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COSINE INTEGRALS FOR THE CLAUSEN FUNCTION AND ITS FOURIER

SERIES EXPANSION

F. M. S. LIMA∗

Abstract. In a recent work, on taking into account certain finite sums of trigonometric functions I

have derived exact closed-form results for some non-trivial integrals, including
∫ π
0 sin(k θ) Cl2(θ) dθ,

where k is a positive integer and Cl2(θ) is the Clausen function. There in that paper, I pointed
out that this integral has the form of a Fourier coefficient, which suggest that its cosine version∫ π
0 cos(k θ) Cl2(θ) dθ, k ≥ 0, is worthy of consideration, but I could only present a few conjectures

at that time. Here in this note, I derive exact closed-form expressions for this integral and then I
show that they can be taken as Fourier coefficients for the series expansion of a periodic extension

of Cl2(θ). This yields new closed-form results for a series involving harmonic numbers and a partial

derivative of a generalized hypergeometric function.

1. Introduction

In its more general form, the Fourier series expansion of a periodic real function f(x) of period L is
conventionally written as (see, e.g., Sec. 4.2 of Ref. [6])

S[f(x)] :=
a0
2

+

∞∑
k=1

[
ak cos

(
2πkx

L

)
+ bk sin

(
2πkx

L

)]
, (1.1)

where

ak =
2

L

∫ x0+L

x0

f(x) cos(2πkx/L) dx , k ≥ 0 , (1.2a)

bk =
2

L

∫ x0+L

x0

f(x) sin(2πkx/L) dx , k > 0 , (1.2b)

are the Fourier coefficients and x0 is an arbitrary constant (often taken as 0). As is well-known, if
f(x) satisfies the Dirichlet conditions then this series converges to f(x) at all points of continuity of
f(x) and to the average of f(x) taken at the lateral limits of x if it is a point of finite discontinuity. In
fact, the periodicity condition is irrelevant for pointwise convergence in the finite domain [x0, x0 + L],
as shown by Connon in Ref. [2], which is important for the Fourier expansion of non-periodic functions
using periodic extensions.

In a very recent work, by taking into account certain finite sums involving trigonometric functions at
rational multiples of π, I have derived exact closed-form expressions for some non-trivial integrals [5].
Among them, I showed in Theorem 6 of Ref. [5] that

2

π

∫ π

0

sin(k θ) Cl2(θ) dθ =
1

k2
(1.3)

holds for every integer k > 0. Here, Cl2(θ) := =
{

Li2
(
ei θ
)}

is the Clausen function, Li2(z) :=∑∞
n=1 z

n/ n2, |z| ≤ 1, being the dilogarithm function [4, Sec. 1.1]. Clausen himself proved in Ref. [1]

that Cl2(θ) = −
∫ θ
0

ln|2 sin (t/2)| dt, which is known as the Clausen integral [3, Sec. 4.1]. Since the
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integral in Eq. (1.3) resembles that of Fourier coefficient bk in Eq. (1.2b), then a natural follow-up is
the investigation of the corresponding cosine integral, i.e.

Ak :=
2

π

∫ π

0

cos(k θ) Cl2(θ) dθ , k ≥ 0 . (1.4)

However, there in Eqs. (25)–(30) of Ref. [5] I could only conjecture, based upon strong numerical
evidence, a few simple results for small values of k. They of course suggest a pattern, but there in
Ref. [5] I could not find it out.

In this note, I make use of a well-known series expansion for Cl2(θ) to derive closed-form expressions
for Ak, one for k = 0 and another for k > 0. I then use these results to obtain a Fourier series for a
suitable periodic extension of Cl2(θ), which yields new closed-form results.

2. Cosine integrals of Clausen function

In what follows, we shall make use of a well-known series representation for Cl2(θ).

Lemma 1 (Clausen series for Cl2(θ) ). The trigonometric series
∑∞
n=1

sin (n θ)

n2
converges to Cl2(θ)

for all θ ∈ R.

