SOLVABILITY OF EXTENDED GENERAL STRONGLY MIXED VARIATIONAL INEQUALITIES

BALWANT SINGH THAKUR

Abstract

In this paper, a new class of extended general strongly mixed variational inequalities is introduced and studied in Hilbert spaces. An existence theorem of solution is established and using resolvent operator technique, a new iterative algorithm for solving the extended general strongly mixed variational inequality is suggested. A convergence result for the iterative sequence generated by the new algorithm is also established.

1. Introduction and Preliminaries

Variational inequality theory, which was introduced by Stampacchia [24] in 1964, has had a great impact and influence in the development of several branches on pure and applied sciences. A useful and important generalization of variational inequality is the general mixed variational inequality containing a nonlinear term φ. Finding fixed points of a nonlinear mapping is an equally important problem in the functional analysis. Equivalent fixed point formulation of a variational inequality problem, has given a new dimension to the study of solution of variational inequality problems.

In many problems of analysis, one encounters operators who may be split in the form $S=A \pm T$, where A and T satisfies some conditions, and S itself has neither of these properties. An early theorem of this type was given by Krasnoselskii [12], where a complicated operator is split into the sum of two simpler operators. There is another setting arises from perturbation theory. Here the operator equation $T x \pm A x=x$ is considered as a perturbation of $T x=x$ (or $A x=x$), and one would like to assert that the original unperturbed equation has a solution. In such a situation, there is, in general, no continuous dependence of solutions on the perturbations. For various results in this direction, please see $[4,7,8,11,22,26]$. Another argument is concerned with the approximate solution of the problem: For $f \in H$, find $x \in H$ such that $T x \pm A x=f$. Here $T, A: H \rightarrow H$ are given operators. Many boundary value problems for quasi linear partial differential equations arising in physics, fluid mechanics and other areas of applications can be formulated as the equation $T x \pm A x=f$, see, e.g. Zeidler [28]. Combettes and Hirstoaga [5] showed that the finding of zeros of sum of two operators can be solved via the variational inequality involving sum of two operators. Several authors study this

[^0]type of situations, see, e.g. [6, 21] and references therein. Motivated by these facts, in this paper we study a variational inequality problem involving operator of the form $T-A$.

Let H be a real Hilbert space whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$, respectively. Let $\varphi: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex lower semicontinuous function. Let $T: H \rightarrow H$ be a nonlinear operator and $g, h: H \rightarrow H$ are any mappings. We consider the problem of finding $x^{*} \in H$ such that

$$
\begin{equation*}
\left\langle T\left(x^{*}\right)-A\left(x^{*}\right), h\left(y^{*}\right)-g\left(x^{*}\right)\right\rangle+\varphi\left(h\left(y^{*}\right)\right)-\varphi\left(g\left(x^{*}\right)\right) \geq 0, \quad \forall y^{*} \in H \tag{1}
\end{equation*}
$$

where A is a nonlinear continuous mapping on H and $\partial \varphi$ denotes the subdifferential of φ. We call inequality (1) as extended general strongly mixed variational inequality. We now consider some special cases of the problem (1) :
(1) If $A \equiv 0$, then the problem (1) reduces to the extended general mixed variational inequality problem considered in [20]
(2) If h is an identity mapping on H, then the problem (1) reduces to the problem studied by [10].
(3) If $A \equiv 0$ and $h \equiv g$, then the problem (1) reduces to the general mixed variational inequality problem considered in $[2,17,18,19]$.
(4) If h, g be identity mappings on H, then the problem (1) reduces to a class of variational inequality studied by [25].
(5) If $A \equiv 0$ and h, g be identity mappings on H, then the problem (1) reduces to the mixed variational inequality or variational inequality of second kind see $[1,9,15,16]$.
For a multivalued operator $T: H \rightarrow H$, we denote by

