COSINE INTEGRALS FOR THE CLAUSEN FUNCTION AND ITS FOURIER SERIES EXPANSION

F. M. S. LIMA*

Abstract

In a recent work, on taking into account certain finite sums of trigonometric functions I have derived exact closed-form results for some non-trivial integrals, including $\int_{0}^{\pi} \sin (k \theta) \mathrm{Cl}_{2}(\theta) d \theta$, where k is a positive integer and $\mathrm{Cl}_{2}(\theta)$ is the Clausen function. There in that paper, I pointed out that this integral has the form of a Fourier coefficient, which suggest that its cosine version $\int_{0}^{\pi} \cos (k \theta) \mathrm{Cl}_{2}(\theta) d \theta, k \geq 0$, is worthy of consideration, but I could only present a few conjectures at that time. Here in this note, I derive exact closed-form expressions for this integral and then I show that they can be taken as Fourier coefficients for the series expansion of a periodic extension of $\mathrm{Cl}_{2}(\theta)$. This yields new closed-form results for a series involving harmonic numbers and a partial derivative of a generalized hypergeometric function.

1. Introduction

In its more general form, the Fourier series expansion of a periodic real function $f(x)$ of period L is conventionally written as (see, e.g., Sec. 4.2 of Ref. [6])

$$
\begin{equation*}
S[f(x)]:=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos \left(\frac{2 \pi k x}{L}\right)+b_{k} \sin \left(\frac{2 \pi k x}{L}\right)\right] \tag{1.1}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{k}=\frac{2}{L} \int_{x_{0}}^{x_{0}+L} f(x) \cos (2 \pi k x / L) d x, \quad k \geq 0 \tag{1.2a}\\
& b_{k}=\frac{2}{L} \int_{x_{0}}^{x_{0}+L} f(x) \sin (2 \pi k x / L) d x, \quad k>0 \tag{1.2b}
\end{align*}
$$

are the Fourier coefficients and x_{0} is an arbitrary constant (often taken as 0). As is well-known, if $f(x)$ satisfies the Dirichlet conditions then this series converges to $f(x)$ at all points of continuity of $f(x)$ and to the average of $f(x)$ taken at the lateral limits of x if it is a point of finite discontinuity. In fact, the periodicity condition is irrelevant for pointwise convergence in the finite domain $\left[x_{0}, x_{0}+L\right]$, as shown by Connon in Ref. [2], which is important for the Fourier expansion of non-periodic functions using periodic extensions.

In a very recent work, by taking into account certain finite sums involving trigonometric functions at rational multiples of π, I have derived exact closed-form expressions for some non-trivial integrals [5]. Among them, I showed in Theorem 6 of Ref. [5] that

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} \sin (k \theta) \mathrm{Cl}_{2}(\theta) d \theta=\frac{1}{k^{2}} \tag{1.3}
\end{equation*}
$$

holds for every integer $k>0$. Here, $\mathrm{Cl}_{2}(\theta):=\Im\left\{\operatorname{Li}_{2}\left(e^{i \theta}\right)\right\}$ is the Clausen function, $\operatorname{Li}_{2}(z):=$ $\sum_{n=1}^{\infty} z^{n} / n^{2},|z| \leq 1$, being the dilogarithm function [4, Sec. 1.1]. Clausen himself proved in Ref. [1] that $\mathrm{Cl}_{2}(\theta)=-\int_{0}^{\theta} \ln |2 \sin (t / 2)| d t$, which is known as the Clausen integral [3, Sec. 4.1]. Since the

[^0]integral in Eq. (1.3) resembles that of Fourier coefficient b_{k} in Eq. (1.2b), then a natural follow-up is the investigation of the corresponding cosine integral, i.e.
\[

$$
\begin{equation*}
A_{k}:=\frac{2}{\pi} \int_{0}^{\pi} \cos (k \theta) \mathrm{Cl}_{2}(\theta) d \theta, \quad k \geq 0 \tag{1.4}
\end{equation*}
$$

\]

However, there in Eqs. (25)-(30) of Ref. [5] I could only conjecture, based upon strong numerical evidence, a few simple results for small values of k. They of course suggest a pattern, but there in Ref. [5] I could not find it out.

