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EXISTENCE OF SOLUTIONS AND ULAM STABILITY FOR CAPUTO TYPE

SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS OF ORDER α ∈ (2, 3)

BASHIR AHMAD1,2,∗, MOHAMMED M. MATAR2 AND OLA M. EL-SALMY2

Abstract. We study initial value problems of sequential fractional differential equations and inclu-

sions involving a Caputo type differential operator of the form:
(
CDαa+ + λ1 CDα−1

a+ + λ2 CDα−2
a+

)
,

where α ∈ (2, 3) and λi(i = 1, 2) are nonzero constants. Several existence and uniqueness results
are accomplished by means of fixed point theorems. Sufficient conditions for Ulam stability of the

given problem are also presented. Examples are constructed for the illustration of obtained results.

Then we investigate the inclusions case of the problem at hand. An initial value problem for coupled
sequential fractional differential equations is also discussed.

1. Introduction

Fractional calculus is a generalization of the classical differentiation and integration to arbitrary
non-integer order. The idea of fractional calculus has been a subject of interest not only among
mathematicians but also among physicists and engineers. They have used it effectively to improve the
mathematical modelling of several phenomena occurring in scientific and engineering disciplines such as
viscoelasticity [1], electrochemistry [2], electromagnetism [3], biology ( [4], [5]), control ( [6], [7], [14]),
diffusion process ( [8], [9], [10]), economics [11], chaotic systems ( [12], [13]), variational problems [15]
etc.

The mathematical models involving fractional order derivatives are more realistic and practical than
the classical models as they help to trace the history of the associated phenomena. Also, the enriched
material on theoretical aspects and analytic/numerical methods for solving fractional order models
attracts the modelers. During the last decade, many researchers have focused on the existence of
solutions for initial and boundary value problems of fractional differential equations see ( [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26]) and the references cited therein.

The stability theory of fractional differential systems needs more investigations than the one for
classical differential systems, since fractional derivatives are nonlocal and have weak singular kernels.
For recent development on the stability of fractional differential systems, for instance, see ( [27], [28],
[29]) and the references cited therein.

The Ulam type stabilities [30] for fractional differential systems are quite significant in realistic
problems, numerical analysis, biology and economics. For details and examples, we refer the reader to
the works ( [31], [32], [33]).

In this paper, we investigate the existence of solutions for an initial value problem of sequential
fractional differential equations given by{ (

CDα
a+ + λ1

CDα−1
a+ + λ2

CDα−2
a+

)
x(t) = f(t, x(t)), α ∈ (2, 3), t ∈ J,

x(k)(a) = bk, k = 0, 1, 2,
(1.1)

where CDα
a denote the Caputo fractional derivative of order α, λ1 and λ2 are nonzero constants,

f : J × R→ R is a given continuous function, and J = [a, T ], T > a ≥ 0.
The rest of the paper is organized as follows. In Section 2, we recall some preliminary concepts

and prove an auxiliary lemma, which plays a fundamental role in defining the fixed point problem
associated with the problem at hand. Existence results and illustrative examples are presented in
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Section 3, while Ulam type stability for the given problem is discussed in Section 4. An existence
result for the multivalued (inclusions) case of the problem (1.1) is proved in Section 5. An initial
value problem for coupled sequential fractional differential equations is formulated and investigated in
Section 6.

2. Preliminaries

Let us first recall some basic notions of fractional calculus ( [16], [17]).

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 is defined as

Iαa+h(t) =

∫ t

a

(t− s)α−1h(s)

Γ(α)
ds,

provided the integral exists, and I0
a+h(t) = h(t).

Definition 2.2. The Caputo derivative of fractional order α > 0 is defined as

CDα
a+h(t) =

∫ t

a

(t− s)n−α−1h(n)(s)

Γ(n− α)
ds, n− 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of the real number α.

Let C(J,R) be a Banach space of all continuous real valued functions defined on J endowed with
the norm defined by ‖x‖ = sup {|x(t)| , t ∈ J} , Cn(J,R) be a Banach space of all n times continuously
differentiable on J. By AC(J,R), we denote the space of functions which are absolutely continuous on
J, and by ACn(J,R), the space of functions f which have continuous derivatives up to order n− 1 on
J such that f (n) ∈ AC(J,R).

Here we remark that the fractional integral Iαa+ is bounded operator on C(J,R) (see Lemma 2.8 [16]),

and the fractional derivative CDα
a+h exists almost everywhere if h ∈ ACn(J,R) (see Theorem 2.1 [16]).

