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SOME CHARACTERIZATIONS OF HARMONIC CONVEX FUNCTIONS

MUHAMMAD ASLAM NOOR∗, KHALIDA INAYAT NOOR, SABAH IFTIKHAR

Abstract. In this paper, we show that the harmonic convex functions have some nice properties,
which convex functions enjoy. We also discuss some basic properties of harmonic convex functions.

The techniques and ideas of this paper may be a starting point for future research.

1. Introduction

Convexity theory played an important and fundamental role in the developments of various branches
of engineering, financial mathematics, economics and optimization. In recent years, the concept of con-
vex functions and its variant forms have been extended and generalized using innovative techniques to
study complicated problems. It is well known that convexity is closely related to inequality theory. The
optimality conditions of differentiable convex functions are characterized by variational inequalities,
the origin of which can be traced back to Euler, Lagrange and Newton. On the other hand, convex
functions are related to integral inequalities. which are called the Harmite-Hadamard type integral
inequalities. For recent developments, see [1, 3, 9, 16] and reference therein.

Related to the arithmetic means, we have harmonic means. The harmonic means have applica-
tions in electrical circuit theory and other branches of sciences. For example, the total resistance of
a set of parallel resistors is obtained by adding up the reciprocal of the individual resistance value
and then considering the reciprocal of their total. Also the harmonic means are used in developing
parallel algorithms for solving various problems, see Noor [5]. A significant class of convex functions,
called harmonic convex was introduced by Anderson et al. [1] and Iscan [3], independently. Noor and
Noor [6, 7] have shown that the optimality conditions of the differentiable harmonic convex functions
on the harmonic convex set can be expressed by a class of variational inequalities, which is called the
harmonic variational inequality. For recent developments and applications, see [5–7,9–14].

To the best of our knowledge, this field is new one and has not been developed as yet. In this paper,
we show that the harmonic convex functions have some nice properties [2], which convex functions
enjoy. We have investigated several basic properties of harmonic convex functions. We obtained the
necessary and sufficient characterization of a differentiable harmonic convex and harmonic quasi convex
functions. It is worth mentioning that the harmonic variational inequalities is a new class of variational
inequalities and is not studied much. The interested readers are encouraged to study these harmonic
variational inequalities. It is high time to find the applications of these inequalities along with efficient
numerical methods.

2. Preliminaries

First of all, we recall the following basic concepts.

Definition 2.1. [1]. A set K ⊂ Rn \ {0} is said to be a harmonic convex set, if

xy

tx+ (1− t)y
∈ K, ∀ x, y ∈ K, t ∈ [0, 1].
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Definition 2.2. [3]. A function f : K → R, where K is a nonempty harmonic convex set in Rn \{0}.
The function f is said to be a harmonic convex function on K, if and only if,

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y), ∀ x, y ∈ K, t ∈ [0, 1].

The function f is called strictly harmonic convex on K, if the above inequality is true as a strict
inequality for each distinct x and y ∈ K and for each t ∈ (0, 1). The function f : K → R is called har-
monic concave (strictly harmonic concave) on K if −f is harmonic convex (strictly harmonic convex)
on K.

Remark 2.1. Geometric Interpretation
We now consider the geometric interpretation of harmonic convex function. Let x and y be two distinct
points in the domain of f , and consider the point xy

tx+(1−t)y , with t ∈ (0, 1). Note that (1−t)f(x)+tf(y)

gives the weighted arithmetic mean of f(x) and f(y), while f( xy
tx+(1−t)y ) gives the value of f at the

point xy
tx+(1−t)y . So, for a harmonic convex function f , the value of f at the points on the path xy

tx+(1−t)y
whose initial point is x and terminal point is y, is less than or equal to the chord joining the points
(x, f(x)) and (y, f(y)). For a harmonic concave function, the chord is (on or) below the function itself.

