλ+1) = (−x+ y)Eλ(tλ).

(4.26)

Where, Eα , Eβ and Eλ are the Mittag-Leffler functions.
When α = 1, β = 1 and λ = 1, we get

u(x, y, t) = (x+ y)Eα(−t) = (x+ y)e−t.
h(x, y, t) = (1 + x− y)Eβ(t) = (1 + x− y)et.
w(x, y, t) = (−x+ y)Eλ(t) = (−x+ y)et.

(4.27)

These are the exact solutions of nonlinear system (4.11).

5. Conclusion

In this work, the Aboodh transform method combined with Adomian decomposition method has
been successfully applied to solve systems of nonliner fractional partial differential equations. The
approximate solutions obtained by this method are compared with the exact solutions. Thus, the
results show that this method is a powerful mathematical tool for solving systems of nonlinear fractional
partial differential equations in other areas of science.
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