Proof. This series representation of Cl2(θ) remounts to Clausen’s original work (1832) [1], but, for
completeness, let us present a proof based on Fourier series. In Theorem 3 of Ref. [7], a recent note
on Fourier series by Zhang, it is shown that, given a real function f(x) integrable on [0, L] and such
that f(x) = −f(L− x) for all x ∈ (L/2, L], if f(x) is an odd function in (−L,L), then

f(x) =

∞∑
n=1

c2n sin

(
2nπx

L

)
(2.1)

for all x ∈ [−L,L] where f(x) is a continuous function. Here,

c2n =
4

L

∫ L/2

0

f(t) sin

(
2nπt

L

)
dt . (2.2)

Since Cl2(θ) is an odd function which is continuous (thus integrable) on (−2π, 2π) and Cl2(θ) =
−Cl2(2π − θ) [3, Secs. 4.2 and 4.3], then the convergence of

∑∞
n=1 sin (n θ)/n2 to Cl2(θ) follows by

taking L = 2π in Zhang’s theorem and noting that c2n = 1/n2, as seen in Eq. (1.3). Finally, the
periodicity of Cl2(θ), as established in Sec. 4.2 of Ref. [3], extends the convergence to all θ ∈ R. �

Let us begin our main results with the integral Ak for k = 0.

Theorem 1 (Integral A0). The exact closed-form result

A0 :=
2

π

∫ π

0

Cl2(θ) dθ =
7

2

ζ(3)

π
,

where ζ(3) :=
∑∞
n=1 1/n3 is the Apéry’s constant, holds.

Proof. From Lemma 1, one has

2

π

∫ π

0

Cl2(θ) dθ =
2

π

∫ π

0

∞∑
n=1

sin(nθ)

n2
dθ =

2

π

∞∑
n=1

∫ π
0

sin(nθ) dθ

n2

= − 2

π

∞∑
n=1

cos (nθ) |π
0

n3
= − 2

π

∞∑
n=1

(−1)n − 1

n3
=

4

π

∑
odd

1

n3
, (2.3)

where the last sum takes only the odd values of n into account. The interchange of the integral and
the series is allowed because this series converges absolutely. Since ζ(3) =

∑
odd 1/n3 +

∑
even 1/n3

and
∑

even 1/n3 =
∑∞
m=1 1/(2m)3 = 1

8 ζ(3), then
∑

odd 1/n3 = 7
8 ζ(3). �

Now, let us derive a general result valid for all integrals Ak, k > 0. For this, it will be useful to
define hn :=

∑n
`=1 1/(2`− 1), n being a positive integer, which is the odd analogue of the harmonic

number Hn :=
∑n
`=1 1/`. Since hdn/2e = Hn− 1

2 Hbn/2c, it is easy to rewrite any expression containing
hn in terms of the usual harmonic numbers.
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Theorem 2 (Integral Ak, k > 0). Let Ak be the integral defined in Eq. (1.4). The exact closed-form
result

Ak =


2

π

ln 4− 2hbk/2c − 1/k

k2
, k odd

− 4

π

hk/2

k2
, k even ,

holds for all integers k > 0.

Proof. From Lemma 1, one has

Ak =
2

π

∫ π

0

cos (kθ)

∞∑
n=1

sin(nθ)

n2
dθ =

2

π

∞∑
n=1

∫ π
0

cos (kθ) sin(nθ) dθ

n2
, (2.4)

where k is a positive integer. On applying the trigonometric identity sinα cosβ = 1
2 [ sin (α+ β) + sin (α− β)]

to the last integral, one finds

Ikn :=

∫ π

0

cos (kθ) sin(nθ) dθ =
1

2

∫ π

0

{ sin [(n+ k)θ] + sin [(n− k)θ]} dθ . (2.5)

For n = k, the above integral reduces to Inn =
∫ π
0

cos(nθ) sin(nθ) dθ = 1
2

∫ π
0

sin(2nθ) dθ = − cos (2nθ)/(2n) |π
0

=
0. For all n 6= k, one has

Ikn = − 1

2

{
cos [(n+ k) θ]

n+ k
+

cos [(n− k) θ]

n− k

}∣∣∣∣π
0

= − 1

2

{
cos [(n+ k)π]− 1

n+ k
+

cos [(n− k)π]− 1

n− k

}
= − 1

2

[
(−1)n+k − 1

n+ k
+

(−1)n−k − 1

n− k

]
. (2.6)

Therefore, Ak = 2
π

∑∞
n=1 Ikn/ n

2 expands to

Ak =
1

π

∞∑
n=1

1

n2

[
1− (−1)n+k

n+ k
+

1− (−1)n−k

n− k

]
(2.7)

and, since 1− (−1)n±k = 0 whenever n and k have the same parity (i.e., when they are both odd or
even numbers), whereas 1− (−1)n±k = 2 when n and k have opposite parities, then