Definition 2.3. [16]. A function f : K → R, where K is a nonempty harmonic convex set in Rn\{0}.
The function f is said to be a harmonic quasi convex function on K, if and only if,

f

(
xy

tx+ (1− t)y

)
≤ max{f(x), f(y)}, ∀ x, y ∈ K, t ∈ [0, 1].

The function f is said to be harmonic quasi concave, if −f is harmonic quasi convex. A function f
is harmonic quasi convex, if whenever f(y) ≥ f(x), f(y) is greater than or equal to all the values of
f at the points of the path xy

tx+(1−t)y . A function is said to be strictly harmonic quasi convex, if strict

inequality holds for f(x) 6= f(y).

Definition 2.4. [9]. A function f : K → R, where K is a harmonic convex set in Rn \ {0}. The
function f is said to be a harmonic log-convex function on K, if and only if,

f

(
xy

tx+ (1− t)y

)
≤ [f(x)]1−t[f(y)]t, ∀ x, y ∈ K, t ∈ [0, 1]. (2.1)

From (2.1), it follows that

f

(
xy

tx+ (1− t)y

)
≤ [f(x)]1−t[f(y)]t

≤ (1− t)f(x) + tf(y)

≤ max{f(x), f(y)}, ∀ x, y ∈ K, t ∈ [0, 1],

This shows that, every harmonic log-convex function is harmonic convex and every harmonic convex
function is harmonic quasi convex, but the converse is not true.

Also from (2.1), we have

log f(
xy

tx+ (1− t)y
≤ (1− t) log f(x) + t log f(y), ∀x, y ∈ K, t ∈ [0, 1].

For the properties and inequalities of harmonic log-convex functions, see [9, 13,14].

3. Main Results

In this section, we discuss some properties of harmonic convex function and harmonic quasi convex
function.

Theorem 3.1. If Ki is a family of harmonic convex set, then ∩i∈IK is a harmonic convex set.
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Proof. Let x, y ∈ ∩i∈IKi, t ∈ [0, 1]. Then, for each i ∈ I, x, y ∈ Ki, since Ki is a harmonic convex set,
it follows that

xy

tx+ (1− t)y
∈ Ki, ∀ i ∈ I.

Thus
xy

tx+ (1− t)y
∈ ∩i∈IKi.

Hence, ∩i∈IKi is harmonic convex set. �

Theorem 3.2. Let K be a harmonic set. If fi : K → R, (i = 1, 2, 3, ...,m) are harmonic convex
functions. Then the function

f =

m∑
i=1

aifi, ai ≥ 0, i = 1, 2, 3, ...,m,

is harmonic convex function.

Proof. Let K be a harmonic set. Then ∀x, y ∈ K and t ∈ [0, 1], we have

f

(
xy

tx+ (1− t)y

)
=

m∑
i=1

aifi

(
xy

tx+ (1− t)y

)

≤
m∑
i=1

ai[(1− t)fi(x) + tfi(y)]

= (1− t)
m∑
i=1

aifi(x) + t

m∑
i=1

aifi(y)

= (1− t)f(x) + tf(y).

This shows that f is a harmonic convex function. �

Theorem 3.3. Let K be a harmonic set. If the functions fi : K → R are harmonic convex functions,
then f = max{fi , i = 1, 2, 3, ...,m} is also harmonic convex.

Proof. Consider,

f

(
xy

tx+ (1− t)y

)
= max

{
fi

(
xy

tx+ (1− t)y

)
, i = 1, 2, 3, ...,m

}
= fw

(
xy

tx+ (1− t)y

)
≤ (1− t)fw(x) + tfw(y)

= (1− t) max{fi(x)}+ tmax{fi(y)}
= (1− t)f(x) + tf(y).

This implies that f(x) is harmonic convex function. �

Theorem 3.4. Let K be a harmonic set. If the function f : K → R is harmonic convex function and
g : R→ R is a linear function, then f ◦ g is a harmonic convex function.