$$
D(T)=\{u \in H: T(u) \neq \emptyset\}
$$

the domain of T,

$$
R(T)=\bigcup_{u \in H} T(u)
$$

the range of T,

$$
\operatorname{Graph}(T)=\left\{\left(u, u^{*}\right) \in H \times H: u \in D(T) \text { and } u^{*} \in T(u)\right\},
$$

the graph of T.
Definition 1.1. T is called monotone if and only if for each $u \in D(T), v \in D(T)$ and $u^{*} \in T(u), v^{*} \in T(v)$, we have

$$
\left\langle v^{*}-u^{*}, v-u\right\rangle \geq 0
$$

T is maximal monotone if it is monotone and its graph is not properly contained in the graph of any other monotone operator.
T^{-1} is the operator defined by

$$
v \in T^{-1}(u) \Leftrightarrow u \in T(v)
$$

Definition 1.2 (See [3]). For a maximal monotone operator T, the resolvent operator associated with T, for any $\sigma>0$, is defined as

$$
J_{T}(u)=(I+\sigma T)^{-1}(u), \quad \forall u \in H
$$

It is known that a monotone operator is maximal if and only if its resolvent operator is defined everywhere. Furthermore, the resolvent operator is single-valued and nonexpansive i.e. $\left\|J_{T}(x)-J_{T}(y)\right\| \leq\|x-y\|, \forall x, y \in H$. In particular, it is well known that the subdifferential $\partial \varphi$ of φ is a maximal monotone operator; see [13].

Lemma 1.3. [3] For a given $z \in H, u \in H$ satisfies the inequality

$$
\langle u-z, x-u\rangle+\lambda \varphi(x)-\lambda \varphi(u) \geq 0, \quad \forall x \in H
$$

if and only if $u=J_{\varphi}(z)$, where $J_{\varphi}=(I+\lambda \partial \varphi)^{-1}$ is the resolvent operator and $\lambda>0$ is a constant.

Inequality (1), can be written in an equivalent form as follows:
Find $x^{*} \in H$ such that
(2)

$$
\begin{aligned}
& \left\langle\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)+g\left(x^{*}\right)-h\left(x^{*}\right), h\left(y^{*}\right)-g\left(x^{*}\right)\right\rangle+\rho \varphi\left(h\left(y^{*}\right)\right)-\rho \varphi\left(g\left(x^{*}\right)\right) \geq 0, \\
& \text { for all } y^{*} \in H .
\end{aligned}
$$

This equivalent formulation plays an important role in the development of iterative methods for solving the mixed variational inequality problem (1).

Using Lemma 1.3, we will establish following important relation:
Lemma 1.4. $x^{*} \in H$ is a solution of (2) if and only if x^{*} satisfies the following relation

$$
\begin{equation*}
g\left(x^{*}\right)=J_{\varphi}\left(h\left(x^{*}\right)-\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)\right), \tag{3}
\end{equation*}
$$

where $\rho>0$ is a constant and $J_{\varphi}=(I+\rho \partial \varphi)^{-1}$ is the proximal mapping, I stands for the indentity operator on H.
Proof. Let $x^{*} \in H$ be a solution of problem (2), then
(4)
$\left\langle g\left(x^{*}\right)-\left(h\left(x^{*}\right)-\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)\right), h\left(y^{*}\right)-g\left(x^{*}\right)\right\rangle+\rho \varphi\left(h\left(y^{*}\right)\right)-\rho \varphi\left(g\left(x^{*}\right)\right) \geq 0$, for all $y^{*} \in H$. Applying Lemma 1.3 for $\lambda=\rho$, inequality (4) is equivalent to

$$
g\left(x^{*}\right)=J_{\varphi}\left(h\left(x^{*}\right)-\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)\right),
$$

the required result.
Lemma 1.4 implies that the problem (2) is equivalent to the fixed point problem (3). This alternative equivalent formulation provides a natural connection between variatonal inequality problem (2) and the fixed point theory which will be used to prove existence result. The following lemma is in this sense :

Lemma 1.5. $x^{*} \in H$ is a solution of (2) if and only if x^{*} is a fixed point of the mapping F given by

$$
\begin{equation*}
F(u)=u-g(u)+J_{\varphi}(h(u)-\rho(T(u)-A(u))), \quad u \in H . \tag{5}
\end{equation*}
$$

Proof. Let $x^{*} \in H$ be a fixed point of the mapping F. Then

$$
g\left(x^{*}\right)=J_{\varphi}\left(h\left(x^{*}\right)-\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)\right) .
$$

From Lemma 1.4, x^{*} is a solution of (2).