In this note, I make use of a well-known series expansion for $\mathrm{Cl}_{2}(\theta)$ to derive closed-form expressions for A_{k}, one for $k=0$ and another for $k>0$. I then use these results to obtain a Fourier series for a suitable periodic extension of $\mathrm{Cl}_{2}(\theta)$, which yields new closed-form results.

2. Cosine integrals of Clausen function

In what follows, we shall make use of a well-known series representation for $\mathrm{Cl}_{2}(\theta)$.
Lemma 1 (Clausen series for $\mathrm{Cl}_{2}(\theta)$). The trigonometric series $\sum_{n=1}^{\infty} \frac{\sin (n \theta)}{n^{2}}$ converges to $\mathrm{Cl}_{2}(\theta)$ for all $\theta \in \mathbb{R}$.
Proof. This series representation of $\mathrm{Cl}_{2}(\theta)$ remounts to Clausen's original work (1832) [1], but, for completeness, let us present a proof based on Fourier series. In Theorem 3 of Ref. [7], a recent note on Fourier series by Zhang, it is shown that, given a real function $f(x)$ integrable on $[0, L]$ and such that $f(x)=-f(L-x)$ for all $x \in(L / 2, L]$, if $f(x)$ is an odd function in $(-L, L)$, then

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{2 n} \sin \left(\frac{2 n \pi x}{L}\right) \tag{2.1}
\end{equation*}
$$

for all $x \in[-L, L]$ where $f(x)$ is a continuous function. Here,

$$
\begin{equation*}
c_{2 n}=\frac{4}{L} \int_{0}^{L / 2} f(t) \sin \left(\frac{2 n \pi t}{L}\right) d t \tag{2.2}
\end{equation*}
$$

Since $\mathrm{Cl}_{2}(\theta)$ is an odd function which is continuous (thus integrable) on $(-2 \pi, 2 \pi)$ and $\mathrm{Cl}_{2}(\theta)=$ $-\mathrm{Cl}_{2}(2 \pi-\theta)\left[3\right.$, Secs. 4.2 and 4.3], then the convergence of $\sum_{n=1}^{\infty} \sin (n \theta) / n^{2}$ to $\mathrm{Cl}_{2}(\theta)$ follows by taking $L=2 \pi$ in Zhang's theorem and noting that $c_{2 n}=1 / n^{2}$, as seen in Eq. (1.3). Finally, the periodicity of $\mathrm{Cl}_{2}(\theta)$, as established in Sec. 4.2 of Ref. [3], extends the convergence to all $\theta \in \mathbb{R}$.

Let us begin our main results with the integral A_{k} for $k=0$.
Theorem 1 (Integral A_{0}). The exact closed-form result

$$
A_{0}:=\frac{2}{\pi} \int_{0}^{\pi} \mathrm{Cl}_{2}(\theta) d \theta=\frac{7}{2} \frac{\zeta(3)}{\pi}
$$

where $\zeta(3):=\sum_{n=1}^{\infty} 1 / n^{3}$ is the Apéry's constant, holds.
Proof. From Lemma 1, one has

$$
\begin{align*}
& \frac{2}{\pi} \int_{0}^{\pi} \mathrm{Cl}_{2}(\theta) d \theta=\frac{2}{\pi} \int_{0}^{\pi} \sum_{n=1}^{\infty} \frac{\sin (n \theta)}{n^{2}} d \theta=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\int_{0}^{\pi} \sin (n \theta) d \theta}{n^{2}} \\
& \quad=-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\left.\cos (n \theta)\right|_{0} ^{\pi}}{n^{3}}=-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{3}}=\frac{4}{\pi} \sum_{\text {odd }} \frac{1}{n^{3}} \tag{2.3}
\end{align*}
$$