Proof. Let f be a harmonic convex function and g be a linear function. Then

(g ◦ f)

(
xy

tx+ (1− t)y

)
= g

(
f

(
xy

tx+ (1− t)y

))
≤ g((1− t)f(x) + tf(y)

= (1− t)g(f(x)) + tg(f(y))

= (1− t)(g ◦ f)(x) + t(g ◦ f)(y).

This shows that g ◦ f is a harmonic convex function. �
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Theorem 3.5. Let K be a harmonic set. If the function f : K → R is a harmonic quasi convex
function and g : R→ R is a nondecreasing function, then f ◦ g is a harmonic quasi convex function.

Proof. Let f be a harmonic quasi convex function and g be a nondecreasing function. Then

(g ◦ f)

(
xy

tx+ (1− t)y

)
≤ g[max{f(x), f(y)}]

= max{g ◦ f(x), g ◦ f(y)},

which implies that (g ◦ f) is a harmonic quasi convex function. �

Theorem 3.6. Let f : K → R be a harmonic convex function. If µ = infx∈K f(x), then the set
E = {x ∈ K : f(x) = µ} is a harmonic convex set. If f is strictly harmonic convex function, then E
is a singleton.

Proof. Let x, y ∈ E. Since f is harmonic convex function, so

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y) = µ,

which implies that xy
tx+(1−t)y ∈ E and hence E is a harmonic convex set.

For the second part, assume that f(x) = f(y) = µ. Since K is a harmonic convex set, so for t ∈ (0, 1),
xy

tx+(1−t)y ∈ K. Further, since f is strictly harmonic convex function, so

f

(
xy

tx+ (1− t)y

)
< (1− t)f(x) + tf(y) = µ.

This contradicts that µ = infx∈K f(x) and hence E is singleton. �

Lemma 3.1. Let K be a nonempty harmonic convex set in Rn \{0} and let f : K → R be a harmonic
convex function. Then the level set

α = {x ∈ K : f(x) ≤ α, α ∈ R}, (3.1)

is a harmonic convex se.

Proof. Let x, y ∈ Kα. Then f(x) ≤ α, f(y) ≤ α.

Consider,

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y)

≤ (1− t)α+ tα = α.

Hence xy
tx+(1−t)y ∈ Kα and therefore Kα is a harmonic convex set. �

Remark 3.1. We would like to mention that the converse of above result is not true.

Definition 3.1. [2]. Let K be a nonempty in Rn and let f : K → R be a function. Then epigraph of
f , denoted by E(f), is defined by

E(f) = {(x, α) : x ∈ K,α ∈ R, f(x) ≤ α}.

Theorem 3.7. Let K be a nonempty harmonic convex set in Rn \ {0} and let f : K → R. Then f is
harmonic convex, if and only if, E(f) is a harmonic convex set.

Proof. Assume that f is harmonic convex function and let (x, α), (y, β) ∈ E(f). Then f(x) ≤ α and
f(y) ≤ β.
Consider , for t ∈ [0, 1],

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y)

≤ (1− t)α+ tβ.
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Thus
(

xy
tx+(1−t)y , (1− t)α+ tβ

)
∈ E(f) and hence E(f) is a harmonic convex set.

Conversely, assume that E(f) is a harmonic convex set and let x, y ∈ K. Then
(x, f(x)), (y, f(y)) ∈ E(f) and by the harmonic convexity of E(f), we have(

xy

tx+ (1− t)y
, (1− t)f(x) + tf(y)

)
∈ E(f).

Thus, f
(

xy
tx+(1−t)y

)
≤ (1− t)f(x)+ tf(y) for each t ∈ (0, 1), that is, f is harmonic convex function. �

Remark 3.2. If the function f : K → R is harmonic log-convex function on the harmonic convex set
K, then E(f) is a harmonic convex set.

Theorem 3.8. Let K be a harmonic convex set and let f : K → R be a harmonic convex function.
Then any local minimum of f is a global minimum.