We now recall some some definitions:
Definition 1.6. An operator $T: H \rightarrow H$ is said to be :
(i) strongly monotone, if for each $x \in H$, there exists a constant $\nu>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq \nu\|x-y\|^{2}
$$

holds, for all $y \in H$;
(ii) ϕ-cocoercive, if for each $x \in H$, there exists a constant $\phi>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq-\phi\|T(x)-T(y)\|^{2}
$$

holds, for all $y \in H$;
(iii) relaxed (ϕ, γ)-cocoercive or relaxed cocoercive with respect to constant (ϕ, γ), if for each $x \in H$, there exists constants $\gamma>0$ and $\phi>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq-\phi\|T(x)-T(y)\|^{2}+\gamma\|x-y\|^{2}
$$

holds, for all $y \in H$;
(iv) μ-Lipschitz continuous or Lipschitz with respect to constant μ, if for each $x, y \in H$, there exists a constant $\mu>0$ such that

$$
\|T(x)-T(y)\| \leq \mu\|x-y\| .
$$

2. Main Results

Lemma 1.5, is the main motivation for our next result:
Theorem 2.1. Let H be a real Hilbert space and $T, A, g, h: H \rightarrow H$ are operators. Suppose that the following assumptions are satisfied :
(i) T, g, h are relaxed cocoercive with constants $\left(\phi_{T}, \gamma_{T}\right),\left(\phi_{g}, \gamma_{g}\right),\left(\phi_{h}, \gamma_{h}\right) r e-$ spectively,
(ii) T, A, g, h are Lipschitz mappings with constants $\mu_{T}, \mu_{A}, \mu_{g}, \mu_{h}$ respectively. If

$$
1+\mu_{g}^{2}\left(1+2 \phi_{g}\right)>2 \gamma_{g}, \quad 1+\mu_{h}^{2}\left(1+2 \phi_{h}\right)>2 \gamma_{h}
$$

and

$$
\begin{equation*}
\rho \in\left(\frac{\left(\gamma_{T}-\phi_{T} \mu_{T}^{2}\right)-\sqrt{d}}{\mu_{T}^{2}+\mu_{A}^{2}}, \frac{\left(\gamma_{T}-\phi_{T} \mu_{T}^{2}\right)+\sqrt{d}}{\mu_{T}^{2}+\mu_{A}^{2}}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& d:=\left(\phi_{T} \mu_{T}^{2}-\gamma_{T}\right)^{2}-\frac{1}{2}\left(\mu_{T}^{2}+\mu_{A}^{2}\right)(1+\kappa(2-\kappa))>0 \\
& \kappa=\sqrt{1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right)}+\sqrt{1-2 \gamma_{h}+\mu_{h}^{2}\left(1+2 \phi_{h}\right)}
\end{aligned}
$$

then the problem (2) has a unique solution.
Proof. It is enough to show that the mapping F defined by (5) has a fixed point. For $u \in H$, set $p(u)=T(u)-A(u)$.

