APPROXIMATING DERIVATIVES BY A CLASS OF POSITIVE LINEAR OPERATORS

BRAMHA DUTTA PANDEY ${ }^{1, *}$ AND B. KUNWAR ${ }^{2}$

Abstract

Some Direct Theorems for the linear combinations of a new class of positive linear operators have been obtained for both, pointwise and uniform simultaneous approximations. a number of well known positive linear operators such as Gamma Operators of Muller, Post-Widder and Modified Post-Widder Operators are special cases of this class of operators.

1. Introduction

During past few decades a number of sequences of positive linear operators (henceforth written as operator) both, of the summation and those defined by integrals have been introduced and studied by a number of authors. Some of wellknown operators of latter type are the Gamma operators of Müller [7], Post-Widder and Modified Post-Widder operators [6], Kunwar [4], Sikkema and Rathore [11].

Now we define our linear operator L_{n} [4] as

$$
\begin{equation*}
L_{n}(f ; x)=D(m, n, \alpha) x^{m n+\alpha-1} \int_{0}^{\infty} u^{-m n-\alpha} e^{-n\left(\frac{x}{u}\right)^{m}} f(u) d u \tag{1}
\end{equation*}
$$

where $D(m, n, \alpha)=\frac{|m| n^{n+\frac{\alpha-1}{m}}}{\Gamma n+\frac{\alpha-1}{m}}, m \in I R-\{0\}, n>0, \alpha \in I R$.
The equation (1) defines a linear positive approximation methods, which contains as particular cases, a number of well known linear positive operators; e.g. Post-Widder and Modified Post-Widder operators [6], and the Gamma-operators of Muller [7] .

In the present paper we study the following problems:
(i) Is it possible to approximate the derivatives of f by the derivatives of $L_{n}(f)$?
(ii) Can we use certain linear combinations of L_{n} to obtain a better order of approximation?

We introduce notations and definitions used in this paper.
Throughout the paper $I R^{+}$denotes the interval $\left.(0, \infty),<a, b\right\rangle$ open interval containing $[a, b] \subseteq I R^{+}, \chi_{\delta, x}\left(\chi_{\delta, x}^{c}\right)$ the characteristic function of the interval $(x-$ $\delta, x+\delta)\left\{I R^{+}-(x-\delta, x+\delta)\right\}$. The spaces $M\left(I R^{+}\right), M_{b}\left(I R^{+}\right), \operatorname{Loc}\left(I R^{+}\right), L^{1}\left(I R^{+}\right)$ respectively denote the sets of complex valued measurable, bounded and measurable, locally integrable and Lebesgue integrable functions on $I R^{+}$.

Let $\Omega(>1)$ be a continuous function defined on $I R^{+}$. We call Ω a bounding function if for each $K \subseteq I R^{+}$there exist positive numbers n_{K} and M_{K} such that

$$
L_{n_{K}}(\Omega ; x)<M_{K}, \quad x \in K
$$

[^0] combinations.
here $\quad \Omega(u)=u^{-a}+e^{b u^{m}}+u^{c}$, where $a, b, c>0$.
For this bounding function
$D_{\Omega}=\left\{f: f\right.$ is locally integrable on $I R^{+}$and is such that $\lim \sup _{u \rightarrow 0} \frac{f(u)}{\Omega(u)}$ and $\lim \sup _{u \rightarrow \infty} \frac{f(u)}{\Omega(u)}$ exist $\}$
$D_{\Omega}^{(k)}=\left\{f: f \in D_{\Omega}\right.$ and f is k- times cotinuously differentiable on $I R^{+}$and $\left.f^{(i)} \in D_{\Omega}, i=1,2, \ldots, k\right\}$
$C_{b}^{m}\left(I R^{+}\right)=\{f: f$ is m-times continuously differentiable and is such that $f^{(k)}, k=0,1,2, \ldots m$ are bounded on $\left.I R^{+}\right\}$.

2. SIMULTANEOUS APPROXIMATION FOR CONTINUOUS DERIVATIVES

We consider the elementary case of simultaneous approximation by the operators L_{n} wherein the derivatives of f are assumed to be continuous. We have termed this case elementary, for it is possible here to deduce the results on the simultaneous approximation: $\left(L_{n} f\right)^{(k)} \rightarrow f^{(k)}(k \in I N)$ from the corresponding results on the ordinary approximation: $L_{n} f \rightarrow f$.
Theorem 1. : If $f \in D_{\Omega}^{(k)}$,then $L_{n}^{(k)}(f ; x)$ for $x \in<a, b>$ exists for all sufficiently large n and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{(k)}(f ; x)=f^{(k)}(x), \text { uniformly for } x \in[a, b] \tag{2}
\end{equation*}
$$

Proof. We have

$$
L_{n}(f ; x)=D(m, n, \alpha) x^{m n+\alpha-1} \int_{0}^{\infty} u^{-m n-\alpha} e^{-n\left(\frac{x}{u}\right)^{m}} f(u) d u
$$

A formal k -times differentiation within the integral sign and replacing α by $\alpha-k$, let the new operator be denoted by L_{n}^{*} and the corresponding $D(m, n, \alpha)$ be denoted by $D^{*}(m, n, \alpha)$.Then

$$
\begin{equation*}
L_{n}^{(k)}(f ; x)=\frac{D(m, n, \alpha)}{D^{*}(m, n, \alpha)} L_{n}^{*}\left(f^{(k)}(x)\right) \tag{3}
\end{equation*}
$$

Applying the known approximation $L_{n} f \rightarrow f$ to (3), we find that

$$
L_{n}^{(k)}(f ; x)=\frac{D(m, n, \alpha)}{D^{*}(m, n, \alpha)} L_{n}^{*}\left(f^{(k)}(x)\right) \rightarrow f^{(k)}(x) \text { as } n \rightarrow \infty
$$

This completes the proof of the theorem.
Theorem 2. :If $f \in D_{\Omega}^{(k)}$. then at each $x \in I R^{+}$where $f^{(k+2)}$ exists

$$
\begin{align*}
& L_{n}^{(k)}(f ; x)-f^{(k)}(x)=\frac{1}{2 n m^{2}}\left[(m+k-2 \alpha+2) k f^{(k)}(x)+\right. \tag{4}\\
& \left.\quad+(m+2 k-2 \alpha+3) x f^{(k+1)}(x)+x^{2} f^{(k+2)}(x)\right]+o\left(\frac{1}{n}\right), n \rightarrow
\end{align*}
$$

∞.
Further if $f^{(k+2)}$ exists and is continuous on $\langle a, b\rangle$, then (4) holds uniformly in $x \in[a, b]$.