Notice that C1(J,R) ⊆ AC(J,R) ⊆ C(J,R); in general, Cn(J,R) ⊆ ACn(J,R) ⊆ Cn−1(J,R). There-
fore, the fractional derivative CDα

a+h is continuous for any h ∈ Cn(J,R) ( see Theorem 2.2 [16]).

Lemma 2.1. ( [16]) Let x ∈ Cn(J,R) (or ACn(J,R)), f ∈ C(J,R) (or AC(J,R)), and ci ∈ R,
i = 0, 1, 2, ..., n− 1. Then

CDα
a+

(
Iαa+f(t)

)
= f(t),

Iαa+(CDα
a+x(t)) = x(t) +

n−1∑
i=0

ci (t− a)
i
,

CDα
a+x(t) = 0 implies that x(t) =

n−1∑
i=0

ci (t− a)
i
.

Consider the linear variant problem{ (
CDα

a+ + λ1
CDα−1

a+ + λ2
CDα−2

a+

)
x(t) = g(t), t ∈ J

x(k)(a) = bk, k = 0, 1, 2.
(2.1)

Lemma 2.2. Let x ∈ C3(J,R), g ∈ C(J,R), and λ2
1 = 4λ2, then the linear problem (2.1) is equivalent

to the integral equation

x(t) = b0 + b1

(
λ1

λ2
− λ1

λ2
e−

λ1
2 (t−a) − (t− a) e−

λ1
2 (t−a)

)
+b2

(
1

λ2
− 1

λ2
e−

λ1
2 (t−a) − 2

λ1
(t− a) e−

λ1
2 (t−a)

)
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sg(r)drds. (2.2)
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Proof. Applying the fractional integral operator Iα−2
a+ to sequential fractional differential equation in

(2.1), we get

x(2)(t) + λ1x
(1)(t) + λ2x(t) = Iα−2

a+ g(t) + c2. (2.3)

Using the initial conditions in (2.3) leads to c2 = b2 + λ1b1 + λ2b0. Now, let y(t) = e
λ1
2 tx(t), then

y(1)(t) = e
λ1
2 tx(1)(t) + λ1

2 e
λ1
2 tx(t), and y(2)(t) = e

λ1
2 tx(2)(t) +λ1e

λ1
2 tx(1)(t) +

λ2
1

4 e
λ1
2 tx(t). Substituting

these values in (2.3), we get

y(2)(t) = e
λ1
2 tIα−2

a+ g(t) + (b2 + λ1b1 + λ2b0) e
λ1
2 t. (2.4)

Integrating equation (2.4) twice from a to t, we obtain

y(t) = y(a) + y(1)(a) (t− a)

+ (b2 + λ1b1 + λ2b0)

(
1

λ2
e
λ1
2 t − 1

λ2
e
λ1
2 a − 2

λ1
e
λ1
2 a (t− a)

)
+

1

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sg(r)drds,

which, on account of y(t) = e
λ1
2 tx(t), yields

x(t) = e−
λ1
2 (t−a)x(a) +

(
x(1)(a) +

λ1

2
x(a)

)
(t− a) e−

λ1
2 (t−a)

+ (b2 + λ1b1 + λ2b0)

(
1

λ2
− 1

λ2
e−

λ1
2 (t−a) − 2

λ1
(t− a) e−

λ1
2 (t−a)

)
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sg(r)drds. (2.5)

Making use of the initial conditions in (2.5) and rearranging the terms we get (2.2). Conversely,
applying the fractional operator

(
CDα

a+ + λ1
CDα−1

a+ + λ2
CDα−2

a+

)
to the integral equation (2.2) and

using Lemma 2.1, we obtain the problem (2.1). This completes the proof. �

If g has a maximum gmax on J , then the integral term in equation (2.2) has upper bounds

2gmax (T − a)
α−1

|λ1|Γ(α− 1)

∣∣∣1− e−λ12 (t−a)
∣∣∣ <


2gmax(T−a)α−1

|λ1|Γ(α−1) , λ1 > 0
2gmax(T−a)α−1

|λ1|Γ(α−1)

(
1 + e−

λ1
2 (T−a)

)
, λ1 < 0

(2.6)

for any t ∈ J. Therefore, in the next sections, we prefer to use the upper bound 2gmax(T−a)α−1

|λ1|Γ(α−1)

(
1 + e−

λ1
2 (T−a)

)
for each nonzero λ1.