For all $x \neq y \in H$, we have

$$
\begin{align*}
\|F(x)-F(y)\| \leq & \|x-y-(g(x)-g(y))\| \\
& +\left\|J_{\varphi}(h(x)-\rho(p(x)))-J_{\varphi}(h(y)-\rho(p(y)))\right\| \\
\leq & \|x-y-(g(x)-g(y))\|+\|h(x)-h(y)-\rho(p(x)-p(y))\| \\
\leq & \|x-y-(g(x)-g(y))\|+\|x-y-(h(x)-h(y))\| \\
& +\|x-y-\rho(p(x)-p(y))\| \tag{7}
\end{align*}
$$

Since g is relaxed $\left(\phi_{g}, \gamma_{g}\right)$-cocoercive and μ_{g}-Lipschitz mapping, we can compute the following:

$$
\begin{align*}
\|x-y-(g(x)-g(y))\|^{2} & =\|x-y\|^{2}-2\langle g(x)-g(y), x-y\rangle+\|g(x)-g(y)\|^{2} \\
& \leq\left(1+\mu_{g}^{2}\right)\|x-y\|^{2}+2 \phi_{g}\|g(x)-g(y)\|^{2}-2 \gamma_{g}\|x-y\|^{2} \\
& \leq\left(1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right)\right)\|x-y\|^{2} . \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\|x-y-(h(x)-h(y))\|^{2} \leq\left(1-2 \gamma_{h}+\mu_{h}^{2}\left(1+2 \phi_{h}\right)\right)\|x-y\|^{2} \tag{9}
\end{equation*}
$$

Also,

$$
\begin{align*}
\|x-y-\rho(p(x)-p(y))\|^{2} & =\|x-y-\rho(T(x)-T(y))+\rho(A(x)-A(y))\|^{2} \\
& \leq 2\|x-y-\rho(T(x)-T(y))\|^{2}+2 \rho^{2}\|A(x)-A(y)\|^{2} \\
& \leq 2\|x-y-\rho(T(x)-T(y))\|^{2}+2 \rho^{2} \mu_{A}^{2}\|x-y\|^{2} . \tag{10}
\end{align*}
$$

Now, we estimate

$$
\begin{align*}
\|x-y-\rho(T(x)-T(y))\|^{2} \leq & \|x-y\|^{2}-2 \rho\langle T(x)-T(y), x-y\rangle \\
& +\rho^{2}\|T(x)-T(y)\|^{2} \\
\leq & \left(1-2 \rho \gamma_{T}+2 \rho \mu_{T}^{2} \phi_{T}+\rho^{2} \mu_{T}^{2}\right)\|x-y\|^{2} \tag{11}
\end{align*}
$$

Substituting (11) into (10), gives

$$
\begin{equation*}
\|x-y-\rho(p(x)-p(y))\| \leq \sqrt{2\left(1-2 \rho \gamma_{T}+2 \rho \mu_{T}^{2} \phi_{T}+\rho^{2}\left(\mu_{T}^{2}+\mu_{A}^{2}\right)\right)}\|x-y\| \tag{12}
\end{equation*}
$$

Substituting (8), (9), (12) into (7), we have

$$
\|F(x)-F(y)\| \leq(\kappa+f(\rho))\|x-y\|
$$

where

$$
\kappa=\sqrt{1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right.}+\sqrt{1-2 \gamma_{h}+\mu_{h}^{2}\left(1+2 \phi_{h}\right)}
$$

and

$$
f(\rho)=\sqrt{2\left(1-2 \rho \gamma_{T}+2 \rho \mu_{T}^{2} \phi_{T}+\rho^{2}\left(\mu_{T}^{2}+\mu_{A}^{2}\right)\right)}
$$

From (6), we get that $(\kappa+f(\rho))<1$, thus F is a contraction mapping and therefore has a unique fixed point in H, which is a solution of variational inequality (2).

Remark 2.2. Theorem 2.1, extend and improve Theorem 3.1 of [20].