Proof. Let x ∈ K be a local minimum of the harmonic convex function f.. Assume the contrary, that
is, f(y) < f(x), for some y ∈ K. Since f is harmonic convex function, we have

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y) ∀ x, y ∈ K, t ∈ [0, 1].

Thus

f

(
xy

tx+ (1− t)y

)
− f(x) ≤ t[f(y)− f(x)],

from which it follows that for some small t > 0,

f

(
xy

tx+ (1− t)y

)
< f(x).

Contradicting the local minimum. Hence every local minimum of f is a global minimum. �

Strictly harmonic quasi convex and strictly harmonic quasi concave functions are especially impor-
tant in nonlinear programming because they ensure that a local minimum and a local maximum over
a harmonic convex set is a global minimum and a global maximum, respectively.

Theorem 3.9. Let K be a harmonic convex set and let f : K → R be a strictly harmonic quasi convex
function. Consider the problem of minimum of f(x) subject to x ∈ K. If x̄ is a local optimal solution,
then x̄ is also a global optimal solution.

Proof. Assume, on the contrary, that there exists an x̂ ∈ K with f(x̂) < f(x̄). By the harmonic
convexity of K, x̄x̂

tx̄+(1−t)x̂ ∈ K for each t ∈ (0, 1).

Since x̄ is a local minimum by assumption,

f(x̄) < f

(
x̄x̂

tx̄+ (1− t)x̂

)
∀ t ∈ (0, 1).

But because f is strictly harmonic quasi convex and f(x̂) < f(x̄), we have

f

(
x̄x̂

tx̄+ (1− t)x̂

)
< f(x̄) ∀ t ∈ (0, 1).

This contradicts the local optimality of x̄, and the proof is complete. �

Lemma 3.2. Let K be a nonempty harmonic convex set in Rn \ {0}. Then a function f : K → R is a
harmonic quasi convex function, if and only if, the level set Kα defined by (3.1) is a harmonic convex
set.

Proof. Suppose that f is harmonic quasi-convex function and let x, y ∈ Kα. Therefore x, y ∈ K and
max{f(x), f(y)} ≤ α. Also x1 = xy

tx+(1−t)y ∈ K, since K is a harmonic convex set.

Using the harmonic quasi-convexity of f , we have

f

(
xy

tx+ (1− t)y

)
≤ max{f(x), f(y)} ≤ α.
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Hence x1 ∈ Kα and therefore Kα is harmonic convex set.
Conversely, suppose that Kα is harmonic convex set for each real number α. Let x, y ∈ Kα. Further-
more, let t ∈ (0, 1) and x1 = xy

tx+(1−t)y . Note that x, y ∈ Kα for α = max{f(x), f(y)}. By assumption,

Kα is harmonic convex set, so that x1 ∈ Kα. Therefore

f

(
xy

tx+ (1− t)y

)
≤ α = max{f(x), f(y)}.

Hence, f is harmonic quasi-convex and the proof is complete. �

Remark 3.3. The level set defined as Kα = {x ∈ K : f(x) ≤ α, α ∈ R}, is sometimes referred to as a
lower-level set, to differentiate it from the upper-level set defined as Kα = {x ∈ K : f(x) ≥ α, α ∈ R},
which is harmonic convex set, if and only if, f is harmonic quasi concave.

Theorem 3.10. If the function f : K → R is harmonic convex function such that f(x) < f(y), for
all x, y ∈ K, then f is strictly harmonic quasi convex function.

Proof. By the harmonic convexity of f , we have

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y)

< f(x); since f(x) < f(y),

which shows that the harmonic convex function is strictly harmonic quasi convex function. �

Definition 3.2. The function f : K → R is said to be harmonic pseudo convex function with respect
to a strictly positive function b(·, ·) such that

f(y) < f(x)⇒ f

(
xy

tx+ (1− t)y

)
< f(x) + t(t− 1)b(x, y), ∀x, y ∈ K, t ∈ (0, 1).