3. Existence Theorems

We establish sufficient conditions for existence of solutions to problem (1.1) using different types of
fixed point theorems.

In view of Lemma 2.2, we transform the initial value problem (1.1) into an operator equation as

Ψx(t) = b0 + b1

(
λ1

λ2
− λ1

λ2
e−

λ1
2 (t−a) − (t− a) e−

λ1
2 (t−a)

)
+b2

(
1

λ2
− 1

λ2
e−

λ1
2 (t−a) − 2

λ1
(t− a) e−

λ1
2 (t−a)

)
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf(r, x(r))drds (3.1)

where x ∈ C(J,R). Note that λ2 is nonnegative for all values of λ1 as λ2
1 = 4λ2.

If the operator Ψ has a fixed point in C(J,R), then the problem (1.1) has this fixed point as a
solution.

Lemma 3.1. The operator Ψ : C(J,R)→ C(J,R) given by (3.1) is completely continuous.
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Proof. Obviously, continuity of the operator Ψ follows from the continuity of the function f. Let U be
a bounded proper subset of C(J,R), then for any t ∈ J, and x ∈ U , there exists a positive constant L
such that |f(t, x(t))| ≤ L. Accordingly, (2.6) yields

|Ψx(t)| ≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2L (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
,

which implies that Ψ is a bounded operator on U ⊂C(J,R). Furthermore, for a < t1 < t2 < T , we
have

|(Ψx)(t2)− (Ψx)(t1)|

≤ |b1λ1|
λ2

∣∣∣e−λ12 (t1−a) − e−
λ1
2 (t2−a)

∣∣∣
+ |b1|

∣∣∣(t1 − a) e−
λ1
2 (t1−a) − (t2 − a) e−

λ1
2 (t2−a)

∣∣∣
+
|b2|
λ2

∣∣∣e−λ12 (t1−a) − e−
λ1
2 (t2−a)

∣∣∣
+

2 |b2|
|λ1|

∣∣∣(t1 − a) e−
λ1
2 (t1−a) − (t2 − a) e−

λ1
2 (t2−a)

∣∣∣
+

∣∣∣∣∣ e−
λ1
2 t2

Γ(α− 2)

∫ t2

a

∫ s

a

(t2 − s) (s− r)α−3
e
λ1
2 sf(r, x(r))drds

− e−
λ1
2 t1

Γ(α− 2)

∫ t1

a

∫ s

a

(t1 − s) (s− r)α−3
e
λ1
2 sf(r, x(r))drds

∣∣∣∣∣
≤ |b1λ1|

λ2

∣∣∣e−λ12 (t1−t2) − 1
∣∣∣ e−λ12 (t2−a)

+ |b1|
∣∣∣(t1 − t2) e−

λ1
2 (t1−t2) + (t2 − a)

(
e−

λ1
2 (t1−t2) − 1

)∣∣∣ e−λ12 (t2−a)

+
|b2|
λ2

∣∣∣e−λ12 (t1−t2) − 1
∣∣∣ e−λ12 (t2−a)

+
|b2|
λ2

∣∣∣(t1 − t2) e−
λ1
2 (t1−t2) + (t2 − a)

(
e−

λ1
2 (t1−t2) − 1

)∣∣∣ e−λ12 (t2−a)

+
Le−

λ1
2 t1e−

λ1
2 (t2−t1)

Γ(α− 2)

∫ t1

a

∫ s

a

(t2 − t1) (s− r)α−3
e
λ1
2 sdrds

+
Le−

λ1
2 t1

(
e−

λ1
2 (t2−t1) − 1

)
Γ(α− 2)

∫ t1

a

∫ s

a

(t1 − s) (s− r)α−3
e
λ1
2 sdrds

+
Le−

λ1
2 t1e−

λ1
2 (t2−t1)

Γ(α− 2)

∫ t2

t1

∫ s

a

(t2 − s) (s− r)α−3
e
λ1
2 sdrds,

which tends to zero independently of x as t2 → t1. This implies that Ψ is equicontinuous on J. In
consequence, it follows by the Arzela-Ascoli theorem that the operator Ψ is completely continuous.
This completes the proof. �

Next we recall the Schauder’s fixed-point theorem ( [34]).

Theorem 3.1. If U is a closed , bounded, convex subset of a Banach space X and the mapping
∆ : U → U is completely continuous, then ∆ has a fixed point in U .