If K is closed convex set in H and $\varphi(x)=\delta_{K}(x)$, for all $x \in K$, where δ_{K} is the indicator function of K defined by

$$
\delta_{K}(x)=\left\{\begin{aligned}
0, & \text { if } x \in K \\
+\infty, & \text { otherwise }
\end{aligned}\right.
$$

then the problem (2) reduces to the following variational inequality problem: Consider the problem of finding $x^{*} \in K$

$$
\begin{equation*}
\left\langle\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)+g\left(x^{*}\right)-h\left(x^{*}\right), h\left(y^{*}\right)-g\left(x^{*}\right)\right\rangle \geq 0, \quad \forall y^{*} \in K \tag{13}
\end{equation*}
$$

We immediately obtain following result from Theorem 2.1 :
Corollary 2.3. Let H be a real Hilbert space, K be a nonempty closed convex subset of H and $T, A: H \rightarrow H$ and $g, h: K \rightarrow K$ are operators. Suppose that following assumptions are satisfied :
(i) T, g, h are relaxed cocoercive with constants $\left(\phi_{T}, \gamma_{T}\right),\left(\phi_{g}, \gamma_{g}\right),\left(\phi_{h}, \gamma_{h}\right)$ respectively,
(ii) T, A, g, h are Lipschitz mappings with constants $\mu_{T}, \mu_{A}, \mu_{g}, \mu_{h}$ respectively. If (6) holds, then the problem (13) has a unique solution.

If we take h as identity mapping in (13), we get an inequality, equivalent to the general strongly nonlinear variational inequality studied by Siddiqi and Ansari [23]. Corollary 2.3 partially extends and improves the result of [14, 23].

3. Iterative algorithm and convergence

We rewrite the relation (3) in the following form

$$
\begin{equation*}
x^{*}=x^{*}-g\left(x^{*}\right)+J_{\varphi}\left(h\left(x^{*}\right)-\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)\right) . \tag{14}
\end{equation*}
$$

Using the fixed point formulation (14), we now suggest and analyze the following iterative methods for solving the variational inequality problem (2).

Algorithm 1. For a given $x_{0} \in H$, find the approximate solution x_{n+1} by the iterative scheme

$$
x_{n+1}=x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(x_{n}\right)-\rho\left(T\left(x_{n}\right)-A\left(x_{n}\right)\right)\right), \quad n=0,1,2, \ldots
$$

which is called explicit iterative method.
Algorithm 2. For a given $x_{0} \in H$, find the approximate solution x_{n+1} by the iterative scheme

$$
x_{n+1}=x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(x_{n+1}\right)-\rho\left(T\left(x_{n+1}\right)-A\left(x_{n+1}\right)\right)\right), \quad n=0,1,2, \ldots
$$

which is an implicit iterative method.
Now, we use Algorithm 1 as predictor and Algorithm 2 as a corrector to obtain the following predictor-corrector method for solving variational inequality problem (1).

Algorithm 3. For a given $x_{0} \in H$, find the approximate solution x_{n+1} by the iterative scheme

$$
\begin{aligned}
y_{n} & =x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(x_{n}\right)-\rho\left(T x_{n}-A x_{n}\right)\right) \\
x_{n+1} & =x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(y_{n}\right)-\rho\left(T y_{n}-A y_{n}\right)\right), \quad n=0,1,2, \ldots .
\end{aligned}
$$

Using Algorithm 3, we can suggest following :
Algorithm 4. For a given $x_{0} \in H$, find the approximate solution x_{n+1} by the iterative scheme

$$
\begin{aligned}
y_{n} & =x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(x_{n}\right)-\rho\left(T x_{n}-A x_{n}\right)\right) \\
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(y_{n}\right)-\rho\left(T y_{n}-A y_{n}\right)\right)\right),
\end{aligned}
$$

where $n=0,1,2, \ldots, \quad\left\{\alpha_{n}\right\}$ is sequences in $[0,1]$, satisfying certain conditions.
Now, we define a more general predictor-corrector iterative method for approximate solvability of variational inequality problem (1).
Algorithm 5. For a given $x_{0} \in H$, find the approximate solution x_{n+1} by the iterative scheme

$$
\begin{align*}
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left(x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(x_{n}\right)-\rho\left(T x_{n}-A x_{n}\right)\right)\right) \\
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(x_{n}-g\left(x_{n}\right)+J_{\varphi}\left(h\left(y_{n}\right)-\rho\left(T y_{n}-A y_{n}\right)\right)\right), \tag{15}
\end{align*}
$$

where $n=0,1,2, \ldots,\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences in $[0,1]$, satisfying certain conditions.