Proof. Using Voronovskaya formula [1], [6], [10],[11], [12] for L_{n}^{*} and (3), the result follows.

In a similer manner one can prove the following results:
Theorem 3. : If f is such that $f^{(k)}$ exists and is continuous on $I R^{+}$, then

$$
\begin{align*}
& \left|L_{n}^{(k)}(f ; x)-f^{(k)}(x)\right| \leq \omega_{f^{(k)}}\left(n^{-\frac{1}{2}}\right)[1+ \tag{5}\\
& +\min \left\{x^{2}\left(\frac{1}{m^{2}}+o(1)\right), x\left(\frac{1}{m^{2}}+o(1)\right)^{\frac{1}{2}}\right]+o\left(\frac{1}{n}\right) \\
& \quad\left(n \rightarrow \infty, x \in I R^{+}\right)
\end{align*}
$$

where $\omega_{f^{(k)}}$ is the modulus of continuity of $f^{(k)}$ [13] [2] [3].

Theorem 4. : Let f be such that $f^{(k+1)}$ exists on $I R^{+}$. Then for $x \in I R^{+}$

$$
\begin{align*}
& \left|L_{n}^{(k)}(f ; x)-f^{(k)}(x)\right| \tag{6}\\
& \leq \frac{k\left|f^{(k)}(x)\right|}{2 n m^{2}}\{|m+k-2 \alpha+2|\}+x \frac{\left|f^{(k+1)}(x)\right|}{2 n m^{2}}\{|m+k-2 \alpha+3|\}+ \\
& +\omega_{f^{(k+1)}}\left(n^{-\frac{1}{2}}\right)\left[x n^{-\frac{1}{2}}\left\{\frac{1}{m^{2}(m-3)}+o(1)\right\}+\frac{x^{2}}{2 n^{\frac{1}{2}}}\left\{\frac{1}{m^{2}(m-3)}+o(1)\right\}\right], \\
& \left(n \rightarrow \infty, x \in I R^{+}\right) .
\end{align*}
$$

3. Pointwise Simultaneous Approximation

In the present section we consider the "non-elementary" case of simultaneous approximation wherein assuming only that $f^{(k)}(x)$ exist at some point x, we solve the problem of pointwise approximation. Before proving this result we establish:
Lemma 1. :Let $n>p \in I N$ (set of natural numbers). Then

$$
\begin{equation*}
\frac{\partial^{p}}{\partial x^{p}}\left\{x^{\alpha+m n-1} u^{-m n} e^{-n\left(\frac{x}{u}\right)^{m}}\right\}=x^{m n+\alpha-p-1} u^{p-m n} e^{-(n-p)\left(\frac{x}{u}\right)^{m}} \tag{7}
\end{equation*}
$$

$$
\times \sum_{k=0}^{p} \sum_{\nu=0}^{\left[\frac{p-k}{2}\right]}\left(\frac{m}{u}\right)^{k} n^{\nu+k}\left(\frac{x}{u}\right)^{k(m-1)} e^{-k\left(\frac{x}{u}\right)^{m}}[1-
$$

$\left.\left(\frac{x}{u}\right)^{m}\right]^{k} g_{\nu, k, p}(x, u)$
where $[x]$ denotes the integral part of $x \in I R^{+}$and the function $g_{\nu, k, p}(x, u)$ are
certain linear combinations of products of the powers of u^{-1}, x^{-1} and $\frac{\partial^{k}}{\partial x^{k}}\left\{\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}\right\}, k=$ $0,1,2, \ldots, p$ and are independent of n.
Proof. We proceed by induction on p. We note that

$$
\text { (8) } \begin{aligned}
& \frac{\partial}{\partial x}\left\{x^{m n+\alpha-1} u^{-m n} e^{-n\left(\frac{x}{u}\right)^{p}}\right\} \\
= & x^{(\alpha-1)}\left(\frac{x}{u}\right)^{m(n-1)} e^{-(n-1)\left(\frac{x}{u}\right)^{m}}\left[\frac{(m n+\alpha-1)}{x}\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}-\frac{m n}{u}\left(\frac{x}{u}\right)^{2 m-1} e^{-\left(\frac{x}{u}\right)^{m}}\right]
\end{aligned}
$$

Putting $g_{0,0,1}(x, u)=\frac{(\alpha-1)}{x}\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}$

$$
g_{0,1,1}(x, u)=u^{-1}
$$

We observe that (8) is of the form (7). Hence the result is true for $p=1$.
Next, let us assume that the lemma holds for a certain p. Then by the induction hypothesis,

```
(9) \(\frac{\partial^{p+1}}{\partial x^{p+1}}\left\{x^{\alpha+m n-1} u^{-m n} e^{-n\left(\frac{x}{u}\right)^{m}}\right\}\)
\(=x^{\alpha-1}\left(\frac{x}{u}\right)^{m(n-p-1)} e^{-(n-p-1)\left(\frac{x}{u}\right)^{m}}\)
\(\times \sum_{k=0}^{p+1} \sum_{\nu=0}^{\left[\left(\frac{p-k+1}{2}\right)\right]}\left(\frac{m}{u}\right)^{k} n^{\nu+k}\left\{\left(\frac{x}{u}\right)^{m-1} e^{-\left(\frac{x}{u}\right)^{m}}-\left(\frac{x}{u}\right)^{2 m-1} e^{-\left(\frac{x}{u}\right)^{m}}\right\}^{k} g_{\nu, k, p+1}(x, u)\)
```