Theorem 3.2. Let |f(t, x(t))| ≤ L. Then there exists a solution of the problem (1.1) on J.
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Proof. It is a direct consequence of Lemma 3.1 if U is taken to be a closed, bounded, convex subset of
C(J,R). �

Theorem 3.3. Assume that there exists a constant K such that

lim
x→0

f(t, x)

x
= K, t ∈ J,

then the problem (1.1) has a solution on J.

Proof. By the given assumption, it follows that |f(t, x(t))| ≤ (1 +K) |x(t)| , whenever |x(t)| < δ, for
a fixed number δ > 0. Therefore, we can define a subset U as

U = {x ∈ C(J,R) : |x(t)| ≤ δ, t ∈ J} .

Clearly U is a closed, bounded and convex subset of C(J,R). If x ∈ U , then |f(t, x(t))| < δ (1 +K) ,
for any t ∈ J. On the other hand, the operator Ψ : U → U defined by (3.1) is completely continuous by
Lemma 3.1. Therefore, by Schauder’s fixed point theorem 3.1, the problem (1.1) has a solution. This
completes the proof. �

The next result is based on Krasnoselskii’s fixed point theorem ( [34]) .

Theorem 3.4. Let M be a closed convex and nonempty subset of a Banach space C(J,R). Let Θ,
and Φ be the operators such that
(i) Θu+ Φv ∈M whenever u, v ∈M;
(ii) Θ is compact and continuous;
(iii) Φ is a contraction.
Then there exists x ∈M such that x = Θx+ Φx.

Theorem 3.5. Assume that

(H1): For any t ∈ J, and x, y ∈ R, there exists a positive constants C such that |f(t, x)− f(t, y)| ≤
C |x− y| .

(H2): For any t ∈ J, and x ∈ R, there exists µ ∈ C(J,R+) such that |f(t, x)| ≤ µ(t).
(H3): ω < 1, where

ω =
2C (T − a)

α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
.

Then, the problem (1.1) has at least one solution on J.

Proof. Define a set Br = {x ∈ C(J,R) : ‖x‖ ≤ r}, where r is a positive real number satisfying the
inequality

r ≥ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2L (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
.

Introduce operators Θ and Φ on Br as

(Θx) (t) = b0 + b1

(
λ1

λ2
− λ1

λ2
e−

λ1
2 (t−a) − (t− a) e−

λ1
2 (t−a)

)
+b2

(
1

λ2
− 1

λ2
e−

λ1
2 (t−a) − 2

λ1
(t− a) e−

λ1
2 (t−a)

)
,

and

(Φx)(t) =
e−

λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf(r, x(r))drds.
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For x, y ∈ Br, t ∈ J , using (H2), we find that

|Θx(t) + Φy(t)| ≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2 ‖µ‖ (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
.

Thus, Θx+ Φy ∈ Br. By (H1), for x, y ∈ Br, t ∈ J , we have

|(Φx) (t)− (Φy) (t)| ≤ 2C (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
‖x− y‖ ,

that is, ‖(Φx)− (Φy)‖ ≤ ω ‖x− y‖ . Since ω < 1 by (H3), Φ is a contraction.
The operator Θ is continuous and is uniformly bounded, since

‖Θx‖ ≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
.

As in the proof of Lemma 3.1, it can be shown that Θ is equicontinuous and relatively compact on Br.
Hence, by the Arzela-Ascoli theorem, Θ is compact on Br. Thus all the assumptions of Theorem 3.4
are satisfied. Therefore, the problem (1.1) has at least one solution on J. This completes the proof. �

Our next result deals with the uniqueness of solutions for the problem (1.1) and is based on the
Banach contraction principle.

Theorem 3.6. Assume that (H1) and (H3) hold. Then there exists a unique solution for the problem
(1.1) on J.

Proof. Let supt∈J |f(t, 0)| = A, and r ≥ (1− β)
−1
γ, where

γ = |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2A (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
.