We need following result to prove the next result :
Lemma 3.1. [27] Let $\left\{a_{n}\right\}$ be a non negative sequence satisfying

$$
a_{n+1} \leq\left(1-c_{n}\right) a_{n}+b_{n}
$$

with $c_{n} \in[0,1], \sum_{n=0}^{\infty} c_{n}=\infty, b_{n}=o\left(c_{n}\right)$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Theorem 3.2. Let T, A, g, h satisfy all the assumptions of Theorem 2.1, also condition (6) holds and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences in $[0,1]$ for all $n \geq 0$ such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Then the approximate sequence $\left\{x_{n}\right\}$ constructed by the Algorithm 5 converges strongly to a solution x^{*} of (2).
Proof. For $u \in H$, set $p u=T u-A u$. Since $x^{*} \in H$ is a solution of (1), by (14), we have

$$
x^{*}=x^{*}-g\left(x^{*}\right)+J_{\varphi}\left(h\left(x^{*}\right)-\rho\left(T\left(x^{*}\right)-A\left(x^{*}\right)\right)\right) .
$$

Using (15), we have

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|x_{n}-x^{*}-\left(g\left(x_{n}\right)-g\left(x^{*}\right)\right)\right\| \\
& +\alpha_{n}\left\|J_{\varphi}\left(h\left(y_{n}\right)-\rho p\left(y_{n}\right)\right)-J_{\varphi}\left(h\left(x^{*}\right)-\rho p\left(x^{*}\right)\right)\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \sqrt{1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right)}\left\|x_{n}-x^{*}\right\| \\
& +\alpha_{n}\left\|h\left(y_{n}\right)-h\left(x^{*}\right)-\rho\left(p\left(y_{n}\right)-p\left(x^{*}\right)\right)\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \sqrt{1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right)}\left\|x_{n}-x^{*}\right\| \\
& +\alpha_{n}\left\|y_{n}-x^{*}-\left(h\left(y_{n}\right)-h\left(x^{*}\right)\right)\right\| \\
& +\alpha_{n}\left\|y_{n}-x^{*}-\rho\left(p\left(y_{n}\right)-p\left(x^{*}\right)\right)\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \sqrt{1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right)}\left\|x_{n}-x^{*}\right\| \\
& +\alpha_{n} \sqrt{1-2 \gamma_{h}+\mu_{h}^{2}\left(1+2 \phi_{h}\right)}\left\|y_{n}-x^{*}\right\| \\
& +\alpha_{n} \sqrt{2\left(1-2 \rho \gamma_{T}+2 \rho \mu_{T}^{2} \phi_{T}+\rho^{2}\left(\mu_{T}^{2}+\mu_{A}^{2}\right)\right)}\left\|y_{n}-x^{*}\right\| \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \theta_{g}\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left(\theta_{h}+f(\rho)\right)\left\|y_{n}-x^{*}\right\|, \tag{16}
\end{align*}
$$

where $\theta_{g}=\sqrt{1-2 \gamma_{g}+\mu_{g}^{2}\left(1+2 \phi_{g}\right)}, \quad \theta_{h}=\sqrt{1-2 \gamma_{h}+\mu_{h}^{2}\left(1+2 \phi_{h}\right)}$ and $\quad f(\rho)=\sqrt{2\left(1-2 \rho \gamma_{T}+2 \rho \mu_{T}^{2} \phi_{T}+\rho^{2}\left(\mu_{T}^{2}+\mu_{A}^{2}\right)\right)}$.