Wherewith $g_{\nu, k, p} \equiv 0$ for $k>p$ or $k<0, \nu<0$ or $\nu>\left[\frac{p-k}{2}\right]$, we have put

$$
\begin{aligned}
& g_{\nu, k, p+1}(x, u)=\frac{m n+\alpha-1}{x} g_{\nu, k, p}(x, u)\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}} \\
& \quad-\frac{m n}{u}\left\{\frac{m}{u}\left(\frac{x}{u}\right)^{m-1} e^{-\left(\frac{x}{u}\right)^{m}}-\frac{m}{u}\left(\frac{x}{u}\right)^{2 m-1} e^{-\left(\frac{x}{u}\right)^{m}}\right\} g_{\nu, k, p}(x, u)+ \\
& \quad+\frac{\partial}{\partial x} g_{\nu, k, p}(x, u)+\frac{1}{u} g_{\nu, k-1, p}(x, u)+ \\
& +\left(\frac{k+1}{u}\right)\left\{\frac{m(m-1)}{u^{2}}\left(\frac{x}{u}\right)^{m-2} e^{-\left(\frac{x}{u}\right)^{m}}-\left(\frac{m}{u}\right)^{2}\left(\frac{x}{u}\right)^{2(m-1)} e^{-\left(\frac{x}{u}\right)^{m}}-\right. \\
& \left.-\frac{m(2 m-1)}{u^{2}}\left(\frac{x}{u}\right)^{2(m-1)} e^{-\left(\frac{x}{u}\right)^{m}}+\left(\frac{m}{u}\right)^{2}\left(\frac{x}{u}\right)^{3 m-2} e^{-\left(\frac{x}{u}\right)^{m}}\right\} g_{\nu-1, k+1, p}(x, u) .
\end{aligned}
$$

For $k=0,1,2, \ldots, p+1$ and $\nu=0,1,2, \ldots,\left[\frac{p+1-k}{2}\right]$
It is clear that $g_{\nu, k, p+1}(x, u)$ satisfies the other required properties and hence the result is true for $p+1$. Hence it follows that (8) holds for all $p=1,2, \ldots$. This completes the proof.
Theorem 5. : Let $m \in I N$ and $f \in D_{\Omega}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{(k)}(f ; x)=f^{(k)}(x) . \tag{10}
\end{equation*}
$$

whenever $x \in I R^{+}$is such that $f^{(k)}(x)$ exists. Moreover if $f^{(k)}$ exists and is continuous on $\langle a, b\rangle$, (10) holds uniformly in $x \in[a, b]$.

Proof. If $f^{(k)}(x)$ exists at some $x \in I R^{+}$, given an arbitrary $\epsilon>0$ we can find a δ satisfying $x>\delta>0$ s.t.

$$
f(u)=\sum_{p=0}^{k} \frac{f^{(p)}(x)}{p!}(u-x)^{p}+h_{x}(u)(u-x)^{k} ; \quad|u-x| \leq \delta,
$$

where $h_{x}(u)$ is certain measurable function on $[x-\delta, x+\delta]$ satisfying the inequality $\left|h_{x}(u)\right| \leq \epsilon,|u-x| \leq \delta$. Hence

$$
\begin{align*}
L_{n}^{(k)}(f ; x)= & \sum_{p=0}^{k} \frac{f^{(p)}(x)}{p!} \sum_{j=0}^{p}\binom{p}{j}(-1)^{j} L_{n}^{(k)}\left(u^{p-j} ; x\right)+ \tag{11}\\
& +L_{n}^{(k)}\left(h_{x}(u)(u-x)^{k} \chi_{\delta, x}(u) ; x\right)+L_{n}^{(k)}\left(f \chi_{\delta, x}^{c} ; x\right) \\
= & \sum_{1}+\sum_{2}+\sum_{3}, \quad(\text { say }) .
\end{align*}
$$

Using the fact that L_{n} maps polynomials to polynomials and the basic convergence Theorem3, we obtain
(12)

$$
\sum_{1}=f^{(k)}(x) L_{n}\left(u^{k} ; 1\right) \rightarrow f^{(k)}(x), n \rightarrow \infty
$$

It follows from Lemma1 that

$$
\begin{aligned}
& L_{n}^{(k)}\left(h_{x}(u)(u-x)^{k} \chi_{\delta, x}(u) ; x\right)=x^{m n+\alpha-1} D(m, n, \alpha) \sum_{p=0}^{k} \sum_{\nu=0}^{\left[\frac{k-p}{2}\right]} n^{\nu+p} \\
& \times \int_{x-\delta}^{x+\delta} u^{-m n-\alpha} h_{x}(u)(u-
\end{aligned}
$$

$x)^{m}\left\{\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}\right\}^{(n-k)}$

$$
\times\left[\frac{\partial}{\partial x}\left\{\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}\right\}\right]^{k} g_{\nu, p, k}(x, u) d u
$$

The δ above can be chosen so small that

$$
\left|\frac{\partial}{\partial x}\left\{\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}\right\}\right| \leq A|u-x|,|u-x|<\delta,
$$

where A is some constant. Since the functions $g_{\nu, p, k}(x, u)$ are bounded on $[x-$ $\delta, x+\delta]$, it is clear that there exists a constant M_{1} independent of n, ϵ and δ s.t. for all n sufficiently large,

$$
\left|L_{n}^{(k)}\left(h_{x}(u)(u-x)^{k} \chi_{\delta, x}(u) ; x\right)\right| \leq \epsilon M_{1} \sum_{p=0}^{k} \sum_{\nu=0}^{\left[\frac{k-p}{2}\right]} n^{\nu+p-\frac{k+p}{2}}
$$

by (3) where M_{2} is another constant not depending on n, ϵ and δ. Since $\nu \leq$ $\left[\frac{k-p}{2}\right], \nu+p-\frac{p+k}{2}-\left[\frac{k-p}{2}\right]-\frac{k-p}{2} \leq 0$ there exists a
constant M independent of n, ϵ and δ s.t.
(13) $\quad\left|\sum_{2}\right| \leq M$ for all sufficiently large n. To estimate \sum_{3}, first of all we notice that there exist a positive integer p and a positive constant P such that

$$
\left|\left[\left\{\left(\frac{m}{u}\right) e^{-\left(\frac{x}{u}\right)^{m}}\left(\frac{x}{u}\right)^{m-1}\right\}\left\{1-\left(\frac{x}{u}\right)^{m-1}\right\}\right]^{k} g_{\nu, p, k}(x, u)\right| \leq P\left(1+u^{-m}\right), u \in
$$