where the last sum takes only the odd values of n into account. The interchange of the integral and the series is allowed because this series converges absolutely. Since $\zeta(3)=\sum_{\text {odd }} 1 / n^{3}+\sum_{\text {even }} 1 / n^{3}$ and $\sum_{\text {even }} 1 / n^{3}=\sum_{m=1}^{\infty} 1 /(2 m)^{3}=\frac{1}{8} \zeta(3)$, then $\sum_{\text {odd }} 1 / n^{3}=\frac{7}{8} \zeta(3)$.

Now, let us derive a general result valid for all integrals $A_{k}, k>0$. For this, it will be useful to define $h_{n}:=\sum_{\ell=1}^{n} 1 /(2 \ell-1), n$ being a positive integer, which is the odd analogue of the harmonic number $H_{n}:=\sum_{\ell=1}^{n} 1 / \ell$. Since $h_{\lceil n / 2\rceil}=H_{n}-\frac{1}{2} H_{\lfloor n / 2\rfloor}$, it is easy to rewrite any expression containing h_{n} in terms of the usual harmonic numbers.

Theorem 2 (Integral $A_{k}, k>0$). Let A_{k} be the integral defined in Eq. (1.4). The exact closed-form result

$$
A_{k}=\left\{\begin{array}{l}
\frac{2}{\pi} \frac{\ln 4-2 h_{\lfloor k / 2\rfloor}-1 / k}{k^{2}}, \quad k \text { odd } \\
-\frac{4}{\pi} \frac{h_{k / 2}}{k^{2}}, \quad k \text { even }
\end{array}\right.
$$

holds for all integers $k>0$.
Proof. From Lemma 1, one has

$$
\begin{equation*}
A_{k}=\frac{2}{\pi} \int_{0}^{\pi} \cos (k \theta) \sum_{n=1}^{\infty} \frac{\sin (n \theta)}{n^{2}} d \theta=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\int_{0}^{\pi} \cos (k \theta) \sin (n \theta) d \theta}{n^{2}} \tag{2.4}
\end{equation*}
$$

where k is a positive integer. On applying the trigonometric identity $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$ to the last integral, one finds

$$
\begin{equation*}
I_{k n}:=\int_{0}^{\pi} \cos (k \theta) \sin (n \theta) d \theta=\frac{1}{2} \int_{0}^{\pi}\{\sin [(n+k) \theta]+\sin [(n-k) \theta]\} d \theta \tag{2.5}
\end{equation*}
$$

For $n=k$, the above integral reduces to $I_{n n}=\int_{0}^{\pi} \cos (n \theta) \sin (n \theta) d \theta=\frac{1}{2} \int_{0}^{\pi} \sin (2 n \theta) d \theta=-\cos (2 n \theta) /\left.(2 n)\right|_{0} ^{\pi}=$ 0 . For all $n \neq k$, one has

$$
\begin{array}{r}
I_{k n}=-\left.\frac{1}{2}\left\{\frac{\cos [(n+k) \theta]}{n+k}+\frac{\cos [(n-k) \theta]}{n-k}\right\}\right|_{0} ^{\pi} \\
=-\frac{1}{2}\left\{\frac{\cos [(n+k) \pi]-1}{n+k}+\frac{\cos [(n-k) \pi]-1}{n-k}\right\} \\
=-\frac{1}{2}\left[\frac{(-1)^{n+k}-1}{n+k}+\frac{(-1)^{n-k}-1}{n-k}\right] . \tag{2.6}
\end{array}
$$