Similarly, we have

$$
\begin{align*}
\left\|y_{n}-x^{*}\right\| \leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}-\left(g\left(x_{n}\right)-g\left(x^{*}\right)\right)\right\| \\
& +\beta_{n}\left\|J_{\varphi}\left(h\left(x_{n}\right)-\rho p\left(x_{n}\right)\right)-J_{\varphi}\left(h\left(x^{*}\right)-\rho p\left(x^{*}\right)\right)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n} \theta_{g}\left\|x_{n}-x^{*}\right\| \\
& +\beta_{n}\left\|h\left(x_{n}\right)-h\left(x^{*}\right)-\rho\left(p\left(x_{n}\right)-p\left(x^{*}\right)\right)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n} \theta_{g}\left\|x_{n}-x^{*}\right\| \\
& +\beta_{n}\left\|x_{n}-x^{*}-\left(h\left(x_{n}\right)-h\left(x^{*}\right)\right)\right\| \\
& +\beta_{n}\left\|x_{n}-x^{*}-\rho\left(p\left(x_{n}\right)-p\left(x^{*}\right)\right)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n} \theta_{g}\left\|x_{n}-x^{*}\right\| \\
& +\beta_{n} \theta_{h}\left\|x_{n}-x^{*}\right\|+\beta_{n} f(\rho)\left\|x_{n}-x^{*}\right\| \\
= & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}(\kappa+f(\rho))\left\|x_{n}-x^{*}\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\| \\
= & \left\|x_{n}-x^{*}\right\| . \tag{17}
\end{align*}
$$

Substituting (17) into (16), yields that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left(\theta_{g}+\theta_{h}+f(\rho)\right)\left\|x_{n}-x^{*}\right\| \\
& =\left(1-\alpha_{n}(1-(\kappa+f(\rho)))\right)\left\|x_{n}-x^{*}\right\| \tag{18}
\end{align*}
$$

By virtue of Lemma 3.1, we get from (18) that, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x^{*}\right\|=0$, i.e. $x_{n} \rightarrow x^{*}$, as $n \rightarrow \infty$. This completes the proof.
Remark 3.3. Theorem 3.2, extend and improve Theorem 2.1 of [10] and Theorem 3.2 of [20].

It is well known that, if $\varphi(\cdot)$ is the indicator function of K in H, then $J_{\varphi}=P_{K}$, the projection operator of H onto the closed convex set K, and consequently, the following result can be obtain from Theorem 3.2.
Corollary 3.4. Let T, A, g, h satisfy all the assumptions of Corollary 2.3. Let $x_{0} \in K$, construct a sequence $\left\{x_{n}\right\}$ in K by

$$
\begin{aligned}
y_{n} & =x_{n}-g\left(x_{n}\right)+P_{K}\left(h\left(x_{n}\right)-\rho\left(T x_{n}-A x_{n}\right)\right) \\
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(x_{n}-g\left(x_{n}\right)+P_{K}\left(h\left(y_{n}\right)-\rho\left(T y_{n}-A y_{n}\right)\right)\right), \quad n=0,1,2, \ldots,
\end{aligned}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences in $[0,1]$ for all $n \geq 0$ such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to a solution x^{*} of (13).