$I R^{+}$
and $0 \leq p \leq k, 0 \leq \nu \leq\left[\frac{k-p}{2}\right]$. Hence by Lemma1, we have

$$
\begin{aligned}
&\left|\sum_{3}\right| \leq P \sum_{p=0}^{k} \sum_{\nu=0}^{\left[\frac{k-p}{2}\right]} n^{\nu+p} x^{m n+\alpha-1} D(m, n, \alpha) \\
& \times \int_{0}^{\infty} u^{-m n-\alpha}\left(1+u^{-m}\right)\left(\frac{x}{u}\right)^{m n-k} e^{-(n-k)\left(\frac{x}{u}\right)^{m}} f(u) \chi_{\delta, x}^{c}(u) d u \\
&=P \sum_{p=0}^{k} \sum_{\nu=0}^{\left[\frac{k-p}{2}\right]} n^{\nu+p} \frac{D(m, n, \alpha)}{D(m, n-k, \alpha)} L_{n-k}\left(f \chi_{\delta, x} ; x\right)+
\end{aligned}
$$

$\frac{D(m, n, \alpha)}{D^{* *}(m, n-k, \alpha)} L_{n-k}^{* *}\left(f \chi_{\delta, x}^{c} ; x\right)$
where $L_{n}^{* *}$ corresponds to to the operator (1) with α replaced by $\alpha+m$ and $D^{* *}(m, n, \alpha)$ refers to $D(m, n, \alpha)$ for $L_{n}^{* *}$. We observe that

$$
\lim _{n \rightarrow \infty} \frac{D(m, n, \alpha)}{D(m, n-k, \alpha)}=\lim _{n \rightarrow \infty} \frac{D(m, n, \alpha)}{D^{* *}(m, n-k, \alpha)}
$$

Also, by the definition of the operator L_{n}, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{\nu+p} L_{n-k}\left(f \chi_{\delta, x}^{c} ; x\right)= \lim _{n \rightarrow \infty} n^{\nu+p} L_{n-k}^{* *}\left(f \chi_{\delta, x}^{c} ; x\right) \\
&=0
\end{aligned}
$$

It follows that $\sum_{3} \rightarrow 0$ as $n \rightarrow \infty$. In view of this fact and (11) - - (13), it follows that there exists an n_{0} s.t.

$$
\left|L_{n}^{(k)}(f ; x)-f^{(k)}(x)\right|<(2+M) \epsilon, n>n_{0}
$$

Since M does not depend on ϵ we have (10).

The uniformity part is easy to derive from the above proof by noting that, to begin with, δ can be chosen independent of $x \in[a, b]$ so that $\left|h_{x}(u)\right| \leq \epsilon$ for $x \in[a, b]$ whenever $|u-x| \leq \delta$. Then, it is clear that the various constants occuring in the above proof can be chosen independent of $x \in[a, b]$. This completes the proof of the theorem.

Finally, we show that the asymptotic formula of Theorem 2 remains valid in the pointwise simultaneous approximation as well. We observe that the difference between Theorem 2 and the following one lies in the assumptions of f. We have

Theorem 6. : If $f \in D_{\Omega}$, then

$$
\left.\begin{array}{rl}
L_{n}^{(k)}(f ; x)-f^{(k)}(x)= & -\frac{1}{2 n m^{2}}[\tag{14}
\end{array} f^{(k)}(x) k\{(2 \alpha-k-5)\}+\right]+.
$$

whenever $x \in I R^{+}$is s.t. $f^{(k+2)}(x)$ exists. Also if $f^{(k+2)}(x)$ exists and is continuous on $\langle a, b\rangle$, (14) holds uniformly in $x \in[a, b]$.
Proof. If $f^{(k+2)}$ exists, we have

$$
f(u)=\sum_{p=0}^{k+2} \frac{f^{(p)}(x)}{p!}(u-x)^{p}+h(u, x),
$$

where $h(u, x) \in D_{\Omega}$ and for any $\epsilon>0$, there exist a $\delta>0$ s.t. $|h(u, x)| \leq$ $\epsilon|u-x|^{k+2}$ for all sufficiently $|u-x| \leq \delta$. Thus,

$$
\begin{equation*}
L_{n}^{(k)}(f ; x)=L_{n}^{(k)}(Q ; x)+L_{n}^{(k)}(h(u, x) ; x) \tag{15}
\end{equation*}
$$

where

$$
Q=\sum_{p=0}^{k+2} \frac{f^{(p)}(x)}{p!}(u-x)^{p} \text { is a polynomial in } u \text {. Clearly }
$$

$Q \in D_{\Omega}^{(k)}$. Also,

$$
Q^{(p)}(x)=f^{(p)}(x), \text { for } p=k, k+1, k+2
$$

Hence, applying Theorem 2 , we have

$$
\begin{align*}
L_{n}^{(k)}(Q ; x)-f^{(k)}(x) & =-\frac{1}{2 n m^{2}}\left[k(2 \alpha-k-m-2) f^{(k)}(x)+\right. \tag{16}\\
& \left.+(2 \alpha-2 k-m-3) x f^{(k+1)}(x)+x^{2} f^{(k+2)}(x)\right]+o\left(\frac{1}{n}\right),
\end{align*}
$$