Then we show that ΨBr ⊂ Br, where Br = {x ∈ C(J,R) : ‖x‖ ≤ r}. This follows by the following
estimate

|Ψx(t)| ≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2A (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
+

2C (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
‖x‖

≤ (1− β) r + βr = r,

for any x ∈ Br. Moreover, for x, y ∈ C(J,R) and for each t ∈ J , we can obtain

|(Ψx)(t)− (Ψy)(t)| ≤ 2C (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
‖x− y‖ ,
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which, by taking the norm on J and using the assumption (H3), yields that Ψ is a contraction.
Thus, the conclusion of the theorem follows by the contraction mapping principle. This completes the
proof. �

Our last existence theorems is based on Leray-Schauder degree theorem [34]. For that we set the
notations:

F = |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2E (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
, (3.2)

G =
2D (T − a)

α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
< 1. (3.3)

Theorem 3.7. Assume that there exist constants D and E such that |f(t, x)| ≤ D |x| + E, for t ∈
J, x ∈ R. Then there exists a solution for the problem (1.1) on J.

Proof. Define a ball BR = {x ∈ C(J,R) : ‖x‖ < R} for some positive real number R which will be
determined later. We show that Ψ : BR → C(J,R) satisfies

0 /∈ (I − λΨ) (∂BR) ,

for any x ∈ ∂BR, and λ ∈ [0, 1], where ∂BR denotes the boundary set of BR. Define the homotopy

hλ(x) = H(λ, x) = x− λΨx, x ∈ C(J,R), λ ∈ [0, 1].

Then, by Lemma 3.1, hλ is completely continuous. Let I denote the identity operator, then the
homotopy invariance and normalization properties of topological degrees imply that

deg(hλ,BR, 0) = deg((I − λΨ) ,BR, 0) = deg(h1,BR, 0)

= deg(h0,BR, 0) = deg(I,BR, 0) = 1,

since 0 ∈ BR. By the nonzero property of the Leray-Schauder degree, h1(x) = x−Ψx = 0 for at least
one x ∈ BR. To find R, we assume that x(t) = λΨx(t) for some λ ∈ [0, 1] and for all t ∈ J. Then, using
the given assumption together with (3.2) and (3.3), we get

|x(t)| = |λΨx(t)| ≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

2 (T − a)
α−1

|λ1|Γ(α− 1)

(
1 + e−

λ1
2 (T−a)

)
(D ‖x‖+ E)

≤ F +G ‖x‖ ,

which implies that

‖x‖ ≤ F

1−G
.

The value of R = F−G+1
1−G > ‖x‖ is sufficient for applicability of Leray-Schauder degree theorem. This

completes the proof. �

Example 3.1. Consider the following nonlinear fractional boundary value problem{ (
CD2.1

0+ − 2CD1.1
0+ + 4CD0.1

0+

)
x(t) = f(t, x(t)), t ∈ (0, 1),

x(0) = x
′
(0) = x

′′
(0) = 1.

(3.4)

Here α = 2.1, b0 = b1 = b2 = 1.
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(a): For the illustration of Theorem 3.3, let us take

f(t, x(t)) =
sin(x) + x

8
. (3.5)

Obviously limx→0
f(t,x)
x = 1/4 = K. Thus the conclusion of Theorem 3.3 applies to the problem

(3.4) with f(t, x(t)) given by (3.5).
(b): In order to explain Theorem 3.5, we consider

f(t, x(t)) =
1√

36 + t2
|x|

(1 + |x|)
+

1

12
. (3.6)

With the given data, it is easy to verify that the conditions (H1) and (H2) hold true with C = 1
6 and

µ(t) = 1√
36+t2

+ 1
12 , while (H3) is satisfied with ω = 1+e

6Γ(1.1) < 1. Thus all the conditions of Theorem

3.5 are satisfied. Therefore there exists at least one solution for the problem (3.4) with f(t, x(t)) given
by (3.6).

(c) We illustrate Theorem 3.6 with the aid of the following nonlinear function

f(t, x(t)) =
1√

49 + t2
tan−1(x) +

1

14
. (3.7)

Clearly, in this case, C = 1
7 and ω = 1+e

7Γ(1.1) < 1. Thus, by the conclusion of Theorem 3.6, the problem

(3.4) with f(t, x(t)) given by (3.7) has a unique solution on [0, 1].
(d) Let us consider the following nonlinear function to demonstrate the application of Theorem 3.7

f(t, x(t)) =
1√

25 + t
sin(x) +

|x|
3(1 + |x|)

+
1

3
. (3.8)

With the given values, it is found that D = 1/5, E = 2/3, and G = 1+e
5Γ(1.1) < 1. Thus, by Theorem 3.7,

there exists a solution for the problem (3.4) with f(t, x(t)) given by (3.8).