References

[1] Baiocchi,C., Capelo,A.: Variational and Quasi Variational Inequalies. J. Wile and Sons, New York (1984).
[2] Bnouhachem,A., Noor,M.A., Al-Shemas,E.H.: On self-adaptive method for general mixed variational inequalities, Math. Prob. Engineer. (2008), doi: 10.1155/2008/280956.
[3] Brezis,H.: Opérateurs maximaux monotone et semi-groupes de contractions dans les espaces de Hilbert. In: North-Holland Mathematics Studies. 5, Notas de matematics, vol. 50, NorthHolland, Amsterdam (1973).
[4] Browder,F.E.: Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. Arch. Rat. Mech. Anal. 21, 259-269 (1966).
[5] Combettes,P.L., Hirstoaga,S.A.: Visco-penalization of the sum of two monotone operators. Nonlinear Anal. 69, 579-591 (2008).
[6] Dhage,B.C.: Remarks on two fixed-point theorems involving the sum and the product of two operators. Comput. Math. Appl. 46, 1779-1785 (2003).
[7] Fucik,S.: Fixed point theorems for a sum of nonlinear mapping. Comment. Math. Univ. Carolinae 9, 133-143 (1968).
[8] Fucik,S.: Solving of nonlinear operator equations in Banach space. Comment. Math. Univ. Carolinae 10, 177-186 (1969).
[9] Glowinski,R., Lions,J.L., Tremolieres,R.: Numerical Analysis of Variational Inequalities. North-Holland, Amesterdam, Holland (1981).
[10] Hassouni,A., Moudafi,A.: Perturbed algorithm for variational inclusions. J. Math. Anal. Appl. 185, 706-712 (1994).
[11] Kirk,W.A.: On nonlinear mappings of strongly semicontractive type. J. Math. Anal. Appl. 27, 409-412 (1969).
[12] Krasnoselskii,M.A.: Two remarks of the method of successive approximations. Uspeki Mat. Nauk 10, 123-127 (1955).
[13] Minty,H.J.: On the monotonicity of the gradient of a convex function. Pacific J. Math. 14, 243-247 (1964).
[14] Noor,M.A.: Strongly nonlinear variational inequalities. C.R. Math. Rep. Acad. Sci. Canad. 4, 213-218 (1982).
[15] Noor,M.A.: On a class of variational inequalities. J. Math. Anal. Appl. 128, 135-155 (1987).
[16] Noor,M.A.: A class new iterative methods for general mixed variational inequalities. Math. Comput. Modell. 31, 11-19 (2000).
[17] Noor,M.A.: Modified resolvent splitting algorithms for general mixed variational inequalities. J. Comput. Appl. Math. 135, 111-124 (2001).
[18] Noor,M.A.: Operator-splitting methods for general mixed variational inequalities. J. Ineq. Pure Appl. Math. 3(5), Art.67, 9p. (2002) http://eudml.org/doc/123617.
[19] Noor,M.A.: Psueudomontone general mixed variational inequalities. Appl. Math. Comput. 141, 529-540 (2003).
[20] Noor,M.A., Ullah,S., Noor,K.I., Al-Said,E.: Iterative methods for solving extended general mixed variational inequalities. Comput. Math. Appl. 62, 804-813 (2011).
[21] O'Regan, D.: Fixed point theory for the sum of two operators. Appl. Math. Lett. 9, 1-8 (1996).
[22] Petryshyn,W.V.: Remarks on fixed point theorems and their extensions. Trans. Amer. Math. Soc. 126, 43-53 (1967).
[23] Siddiqi,A.H., Ansari,Q.H.: General strongly nonlinear variational inequalities. J. Math. Anal. Appl. 166, 386-392 (1992).
[24] Stampacchia,G.: Formes bilineares sur les ensemble convexes. C. R. Acad. Sci. Paris 285, 4413-4416 (1964).
[25] Verma,R.U.: Generalized auxiliary problem principle and solvability of a class of nonlinear variational inequalities involoving cocoercive and co-Lipschitzian mappings. J. Ineq. Pure Appl. Math. 2(3), Art.27, 9p. (2001) http://eudml.org/doc/122114.
[26] Webb,J.R.L.: Fixed point theorems for nonlinear semicontractive operators in Banach spaces. J. London Math. Soc. 1, 683-688 (1969).
[27] Weng,X.L.: Fixed point iteration for local stricly pseudo-contractive mappings. Proc. Amer. Math. Soc. 113, 727-731 (1991).
[28] Zeidler,E.: Nonlinear functional analysis and its applications, II/B : Nonlinear monotone operators. Springer, New York (1990).

School of Studies in Mathematics, Pt.Ravishankar Shukla University, Raipur, 492010, IndiA

[^0]: 2010 Mathematics Subject Classification. 47J20, 65K10, 65K15, 90C33.
 Key words and phrases. Extended general strongly mixed variational inequality; fixed point problem; resolvent operator technique; relaxed cocoercive mapping; maximal monotone operator.