$n \rightarrow \infty$.
To establish (14), it remains to show that
(17) $\left|L_{n}^{(k)}(h(u, x) ; x)\right| \leq D(m, n, \alpha) x^{\alpha-1} \sum_{p=0}^{k} \sum_{\nu=0}^{\left[\frac{k-p}{2}\right]} m n^{\nu+p} \int_{0}^{\infty} x^{m n} u^{-m n-\alpha-1} e^{-n\left(\frac{x}{u}\right)^{m}}$ $\times\left|\left(\frac{x}{u}\right)^{m-1} e^{-\left(\frac{x}{u}\right)^{m}}\left\{1-\left(\frac{x}{u}\right)\right\}^{m-1}\right| g_{\nu, p, k}(x, u)\left\{h(u, x) \chi_{\delta, x}^{c}(u)+\right.$ $\left.\epsilon|u-x|^{k+2}\right\} d u$

Proceeding as in the proof of Theorem5, we find that the term corresponding to ϵ in the above is bounded by $\frac{\epsilon M}{n}$ for some M independent of ϵ and n and $\chi_{\delta, x}^{c}-$ term contributes only a $o\left(\frac{1}{n}\right)$ quantity (in fact $o\left(\frac{1}{n^{s}}\right)$ for an arbitrary $s>0$). Then in view of arbitraryness of $\epsilon>0,(17)$ follows.

The uniformity part follows as a remark similar to that made for the proof of the uniformity part of Theorem5. This completes the proof of the theorem.

In the rest of the paper, we study the second problem.

4. Some Direct Theorems for Linear Combinations

In this section we give some direct theorems for the the linear combinations of the operators L_{n}. First, we give some definitions. The $k^{t h}$-moment $\mu_{n, k}(x), k \in I N^{0}$ (set of non-negative integers) of the operators L_{n} [5] is defined by

$$
\begin{equation*}
\mu_{n, k}(x)=L_{n}\left((u-x)^{k} ; x\right)=x^{k} \tau_{n, k} \quad(\text { say }) \tag{18}
\end{equation*}
$$

Clearly, $\tau_{n, k}$ is independent of x.Now we first prove the lemma on the moments $\mu_{n, k}$.

Lemma 2. : If $k \in I N^{0}$. Then there exist constants $\gamma_{k, \nu}, \nu \geq\left[\frac{k+1}{2}\right]$ s.t. the following asymptotic expansion is valid:

$$
\begin{equation*}
\tau_{\nu, k}=\sum_{\nu=\left[\frac{k+1}{2}\right]}^{\infty} \gamma_{k, \frac{\nu}{n}} \nu, \quad n \rightarrow \infty \tag{19}
\end{equation*}
$$

Proof. Let $\frac{1}{3}<\gamma<\frac{1}{2}$. Then

$$
\begin{aligned}
\tau_{n, k}=\int_{1-n^{-\gamma}}^{1+n^{-\gamma}} s^{\alpha-k-2}(1-s)^{k} \exp \left[n \operatorname { l o g } \left\{e^{-1}-m^{2} \frac{(s-1)^{2}}{2!} e^{-1}+\right.\right. \\
\left.\left.\left.\ldots+\frac{(s-2)^{2 p}}{2 p!}\left(\frac{d^{2 p}}{d x^{2 p}}\left\{\left(\frac{x}{u}\right)^{m} e^{-\left(\frac{x}{u}\right)^{m}}\right\}\right)\right)_{\frac{x}{u}=1}^{u}+o\left((s-1)^{2 p}\right)\right\}\right] d s,
\end{aligned}
$$

$$
\begin{align*}
= & e^{-n} \int_{1-n^{-\gamma}}^{1+-} s^{\alpha-k-2}(1-s)^{k} \exp \left[-n m^{2} \frac{(s-1)^{2}}{2}\right] \\
& \times \exp \left[\left\{C_{3}(s-1)^{3}+C_{4}(s-1)^{4}+\ldots+C_{2 p}(s-1)^{2 p}+o\left((s-1)^{2 p}\right)\right\}\right] d s
\end{align*}
$$

$C_{i}^{\prime} s$ being constants.

$$
=e^{-n} \int_{1-n^{-\gamma}}^{1+n^{-\gamma}} s^{\alpha-k-2}(1-s)^{k} \exp \left[-n m^{2} \frac{(s-1)^{2}}{2}\right]\left\{1+\sum_{3 \leq 3 i \leq j \leq\left[2 p+\frac{i-1}{\gamma}\right]} b_{i j} n^{i}(s-\right.
$$

$\left.1)^{j}+o\left(n^{1-2 p \gamma}\right)\right\} d s$
$b_{i j}^{\prime} s$ depending on $C_{i}^{\prime} s$.

$$
\begin{aligned}
=e^{-n} \int_{1-n^{-\gamma}}^{1+n^{-\gamma}} \exp \left[-n m^{2} \frac{(s-1)^{2}}{2}\right][& \left\{\sum_{l=0}^{2 p-\frac{1}{\gamma}} a_{l}(s-1)^{k+l}\right\} \\
& \times\left\{1+\sum_{3 \leq 3 i \leq j \leq\left[2 p+\frac{i-1}{\gamma}\right]} b_{i j} n^{i}(s-1)^{j}\right\}+
\end{aligned}
$$

$\left.o\left(n^{1-(2 p+k) \gamma}\right)\right] d s$

$$
=e^{-n} \int_{1-n^{-\gamma}}^{1+n^{-\gamma}} \exp \left[-n m^{2} \frac{(s-1)^{2}}{2}\right]\left[\sum_{\substack{3 \leq 3 i \leq j \leq\left[2 p+\frac{i-1}{\gamma}\right] \\ 0 \leq l \leq\left[2 p-\frac{1}{\gamma}\right]}} d_{i j l} n^{i}(s-1)^{j+k+l}+\right.
$$

$\left.o\left(n^{1-(2 p+k) \gamma}\right)\right] d s$
where $d_{i j l}^{\prime} s$ are certain constants depending on $a_{l}^{\prime} s$ and $b_{i j}^{\prime} s$ and vanish if $j+k+l$ is odd.