Ak =
1

π

∑
n

′ 1

n2

[
2

n+ k
+

2

n− k

]
=

2

π

∑
n

′ 1

n2
2n

n2 − k2

=
4

π

∑
n

′ 1

n

1

n2 − k2
, (2.8)

where
∑ ′ means a sum over n values with the opposite parity with respect to k. Explicitly,

Ak =
2

π

∞∑
m=1

1

m (4m2 − k2)
, k odd , (2.9)

and

Ak =
4

π

∞∑
m=1

1

(2m− 1) [(2m− 1)2 − k2]
, k even . (2.10)

For odd values of k, the substitution k = 2p− 1, p > 0, in Eq. (2.9) yields

π

2
A2p−1 =

∞∑
m=1

1

m [4m2 − (2p− 1)2]
. (2.11)

This series can be written in terms of the digamma function ψ(x) := d
dx ln Γ(x), where Γ(x) :=∫∞

0
t x−1 e−t dt is the classical gamma function. From a well-known series representation for ψ(x),
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namely [8, Sec. 8.362]

ψ(x) = − γ − 1

x
+

∞∑
n=1

(
1

n
− 1

n+ x

)
, (2.12)

one finds, after some algebra,

π

2
A2p−1 = − ψ(3/2− p) + ψ(p+ 1/2) + 2 γ

2 (2p− 1)2
, (2.13)

where γ := limn→∞ (Hn − lnn) is the Euler’s constant. From Eq. (3) in Ref. [8, Sec. 8.366], one
knows that

ψ

(
1

2
± p
)

= − γ − ln 4 + 2hp , (2.14)

which, together with

ψ

(
3

2
− p
)

= ψ

(
1

2
− p
)

+
1

1
2 − p

, (2.15)

which promptly follows from ψ(x+ 1) = ψ(x) + 1/x [8, Sec. 8.365], reduces Eq. (2.13) to

π

2
A2p−1 =

ln 4− 1/(2p− 1)− 2hp−1
(2p− 1)2

, (2.16)

which is equivalent to Eq. (2.9). The special value ψ(1/2) = − γ− ln 4, as stated in Ref. [8, Sec. 8.366],
is required in the derivation of Eq. (2.14).

For even values of k, substitute k = 2p in Eq. (2.10). This leads to

π

4
A2p =

∞∑
m=1

1

(2m− 1) [(2m− 1)2 − 4p2]
. (2.17)

The series representation of ψ(x) given in Eq. (2.12) then leads to

π

4
A2p = − ψ(1/2− p) + ψ(p+ 1/2) + 2 γ + 2 ln 4

16 p2
. (2.18)

On taking Eq. (2.14) into account, one finds, after some algebra,

π

4
A2p = − hp

(2 p)2
, (2.19)

which completes the proof. �

As expected, this theorem shows that all conjectures stated at the end of Ref. [5] are indeed true.

3. Fourier series for an even periodic extension of Clausen function

Now, let us examine the Fourier cosine series whose coefficients are the Ak expressions derived
above.

Theorem 3. The series
A0

2
+

∞∑
k=1

Ak cos (k θ) ,

where A0 and Ak are the coefficients derived in our Theorems 1 and 2, respectively, converges to
Cl2(θ) for all θ ∈ [0, π] and to −Cl2(θ) when θ ∈ (π, 2π], thus yielding a continuous even function
on [−2π, 2π]. This convergence can be extended to all θ ∈ R.

Proof. Let g(θ) be a real function defined in the interval [−2π, 2π] as follows:

g(θ) :=

{
+Cl2(θ) , θ ∈ [−2π,−π) or θ ∈ [0, π]
−Cl2(θ) , θ ∈ [−π, 0) or θ ∈ (π, 2π] .

(3.1)

Since Cl2(θ) is a continuous odd function, it is clear that g(θ) is a continuous even function in the
interval [−2π, 2π]. In Theorem 4 of Zhang’s paper [7], it is shown that, given a real function f(x)
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integrable on [0, L] and such that f(x) = f(L− x) for all x ∈ (L/2, L], if f(x) is an even function in
(−L,L), then the series

a0
2

+

∞∑
n=1

a2n cos

(
2nπx

L

)
, (3.2)

where

a2n =
4

L

∫ L/2

0

f(t) cos

(
2nπt

L

)
dt , n ≥ 0 , (3.3)

converges to f(x) for all x ∈ [−L,L] where f(x) is a continuous function. The absence of the term
a0/2 in Theorem 4 of Ref. [7] is corrected here in our Eq. (3.2). Since the function g(θ) defined in
Eq. (3.1) is an even function which is continuous (thus integrable) on (−2π, 2π) and g(θ) = g(2π−θ),
then the convergence of the series A0/2 +