Theorem 3.11. If the function f : K → R is harmonic convex function such that f(y) < f(x), then
f is harmonic pseudo convex function f with respect to a strictly positive function b(·, ·).

Proof. Let f(y) < f(x) and let f be a harmonic convex function. Then

f

(
xy

tx+ (1− t)y

)
≤ f(x) + t(f(y)− f(x))

< f(x) + t(1− t)(f(y)− f(x))

= f(x) + t(t− 1)(f(x)− f(y))

< f(x) + t(t− 1)b(y, x),

where b(x, y) = f(x)− f(y) > 0, the result result. �

Remark 3.4. If the function f : K → R is harmonic log-convex function such that f(y) < f(x), then
the harmonic log-convex function is harmonic pseudo convex under the same sense.

Theorem 3.12. Let K be a nonempty harmonic convex set in Rn \ {0} and let f : K → R be strictly
harmonic quasi convex function and lower semicontinuous. Then f is harmonic quasi convex function.

Proof. Let x, y ∈ K. If f(x) 6= f(y), then by the strict harmonic quasi convexity of f , we must have

f

(
xy

tx+ (1− t)y

)
< max{f(x), f(y)} ∀ t ∈ (0, 1).

Now, suppose that f(x) = f(y). To show that f is harmonic quasi convex, we need to show that

f

(
xy

tx+ (1− t)y

)
≤ f(y) ∀ t ∈ (0, 1).

By contradiction, suppose that

f

(
xy

tx+ (1− t)y

)
> f(y) for some t ∈ (0, 1).
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Denote xy
tx+(1−t)y by x̄. Since f is lower semicontinuous, there exists a t ∈ (0, 1) such that

f(x̄) > f

(
x̄y

tx̄+ (1− t)y

)
> f(y) = f(x). (3.2)

Hence by the strict harmonic quasi convexity of f and since f
(

x̄y
tx̄+(1−t)y

)
> f(y), we have f(x̄) <

f
(

x̄y
tx̄+(1−t)y

)
, contradicting (3.2). This completes the proof. �

The following theorem gives a necessary and sufficient characterization of a differentiable harmonic
quasi convex function.

Theorem 3.13. Let K be a nonempty harmonic convex set in Rn \ {0} and let f : K → R be
differentiable on K. Then f is harmonic quasi convex, if and only if,

f(x) ≤ f(y)⇒ 〈f ′(y),
xy

y − x
〉 ≤ 0, ∀ x, y ∈ K.

Proof. Let f be harmonic quasi convex and let x, y ∈ K be such that

f(x) ≤ f(y).

Using the Taylor series, we have

f

(
xy

x+ t(y − x)

)
= f(y) + t〈f ′(y),

xy

y − x
〉+ t ‖ xy

y − x
‖ α
[
y; t

(
xy

y − x

)]
.

where α
[
y; t
(
xy
y−x

)]
→ 0, as t→ 0.

By the harmonic quasi convexity of f , we have f
(

xy
(1−t)x+ty

)
≤ f(y) and hence the above equation

implies that

t〈f ′(y),
xy

y − x
〉+ t ‖ xy

y − x
‖ α
[
y; t

(
xy

y − x

)]
≤ 0.

Dividing by t and taking the limit in the above inequality as t→ 0, we have

〈f ′(y),
xy

y − x
〉 ≤ 0.

Conversely, suppose that x, y ∈ K and that f(x) ≤ f(y). We need to show that f( xy
tx+(1−t)y ) ≤ f(y),

for all x ∈ K and t ∈ (0, 1).
We do this by showing that the set L = {x′ : x′ = xy

tx+(1−t)y , t ∈ (0, 1), f(x′) > f(y)} is empty.