Using substitutions we get

$$
\begin{aligned}
& =2^{\frac{1}{2}} \frac{e^{-n}}{m n^{\frac{1}{2}}} \int_{0}^{-n} \frac{t^{\left[\frac{j+k+l+1}{2}\right]-\frac{1}{2}}}{e^{t}}\left[1+\gamma m^{2} \sum_{\left(0 \leq 3 i \leq j \leq\left[2 p+\frac{i-1}{\gamma}\right]\right)} d_{i j l}^{*} n^{i-\left[\frac{j+k+l-1}{2}\right]}+\right. \\
& \text { where } d_{i j l}^{*}=d_{i j l}\left\{\frac{2}{m^{2}}\right\}^{\left[\frac{j+k+l-1}{2}\right]} \text {. } \\
& =2^{\frac{1}{2}} \frac{e^{-n}}{m n^{\frac{1}{2}}\left[\sum_{\substack{0 \leq 3 i \leq j \leq\left[2 p+\frac{i-1}{\gamma}\right] \\
0 \leq l \leq\left[2 p-\frac{1}{\gamma}\right]}} d_{i j l}^{* *} n^{i-\left[\frac{j+k+l-1}{2}\right]}+o\left(n^{2-(2 p+2+k) \gamma}\right)\right]}
\end{aligned}
$$

where $d_{i j l}^{* *}=d_{i j l}^{*} \Gamma\left(\left(\left[\frac{j+k+l-1}{2}\right]\right)^{\gamma}+\frac{1}{2}\right)$ and we have made use of the fact that by enlarging the integral in the above from 0 to ∞, we are only adding the terms in n which decay exponentially and therefore can be absorbed in the o-term.

Next, we analyse the expression

$$
\int_{(0, \infty)-\left(1-n^{-\gamma}, 1+n^{-\gamma}\right)} s^{m n+\alpha-k-2}(1-s)^{k} e^{-n s^{m}} d s=E(n) \quad(\mathrm{say})
$$

We have for any positive integer q,

$$
|E(n)| \leq n^{\gamma q} D^{* *}(m, n, \alpha) L_{n}^{* *}\left(|u-1|^{k+q} ; 1\right)
$$

where $D^{* *}(m, n, \alpha)$ and $L_{n}^{* *}$ are the same as considered in the proof of Theorem 5 .
By making use of an estimate for the operators $L_{n}^{* *}$, we have

$$
|E(n)| \leq A n^{\gamma q-\frac{k+q}{2}} D^{* *}(m, n, \alpha)
$$

where A is certain constant not depending upon n. Again making use of the same estimate as above for $D^{* *}(m, n, \alpha)$, we have

$$
e^{n}|E(n)|=o\left(n^{\gamma q-\frac{k+q+1}{2}}\right)
$$

Thus, choosing q s.t.

$$
\begin{aligned}
& p \geq \frac{2(2 p+2+k)}{1-2 \gamma}, \text { we have } \\
& \quad \int_{0}^{\infty} s^{m n+\alpha-k-2}(1-s)^{k} e^{-n s^{m}} d s \\
& =2^{\frac{1}{2}} \frac{e^{-n}}{m n^{\frac{1}{2}}}\left[\sum_{\left(0 \leq 3 i \leq j \leq\left[2 p+\frac{i-1}{\gamma}\right]\right.} d_{i j l}^{* *} n^{i-\left[\frac{j+k+l-1}{2}\right]}+o\left(n^{2-(2 p+k+2) \gamma}\right)\right] .
\end{aligned}
$$

Now, for all indices under consideration we have

$$
\left[\frac{j+k+l+1}{2}\right]-i=\left[\frac{j-2 i+k+l+1}{2}\right] \geq\left[\frac{k+1}{2}\right],
$$

and since p could be chosen arbitrarily large, there exist constants $C_{k, \nu}, \nu \geq\left[\frac{k+1}{2}\right]$ s.t. we have the following asymptotic expansion

$$
\begin{aligned}
& \int_{0}^{\infty} s^{m n+\alpha-k-2}(1-s)^{k} e^{-n s^{m}} d s \\
= & 2^{\frac{1}{2}} \frac{e^{-n}}{m n^{\frac{1}{2}}} \sum_{\nu=\left[\frac{k+1}{2}\right]}^{\infty} \frac{\frac{C_{k}, \nu}{n^{\nu}}}{}
\end{aligned}
$$

Noting that $C_{0,0}=1$, it follows that there exist constants $\gamma_{k, \nu}, \nu \geq\left[\frac{k+1}{2}\right]$ s.t. (19) holds. This completes the proof of Lemma2.

For any fixed set of positive constants $\alpha_{i}, i=0,1,2, \ldots, k$ following [9] the linear combination $L_{n, k}$ of the operators $L_{\alpha_{i}, n}, i=0,1,2, \ldots k$ is defined by

$$
L_{n, k}(f ; x)=\frac{1}{\triangle}\left|\begin{array}{cccccc}
L_{\alpha_{0} n}(f ; x) & \alpha_{0}^{-1} & \alpha_{0}^{-2} & \ldots & \ldots & \alpha_{0}^{-k} \tag{20}\\
L_{\alpha_{1} n}(f ; x) & \alpha_{1}^{-1} & \alpha_{1}^{-2} & \ldots & \ldots & \alpha_{1}^{-k} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
L_{\alpha_{k} n}(f ; x) & \alpha_{k}^{-1} & \alpha_{k}^{-2} & \ldots & \ldots & \alpha_{k}^{-k}
\end{array}\right|
$$

where \triangle is the determinant obtained by replacing the operator column by the entries '1'. Clearly
(21) $\quad L_{n, k}=\sum_{j=0}^{k} C(j, k) L_{\alpha_{j} n}$,
for constants $C(j, k), j=0,1,2, \ldots, k$ which satisfy $\sum_{j=1}^{k} C(j, k)=1$.
$L_{n, k}$ is called a linear combination of order $k . L_{n, 0}$ denotes the operator L_{n} itself.
Theorem 7. : If $f \in D_{\Omega}$. If at a point $x \in I R^{+}, f^{(2 k+2)}$ exists, then

$$
\begin{gather*}
\left|L_{n, k}(f ; x)-f(x)\right|=O\left(n^{-(k+1)}\right) \tag{22}\\
\left|L_{n, k+1}(f ; x)-f(x)\right|=o\left(n^{-(k+1)}\right) \tag{23}
\end{gather*}
$$

where $k=0,1,2, \ldots$. Also, if $f^{(2 k+2)}$ exists and is continuous on $<a, b>\subset I R^{+}$, (22) - - (23) hold uniformly on $[a, b]$.