∑∞
k=1Ak cos (k θ) to g(θ) follows by taking L = 2π in

Zhang’s theorem and noting that a2n = 2
π

∫ π
0
g(θ) cos (nθ) dθ = 2

π

∫ π
0

Cl2(θ) cos (nθ) dθ are just the
coefficients A0 and An derived in our Theorems 1 and 2, respectively. Finally, since this cosine series
converges to an even periodic extension of Cl2(θ), with a period 2π, then its convergence to g(θ) can
be extended to all θ ∈ R. �

Interestingly, new closed-form results can be deduced directly from Theorem 3. For instance, on
taking θ = 0 (or π), one finds

Corollary 1. The following closed-form result holds:
∞∑
p=1

hp−1
(2p− 1)2

=
π2

8
ln 2− 7

16
ζ(3) .

On taking θ = π/2 in Theorem 3, a less obvious expression arises which can be written in terms of
the regularized hypergeometric function

pF̃q

(
a1, . . . , ap
b1, . . . , bq

; z

)
:=

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
∏q
j=1 Γ (bj)

, (3.4)

where

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
:=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
(3.5)

is the generalized hypergeometric series. As usual, (a)n := a (a + 1) . . . (a + n − 1) = Γ(a+ n)/Γ(a)
is the Pochhammer symbol. By convention, (a)0 = 1.

Corollary 2 (A special value for θ = π/2 ). The following closed-form result holds:

4F̃
′
3

(
1, 1, 1, 3/2

2, 2, 3/2
; −1

)
=

ζ(2) (γ + ln 4) + 7 ζ(3)− 4πG√
π

, (3.6)

where ζ(2) :=
∑∞
n=1 1/n2 = π2/6 and G :=

∑∞
n=0 (−1)n/(2n+ 1)2 is the Catalan’s constant. Here,

the prime symbol ( ′) indicates a partial derivative with respect to b3.

As shown below, this result can be written in terms of the corresponding generalized hypergeometric
function. Interestingly, this yields a nice closed-form result which, to the author knowledge, is not found
in literature.

Corollary 3 (Corresponding generalized hypergeometric function). The following closed-form result
holds:

4F
′
3

(
1, 1, 1, 3/2

2, 2, 3/2
; −1

)
=

π2

6
+

7

2
ζ(3)− 2πG . (3.7)

Proof. In a shortened notation, Eq. (3.4) reads

pF̃q

(
~a,~b; z

)
=

pFq

(
~a,~b; z

)
∏q
j=1 Γ(bj)
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where ~a and ~b denote the arrays of coefficients [1, 1, 1, 3/2] and [2, 2, 3/2], respectively. This implies
that

∂

∂b3
4F̃3

(
~a,~b;−1

)
=

1∏
j 6=3 Γ(bj)

∂

∂b3

 4F3

(
~a,~b;−1

)
Γ(b3)


=

1

Γ(b1) Γ(b2)

 4F
′
3

(
~a,~b;−1

)
Γ(b3)

− 4F3

(
~a,~b;−1

) Γ′(b3)

Γ2(b3)


=

1

Γ2(2)

 4F
′
3

(
~a,~b;−1

)
Γ(3/2)

− 4F3

(
~a,~b;−1

) Γ′(3/2)

Γ2(3/2)

 . (3.8)

Since Γ(1 + x) = xΓ(x), then Γ
(
3
2

)
= 1

2 Γ
(
1
2

)
=
√
π/ 2, which reduces the last expression, above, to

4F̃
′
3

(
~a,~b;−1

)
=

4F
′
3

(
~a,~b;−1

)
√
π/2

− 4F3

(
~a,~b;−1

) ψ(3/2)√
π/2

= 2
4F
′
3(~a,~b;−1)√

π
− 2 4F3(~a,~b;−1)

ψ(3/2)√
π

. (3.9)

Note that, for all positive integers n, Γ(n) = (n−1)! (in particular, Γ(2) = 1! = 1). The proof completes
by substituting the result in Corollary 2, together with the special values ψ(3/2) = ψ(1/2)+1/(1/2) =

−γ − ln 4 + 2 and 4F3(~a,~b;−1) = π2/ 12, in Eq. (3.9). �

The closed-form result in Corollary 3 has been conjectured by Ancarani and the author in a recent
discussion, by following an entirely different approach, but we could not find a formal proof at that
time.
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