Therefore, $A_{k}=\frac{2}{\pi} \sum_{n=1}^{\infty} I_{k n} / n^{2}$ expands to

$$
\begin{equation*}
A_{k}=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[\frac{1-(-1)^{n+k}}{n+k}+\frac{1-(-1)^{n-k}}{n-k}\right] \tag{2.7}
\end{equation*}
$$

and, since $1-(-1)^{n \pm k}=0$ whenever n and k have the same parity (i.e., when they are both odd or even numbers), whereas $1-(-1)^{n \pm k}=2$ when n and k have opposite parities, then

$$
\begin{align*}
A_{k}=\frac{1}{\pi} \sum_{n}^{\prime} \frac{1}{n^{2}}\left[\frac{2}{n+k}+\frac{2}{n-k}\right] & =\frac{2}{\pi} \sum_{n}^{\prime} \frac{1}{n^{2}} \frac{2 n}{n^{2}-k^{2}} \\
& =\frac{4}{\pi} \sum_{n}^{\prime} \frac{1}{n} \frac{1}{n^{2}-k^{2}} \tag{2.8}
\end{align*}
$$

where \sum^{\prime} means a sum over n values with the opposite parity with respect to k. Explicitly,

$$
\begin{equation*}
A_{k}=\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1}{m\left(4 m^{2}-k^{2}\right)}, \quad k \text { odd } \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{k}=\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)\left[(2 m-1)^{2}-k^{2}\right]}, \quad k \text { even } \tag{2.10}
\end{equation*}
$$

For odd values of k, the substitution $k=2 p-1, p>0$, in Eq. (2.9) yields

$$
\begin{equation*}
\frac{\pi}{2} A_{2 p-1}=\sum_{m=1}^{\infty} \frac{1}{m\left[4 m^{2}-(2 p-1)^{2}\right]} \tag{2.11}
\end{equation*}
$$

This series can be written in terms of the digamma function $\psi(x):=\frac{d}{d x} \ln \Gamma(x)$, where $\Gamma(x):=$ $\int_{0}^{\infty} t^{x-1} e^{-t} d t$ is the classical gamma function. From a well-known series representation for $\psi(x)$,
namely [8, Sec. 8.362]

$$
\begin{equation*}
\psi(x)=-\gamma-\frac{1}{x}+\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+x}\right) \tag{2.12}
\end{equation*}
$$

one finds, after some algebra,

$$
\begin{equation*}
\frac{\pi}{2} A_{2 p-1}=-\frac{\psi(3 / 2-p)+\psi(p+1 / 2)+2 \gamma}{2(2 p-1)^{2}} \tag{2.13}
\end{equation*}
$$

where $\gamma:=\lim _{n \rightarrow \infty}\left(H_{n}-\ln n\right)$ is the Euler's constant. From Eq. (3) in Ref. [8, Sec. 8.366], one knows that

$$
\begin{equation*}
\psi\left(\frac{1}{2} \pm p\right)=-\gamma-\ln 4+2 h_{p} \tag{2.14}
\end{equation*}
$$

which, together with

$$
\begin{equation*}
\psi\left(\frac{3}{2}-p\right)=\psi\left(\frac{1}{2}-p\right)+\frac{1}{\frac{1}{2}-p} \tag{2.15}
\end{equation*}
$$

which promptly follows from $\psi(x+1)=\psi(x)+1 / x$ [8, Sec. 8.365], reduces Eq. (2.13) to

$$
\begin{equation*}
\frac{\pi}{2} A_{2 p-1}=\frac{\ln 4-1 /(2 p-1)-2 h_{p-1}}{(2 p-1)^{2}} \tag{2.16}
\end{equation*}
$$

which is equivalent to Eq. (2.9). The special value $\psi(1 / 2)=-\gamma-\ln 4$, as stated in Ref. [8, Sec. 8.366], is required in the derivation of Eq. (2.14).