Proof. First we show that
(24) $L_{n}(f ; x)-f(x)=\sum_{j=1}^{2 k+2} \frac{x^{j} f^{(j)}(x)}{j!} \tau_{n, j}+o\left(n^{-(k+1)}\right)$,
if $x \in I R^{+}$is such that $f^{(2 k+2)}$ exists and $f \in D_{\Omega}$. To prove (24) with the assumption on f, we have

$$
f(u)-f(x)=\sum_{j=1}^{2 k+2} \frac{f^{(j)}(x)}{j!}(u-x)^{j}+R_{x}(u) ; \quad u \rightarrow x
$$

where $R_{x}(u)=o\left((u-x)^{2 k+2}\right), u \rightarrow x$. It is clear from the definition of $\tau_{n, j}$ that we only have to show that
(25) $\quad L_{n}\left(R_{x}(u) ; x\right)=o\left(n^{-(k+1)}\right)$.

Obviously, $R_{x}(u) \in D_{\Omega}$. Now, given an arbitrary $\epsilon>0$, we can choose a $\delta>0$ s.t.

$$
\left|R_{x}(u)\right| \leq \epsilon(u-x)^{2 k+2},|u-x| \leq \delta
$$

Hence, by using the basic properties of $L_{n}[1]$, we note that the result follows.In this case the uniformity part is obvious. Now, using Lemma2 and (24) we get

$$
\begin{equation*}
L_{n}(f ; x)-f(x)=\sum_{j=1}^{2 k+2} \frac{x^{j} f^{(j)}(x)}{j!} \sum_{\nu=\left[\frac{j+1}{2}\right]}^{k+1} \frac{\gamma_{j, \nu}}{n^{\nu}}+o\left(n^{-(k+1)}\right), \tag{26}
\end{equation*}
$$

which, in the uniformity case holds uniformly in $x \in[a, b]$.Since the coefficients $C(j, k)$ in (21) obviously satisfy the relation
(27) $\quad \sum_{j=0}^{k} C(j, k) \alpha_{j}^{-p}=0, p=1,2,3, \ldots, k$.

In view of $(26),(22)--(23)$ are immediate and so is the uniformity part. This completes the proof of Theorem 7 .

In the same spirit we have,
Theorem 8. : Let $f \in D_{\Omega}$. If $0 \leq p \leq 2 k+2$ and $f^{(p)}$ exists and is continuous on $<a, b>\subset I R^{+}$, for each $x \in[a, b]$ and sufficiently large n then (28) $\quad\left|L_{n, k}(f ; x)-f(x)\right| \leq \max \left[C n^{-\frac{p}{2}} \omega\left(f^{(p)} ; n^{-\frac{1}{2}}\right), C^{\prime} n^{-(k+1)}\right]$
where $C=C(k)$ and $C^{\prime}=C^{\prime}(k, f)$ are constants and $\omega\left(f^{(p)} ; \delta\right)$ denotes the local modulus of continuity of $f^{(p)}$ on $\langle a, b\rangle$.
Proof. :There exists a $\delta>0$ s.t. $[a-\delta, b+\delta] \subset<a, b>$. It is clear that if $u \in<a, b\rangle$, there exists an η lying between $x \in[a, b]$ and u s.t.
(29) $\left|f(u)-f(x)-\sum_{j=1}^{p} \frac{f^{(j)}(x)}{j!}(u-x)^{j}\right| \leq \frac{|u-x|^{p}}{p!}\left(1+|u-x| n^{\frac{1}{2}}\right) \omega\left(f^{(p)} ; n^{-\frac{1}{2}}\right)$,
using a well known result on modulus of continuity [13]. If the expression occuring within the modulus sign on L.H.S. of the above inequality is denoted by $F_{x}(u)$, by a well known property of L_{n}, it follows that

$$
L_{\alpha_{j} n}\left(F_{x}(u) \chi_{\delta, x}^{c}(u) ; x\right)=o\left(n^{-(k+1)}\right)
$$

uniformly in $x \in[a, b]$. By (29), we have
(30) $\quad\left|L_{\alpha_{j} n}\left(F_{x}(u) \chi_{\delta, x}^{c}(u) ; x\right)\right| \leq \frac{b^{p}}{p!}\left(A_{p}+A_{p-1}\right)\left(\alpha_{j} n\right)^{-\frac{p}{2}} \omega\left(f^{(p)} ; n^{-\frac{1}{2}}\right)$
for all n sufficiently large and $x \in[a, b]$. Here A_{p}, A_{p-1} are constants depending on p. Hence, for a constant C_{p} independent of f such that for all $x \in[a, b]$,

$$
\begin{equation*}
\left|L_{n, k}\left(F_{x}(u) \chi_{\delta, x}^{c}(u) ; x\right)\right| \leq C_{p} n^{-\frac{p}{2}} \omega\left(f^{(p)} ; n^{-\frac{1}{2}}\right) \tag{31}
\end{equation*}
$$

Applying the result (22) for the functions $1, u, u^{2}, u^{3}, \ldots, u^{p}$, we find that there exists a constant $C^{\prime \prime}$ depending on $\max \left\{\left|f^{\prime}(x)\right|, \ldots,\left|f^{(p)}(x)\right| ; x \in[a, b]\right\}$ and p such that for all $x \in[a, b]$,

$$
\begin{equation*}
\left|L_{n, k}\left(\sum_{j=1}^{p} \frac{f^{(j)}(x)}{j!}(u-x)^{j} ; x\right)\right| \leq C^{\prime \prime} n^{-(k+1)} \tag{32}
\end{equation*}
$$

Now, (28) is clear from (30) - -(32). This completes the proof of the Theorem.