By contradiction, suppose that there exists an x′ ∈ L. Therefore x′ = xy
tx+(1−t)y for some t ∈ (0, 1)

and f(x′) > f(y).
Since f is differentiable, it is continuous and there must exits a δ ∈ (0, 1), such that

f

(
x′y

(1− µ)x′ + µy

)
> f(y) for each µ ∈ (δ, 1),

and f(x′) > f
(

x′y
(1−δ)x′+δy

)
. By this inequality and the mean value theorem, we must have

0 < f(x′)− f
(

x′y

(1− δ)x′ + δy

)
= (1− t)〈f ′(x̂),

x′y

y − x′
〉, (3.3)

where x̂ = x′y
(1−µ′)x′+µ′y for some µ′ ∈ (δ, 1). From it is clear that f(x̂) > f(y). Dividing (3.3) by

(1− t) > 0, it follows that 〈f ′(x̂), x′y
y−x′ 〉 > 0, which in turn implies that

〈f ′(x̂),
xy

y − x
〉 > 0. (3.4)

But on the other hand f(x̂) > f(y) ≥ f(x), and x̂ is harmonic combination of x and y. By the
assumption of the theorem 〈f ′(x̂), x̂x

x̂−x 〉 ≤ 0, and thus we must have

0 ≥ 〈f ′(x̂),
xy

y − x
〉.

The above inequality is not compatible with (3.4). Therefore, L is empty, and the proof is complete. �
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The following theorem was derived by Noor and Noor [6, 7] and it gives a necessary and sufficient
characterization of a differentiable harmonic convex function.

Theorem 3.14. [6]. Let K be a harmonic convex set. If f : K → R is a differentiable harmonic
convex function on the harmonic convex set K, then

(1) f(y)− f(x) ≥ 〈f ′(x), xy
x−y 〉, ∀ x, y ∈ K

(2) 〈f ′(x)− f ′(y), xy
x−y 〉 ≤ 0, ∀ x, y ∈ K,

but the converse is not true.

Theorem 3.15. [6]. Let f be a differentiable harmonic convex function on the harmonic convex set
K. Then x ∈ K is a minimum of f , if and only if, x ∈ K satisfies

〈f ′(x),
xy

x− y
〉 ≥ 0, ∀y ∈ K.

Remark 3.5. The inequality of the type 〈f ′(x), xy
x−y 〉 ≥ 0 is known as harmonic variational inequality,

which was introduced by Noor and Noor [6, 7].

Definition 3.3. A function f : K → R, where K is a nonempty harmonic set Rn \ {0}. The function
f is said to be a harmonic pseudo-convex function, if for each x, y ∈ K with 〈f ′(y), xy

y−x 〉 ≥ 0, we have

f(x) ≥ f(y); or equivalently, if f(x) < f(y), then 〈f ′(y), xy
y−x 〉 < 0.

Definition 3.4. A function f : K → R, where K is a nonempty harmonic set Rn \ {0}. The function
f is said to be a harmonic quasi convex function, if for each x, y ∈ K with f(x) ≤ f(y), we have
〈f ′(y), xy

y−x 〉 ≤ 0; or equivalently, if 〈f ′(y), xy
y−x 〉 > 0, then f(x) > f(y).

Theorem 3.16. Let K be a harmonic convex set and f : K → R a differentiable harmonic convex
function on the harmonic convex set K. If f(x) ≤ f(y), ∀ x, y ∈ K, then f is harmonic quasi-convex
function. Furthermore, if f(x) < f(y), ∀ x, y ∈ K, then f is harmonic pseudo-convex function.

Proof. Let f be differentiable harmonic convex function on the harmonic convex set K. Then from
Theorem 3.14, we have

〈f ′(y),
xy

y − x
〉 ≤ f(x)− f(y).

If f(x) ≤ f(y), then 〈f ′(y), xy
y−x 〉 ≤ 0. Therefore, from Theorem 3.13, we have f is harmonic quasi-

convex function.
Similarly, if f(x) < f(y), we also have 〈f ′(y), xy

y−x 〉 < 0. So, from the Definition 3.3, we have f is

harmonic pseudo-convex function. �
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