For even values of k, substitute $k=2 p$ in Eq. (2.10). This leads to

$$
\begin{equation*}
\frac{\pi}{4} A_{2 p}=\sum_{m=1}^{\infty} \frac{1}{(2 m-1)\left[(2 m-1)^{2}-4 p^{2}\right]} \tag{2.17}
\end{equation*}
$$

The series representation of $\psi(x)$ given in Eq. (2.12) then leads to

$$
\begin{equation*}
\frac{\pi}{4} A_{2 p}=-\frac{\psi(1 / 2-p)+\psi(p+1 / 2)+2 \gamma+2 \ln 4}{16 p^{2}} \tag{2.18}
\end{equation*}
$$

On taking Eq. (2.14) into account, one finds, after some algebra,

$$
\begin{equation*}
\frac{\pi}{4} A_{2 p}=-\frac{h_{p}}{(2 p)^{2}} \tag{2.19}
\end{equation*}
$$

which completes the proof.
As expected, this theorem shows that all conjectures stated at the end of Ref. [5] are indeed true.

3. Fourier series for an even periodic extension of Clausen function

Now, let us examine the Fourier cosine series whose coefficients are the A_{k} expressions derived above.

Theorem 3. The series

$$
\frac{A_{0}}{2}+\sum_{k=1}^{\infty} A_{k} \cos (k \theta)
$$

where A_{0} and A_{k} are the coefficients derived in our Theorems 1 and 2, respectively, converges to $\mathrm{Cl}_{2}(\theta)$ for all $\theta \in[0, \pi]$ and to $-\mathrm{Cl}_{2}(\theta)$ when $\theta \in(\pi, 2 \pi]$, thus yielding a continuous even function on $[-2 \pi, 2 \pi]$. This convergence can be extended to all $\theta \in \mathbb{R}$.
Proof. Let $g(\theta)$ be a real function defined in the interval $[-2 \pi, 2 \pi]$ as follows:

$$
g(\theta):= \begin{cases}+\mathrm{Cl}_{2}(\theta), & \theta \in[-2 \pi,-\pi) \text { or } \theta \in[0, \pi] \tag{3.1}\\ -\mathrm{Cl}_{2}(\theta), & \theta \in[-\pi, 0) \text { or } \theta \in(\pi, 2 \pi]\end{cases}
$$

Since $\mathrm{Cl}_{2}(\theta)$ is a continuous odd function, it is clear that $g(\theta)$ is a continuous even function in the interval $[-2 \pi, 2 \pi]$. In Theorem 4 of Zhang's paper [7], it is shown that, given a real function $f(x)$
integrable on $[0, L]$ and such that $f(x)=f(L-x)$ for all $x \in(L / 2, L]$, if $f(x)$ is an even function in $(-L, L)$, then the series

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{2 n} \cos \left(\frac{2 n \pi x}{L}\right) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2 n}=\frac{4}{L} \int_{0}^{L / 2} f(t) \cos \left(\frac{2 n \pi t}{L}\right) d t, \quad n \geq 0 \tag{3.3}
\end{equation*}
$$

converges to $f(x)$ for all $x \in[-L, L]$ where $f(x)$ is a continuous function. The absence of the term $a_{0} / 2$ in Theorem 4 of Ref. [7] is corrected here in our Eq. (3.2). Since the function $g(\theta)$ defined in Eq. (3.1) is an even function which is continuous (thus integrable) on $(-2 \pi, 2 \pi)$ and $g(\theta)=g(2 \pi-\theta)$, then the convergence of the series $A_{0} / 2+\sum_{k=1}^{\infty} A_{k} \cos (k \theta)$ to $g(\theta)$ follows by taking $L=2 \pi$ in Zhang's theorem and noting that $a_{2 n}=\frac{2}{\pi} \int_{0}^{\pi} g(\theta) \cos (n \theta) d \theta=\frac{2}{\pi} \int_{0}^{\pi} \mathrm{Cl}_{2}(\theta) \cos (n \theta) d \theta$ are just the coefficients A_{0} and A_{n} derived in our Theorems 1 and 2 , respectively. Finally, since this cosine series converges to an even periodic extension of $\mathrm{Cl}_{2}(\theta)$, with a period 2π, then its convergence to $g(\theta)$ can be extended to all $\theta \in \mathbb{R}$.