Theorem 9. : Let $f \in D_{\Omega}$. If at a point $x \in I R^{+}, f^{(2 k+p+2)}$ exists then

$$
\begin{align*}
\left|L_{n, k}^{(p)}(f ; x)-f^{(p)}(x)\right| & =O\left(n^{-(k+1)}\right), \text { and } \tag{33}\\
\left|L_{n, k+1}^{(p)}(f ; x)-f^{(p)}(x)\right| & =o\left(n^{-(k+1)}\right),
\end{align*}
$$

where $k=0,1,2, \ldots$. Also, if $f^{(2 k+p+2)}$ exists and is continuous on $\langle a, b>\subset$ $I R^{+},(33)---(34)$ hold uniformly in $x \in[a, b]$.

Proof. If $f^{(2 k+p+2)}$ exists, we can find a neighbourhood (a^{\prime}, b^{\prime}) of x s.t. $f^{(p)}$ exists and is continuous on $\left(a^{\prime}, b^{\prime}\right)$. Let $g(u)$ be an infinitely differentiable function with supp $g \subseteq\left(a^{\prime}, b^{\prime}\right)$ s.t. $g(u)=1$ for $u \in[x-\delta, x+\delta]$ for some $\delta>0$. Then an application of Lemma 1 shows that
(35) $\quad L_{n, k}^{(p)}(f(u)-f(u) g(u) ; x)=o\left(n^{-(k+1)}\right)$.

In the uniformity case, we consider a $g(u)$ with supp $g \subset<a, b>$ with $g(u)=1$,
for $u \in[a-\delta, b+\delta] \subseteq<a, b>$ and then (34) holds uniformly in $x \in[a, b]$. since $f(u) g(u) \in C_{b}^{(p)} I R^{+}$we have

$$
\begin{equation*}
L_{n}^{(p)}(f g ; x)=x^{-p} L_{n}\left(u^{p}\{f(u) g(u)\}^{(p)} ; x\right) \tag{36}
\end{equation*}
$$

Now, since $u^{p}\{f(u) g(u)\}^{(p)}$ is (2k+2)-times differentiable at x (and continuously differentiable on ($a-\delta, b+\delta$) in the uniformity case), applying Theorem 7 we have
(37) $\left|L_{n, k}^{(p)}(f g ; x)-f^{(p)}(x)\right|=O\left(n^{-(k+1)}\right)$, and
(38) $\quad\left|L_{n, k+1}^{(p)}(f g ; x)-f^{(p)}(x)\right|=o\left(n^{-(k+1)}\right)$,
where, in the uniformity case these holds in $x \in[a, b]$. Thus, combining (35) -$--(38)$, we get (33) $---(34)$. This completes the proof .

Theorem 10. : Let $m \in I N$, and $f \in D_{\Omega}$. If $0 \leq q \leq 2 k+2$ and $f^{(p+q)}$ exists and is continuous on $<a, b>\subseteq I R^{+}$for each $x \in[a, b]$, then for all sufficiently large n,

$$
\begin{equation*}
\left|L_{n, k}^{(p)}(f ; x)-f^{-(p)}(x)\right| \leq \max \left\{C_{p} n^{-\left(\frac{k}{2}\right)} \omega\left(f^{(p+q)} ; n^{-\frac{1}{2}}\right), C_{p}^{\prime} n^{-(k+1)}\right\} \tag{39}
\end{equation*}
$$

where $C_{p}=C_{p}(k), C_{p}^{\prime}=C_{p}^{\prime}(k, f)$ are constants and $\omega\left(f^{(p+q)} ; \delta\right)$ denotes the local modulus of continuity of $f^{(p+q)}$ on $\langle a, b\rangle$.

Proof. : The proof of this Theorem follows from Lemma1 and Theorem5--9.

References

[1] BRAMHA DUTTA PANDEY AND B. KUNWAR, On a class of positive linear operators(communicated).
[2] R. A. DEVORE AND G. G. LORENTZ, Constructive Approximation. Springer-Verlag Berlin Heidelberg, New York, (1993).
[3] P.P. KOROVKIN, Linear Operators and Approximation Theory (1960), Delhi. (Translated from Russian edition of 1959).
[4] B. Kunwar, Approximation of analytic functions by a class of linear positive operators, J. Approx. Theory 44. 173-182 (1985).
[5] G. G. LORENTZ, Bernstein Polynomials, Toronto (1953).
[6] C. P. MAY, Saturation and inverse theorems for combination of a class of exponential type operators. Canad. J. Math. 28,(1976), 1224-50.
[7] M. W.MULLER, Die Folge der Gamma operatoren.Thesis,Technische Hoschule,Stuttgort.(1967).
[8] Paula Anamaria Piţul, Evaluation of the approximation order by positive linear operators, Ph. D. Thesis, Universitatea Babeş Bolyai(Romania) 2007.
[9] R. K. S. RATHORE, Linear combinations of linear positive operators and generating relations in special functions, Dissertation, IIT Delhi (India) (1973).
[10] R. K. S. RATHORE, Approximation of unbounded functions with Linear Positive Operators, Doctoral Dissertation, Technische Hogeschool Delft (1974).
[11] P. C. SIKKEMA AND R. K. S. RATHORE,Convolution with powers of bell shaped functions. Report, Dept. of Math. Technische Hogeschool (1976).
[12] P. C. SIKKEMA, Approximation formulae of Voronovskaya- type for certain convolution operators, J. Approx. Theory 26(1979), 26-45.
[13] A. F. TIMAN, Theory of Approximation of Functions of a Real variable, Peargamon Press (1963).
${ }^{1}$ Department of Applied Sciences and Humanities, Institute of Engineering and Technology, Lucknow-21 (India)
${ }^{2}$ Department of Applied Sciences and Humanities, Institute of Engineering and Technology, Lucknow-21 (India)
*Corresponding author
The author is thankful to Councel of Scientific and Industrial Research, INDIA for providing financial assistance for this research work under grant no.09/827(0004).

[^0]: 2000 Mathematics Subject Classification. Primary 41A35, 41A38; Secondary 41A25, 41A60.
 Key words and phrases. Positive linear operators, Simultaneous approximation, Linear