Interestingly, new closed-form results can be deduced directly from Theorem 3. For instance, on taking $\theta=0$ (or π), one finds

Corollary 1. The following closed-form result holds:

$$
\sum_{p=1}^{\infty} \frac{h_{p-1}}{(2 p-1)^{2}}=\frac{\pi^{2}}{8} \ln 2-\frac{7}{16} \zeta(3)
$$

On taking $\theta=\pi / 2$ in Theorem 3, a less obvious expression arises which can be written in terms of the regularized hypergeometric function

$$
{ }_{p} \widetilde{F}_{q}\left(\begin{array}{c}
a_{1}, \ldots, a_{p} \tag{3.4}\\
b_{1}, \ldots, b_{q}
\end{array} ; z\right):=\frac{{ }_{p} F_{q}\left(\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; z\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}\right)}
$$

where

$$
{ }_{p} F_{q}\left(\begin{array}{c}
a_{1}, \ldots, a_{p} \tag{3.5}\\
b_{1}, \ldots, b_{q}
\end{array} ; z\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

is the generalized hypergeometric series. As usual, $(a)_{n}:=a(a+1) \ldots(a+n-1)=\Gamma(a+n) / \Gamma(a)$ is the Pochhammer symbol. By convention, $(a)_{0}=1$.

Corollary 2 (A special value for $\theta=\pi / 2$). The following closed-form result holds:

$$
{ }_{4} \widetilde{F}_{3}^{\prime}\left(\begin{array}{c}
1,1,1,3 / 2 \tag{3.6}\\
2,2,3 / 2
\end{array} ;-1\right)=\frac{\zeta(2)(\gamma+\ln 4)+7 \zeta(3)-4 \pi G}{\sqrt{\pi}}
$$

where $\zeta(2):=\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$ and $G:=\sum_{n=0}^{\infty}(-1)^{n} /(2 n+1)^{2}$ is the Catalan's constant. Here, the prime symbol (') indicates a partial derivative with respect to b_{3}.

As shown below, this result can be written in terms of the corresponding generalized hypergeometric function. Interestingly, this yields a nice closed-form result which, to the author knowledge, is not found in literature.

Corollary 3 (Corresponding generalized hypergeometric function). The following closed-form result holds:

$$
{ }_{4} F_{3}^{\prime}\left(\begin{array}{r}
1,1,1,3 / 2 \tag{3.7}\\
2,2,3 / 2
\end{array} ;-1\right)=\frac{\pi^{2}}{6}+\frac{7}{2} \zeta(3)-2 \pi G .
$$

Proof. In a shortened notation, Eq. (3.4) reads

$$
{ }_{p} \widetilde{F}_{q}(\vec{a}, \vec{b} ; z)=\frac{{ }_{p} F_{q}(\vec{a}, \vec{b} ; z)}{\prod_{j=1}^{q} \Gamma\left(b_{j}\right)}
$$

where \vec{a} and \vec{b} denote the arrays of coefficients $[1,1,1,3 / 2]$ and $[2,2,3 / 2]$, respectively. This implies that

$$
\begin{align*}
& \frac{\partial}{\partial b_{3}}{ }_{4} \widetilde{F}_{3}(\vec{a}, \vec{b} ;-1)=\frac{1}{\prod_{j \neq 3} \Gamma\left(b_{j}\right)} \frac{\partial}{\partial b_{3}}\left[\frac{{ }_{4} F_{3}(\vec{a}, \vec{b} ;-1)}{\Gamma\left(b_{3}\right)}\right] \\
= & \frac{1}{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right)}\left[\frac{{ }_{4} F_{3}^{\prime}(\vec{a}, \vec{b} ;-1)}{\Gamma\left(b_{3}\right)}-{ }_{4} F_{3}(\vec{a}, \vec{b} ;-1) \frac{\Gamma^{\prime}\left(b_{3}\right)}{\Gamma^{2}\left(b_{3}\right)}\right] \\
= & \frac{1}{\Gamma^{2}(2)}\left[\frac{{ }_{4} F_{3}^{\prime}(\vec{a}, \vec{b} ;-1)}{\Gamma(3 / 2)}-{ }_{4} F_{3}(\vec{a}, \vec{b} ;-1) \frac{\Gamma^{\prime}(3 / 2)}{\Gamma^{2}(3 / 2)}\right] . \tag{3.8}
\end{align*}
$$

Since $\Gamma(1+x)=x \Gamma(x)$, then $\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} / 2$, which reduces the last expression, above, to

$$
\begin{align*}
{ }_{4} \widetilde{F}_{3}^{\prime}(\vec{a}, \vec{b} ;-1) & =\frac{{ }_{4} F_{3}^{\prime}(\vec{a}, \vec{b} ;-1)}{\sqrt{\pi} / 2}-{ }_{4} F_{3}(\vec{a}, \vec{b} ;-1) \frac{\psi(3 / 2)}{\sqrt{\pi} / 2} \\
= & 2 \frac{{ }_{4} F_{3}^{\prime}(\vec{a}, \vec{b} ;-1)}{\sqrt{\pi}}-2{ }_{4} F_{3}(\vec{a}, \vec{b} ;-1) \frac{\psi(3 / 2)}{\sqrt{\pi}} \tag{3.9}
\end{align*}
$$

Note that, for all positive integers $n, \Gamma(n)=(n-1)$! (in particular, $\Gamma(2)=1!=1$). The proof completes by substituting the result in Corollary 2, together with the special values $\psi(3 / 2)=\psi(1 / 2)+1 /(1 / 2)=$ $-\gamma-\ln 4+2$ and ${ }_{4} F_{3}(\vec{a}, \vec{b} ;-1)=\pi^{2} / 12$, in Eq. (3.9).

The closed-form result in Corollary 3 has been conjectured by Ancarani and the author in a recent discussion, by following an entirely different approach, but we could not find a formal proof at that time.

Acknowledgments

The author wishes to thank M. R. Javier for checking all closed-form expressions in this work numerically with mathematical software.

References

[1] T. Clausen, Über die Function $\sin \phi+\left(1 / 2^{2}\right) \sin 2 \phi+\left(1 / 3^{2}\right) \sin 3 \phi+$ etc., J. Reine Angew. Math. (Crelle) 8, 298-300 (1832).
[2] D. F. Connon, Fourier series and periodicity. arXiv:1501.03037 [math.GM].
[3] L. Lewin, Polylogarithms and associated functions, North Holland, New York, 1981.
[4] L. Lewin, Structural properties of polylogarithms, American Mathematical Society, Providence, 1991.
[5] F. M. S. Lima, Evaluation of some non-trivial integrals from finite products and sums, Turkish J. Anal. Number Theory 4, 172-176 (2016).
[6] K. F. Riley and M. P. Hobson, Essential Mathematical Methods for the Physical Sciences, Cambridge University Press, New York, 2011.
[7] C. Zhang, Further Discussion on the Calculation of Fourier Series, Appl. Math. 6, 594-598 (2015).
[8] I. S. Gradshteyn and I. M. Rhyzik, Table of Integrals, Series, and Products, 7 th ed., Academic Press, New York, 2007.

Institute of Physics, University of Brasília, P.O. Box 04455, 70919-970, Brasília-DF, Brazil
*Corresponding author: fabio@fis.unb.br

[^0]: Received $26^{\text {th }}$ May, 2017; accepted $29^{\text {th }}$ July, 2017; published $1^{\text {st }}$ September, 2017.
 2010 Mathematics Subject Classification. 42A16, 26A42, 26A06.
 Key words and phrases. Clausen function; Fourier coefficients; generalized hypergeometric function.