4. Ulam Stability

Here we investigate the Ulam stability criteria for the problem (1.1) via its equivalent integral
equation

y(t) = b0 + b1

(
λ1

λ2
− λ1

λ2
e−

λ1
2 (t−a) − (t− a) e−

λ1
2 (t−a)

)
+b2

(
1

λ2
− 1

λ2
e−

λ1
2 (t−a) − 2

λ1
(t− a) e−

λ1
2 (t−a)

)
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf(r, y(r))drds. (4.1)

If y ∈ C3 (J,R) and f : J ×R→ R is continuous function, then the nonlinear operator Υ : C (J,R)→
C (J,R) given by

Υy(t) =
(
CDα

a+ + λ1
CDα−1

a+ + λ2
CDα−2

a+

)
y(t)− f(t, y(t))

is continuous.

Definition 4.1. The system (1.1) is Ulam-Hyers stable if there exists a real number c > 0 such that
for each ε > 0 and for each solution y ∈ C(3) (J,R) ,

‖Υy‖ ≤ ε, t ∈ J, (4.2)

then there exists a solution x ∈ C (J,R) of (1.1) satisfying the inequality:

‖x− y‖ ≤ cε1, t ∈ J,
where ε1 is a positive real number depending on ε.

Definition 4.2. The system (1.1) is generalized Ulam-Hyers stable if there exists σ ∈ C (R+,R+)
such that for each solution y ∈ C(3) (J,R) of (1.1) there exists a solution x ∈ C (J,R) of (1.1) with

|x(t)− y(t)| ≤ σ(ε), t ∈ J.
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Definition 4.3. The system (1.1) is Ulam-Hyers-Rassias stable with respect to φ ∈ C (J,R+) if there
exists a real number c > 0 such that for each ε > 0 and for each solution y ∈ C(3) (J,R) of (1.1),

|Υy(t)| ≤ εφ(t), t ∈ J, (4.3)

then there exists a solution x ∈ C (J,R) of (1.1) with

|x(t)− y(t)| ≤ cε1φ(t), t ∈ J,
where ε1 is a positive real number depending on ε.

Theorem 4.1. Assume that (H1) and (H3) hold. Then the system (1.1) satisfies both Ulam-Hyers
and generalized Ulam-Hyers stability criteria.

Proof. Let x ∈ C (J,R) be a unique solution of (3.1) that satisfies equation (1.1) by Theorem 3.6. Let
y ∈ C(3) (J,R) be any solution satisfying (4.2). Then, by Lemma 2.2, y satisfies the integral equation
(4.1). Moreover, the equivalence in Lemma 2.2 implies the equivalence between the operators Υ and
Ψ − I on every solution y ∈ C (J,R) that satisfies equations (1.1) and (4.1). Therefore, by the fixed
point property of the operator Ψ (given by (3.1)), we have

|y(t)− x(t)| = |y(t)−Ψy(t) + Ψy(t)−Ψx(t)|
≤ |Ψx(t)−Ψy(t)|+ |Ψy(t)− y(t)|
≤ ω ‖x− y‖+ ε,

where ε > 0 and ω is defined in (H3) . In consequence, it follows that

‖x− y‖ ≤ ε

1− ω
.

If we let ε1 = ε
1−ω , and c = 1, then, the Ulam-Hyers stability condition is satisfied. More generally,

for σ(ε) = ε
1−ω , the generalized Ulam-Hyers stability condition is also satisfied. This completes the

proof. �

Theorem 4.2. Assume that (H1) and (H3) hold and there exists a function φ ∈ C (J,R+) satisfying
the condition (4.3). Then the problem (1.1) is Ulam-Hyers-Rassias stable with respect to φ.

Proof. Following the arguments employed in the proof of Theorem 4.1, we can obtain that

‖x− y‖ ≤ ε1φ(t),

where ε1 = ε
1−ω . his completes proof. �

As an application, the problem given by (3.4) with f(t, x(t)) = t|x(t)|
4(1+|x(t)|) is Ulam-Hyers stable,

and generalized Ulam-Hyers stable. In addition, If there exists a function φ ∈ C (J,R+) satisfying the
condition (4.3), then the problem (3.4) with the given value of f(t, x(t)) is Ulam-Hyers-Rassias stable.

5. Multivalued case

In this section, we study the multivalued (inclusions) analogue of the problem (1.1) given by{ (
CDα

a+ + λ1
CDα−1

a+ + λ2
CDα−2

a+

)
x(t) ∈ F (t, x(t)),

x(k)(a) = bk, k = 0, 1, 2,
(5.1)

where F : [a, T ]× R→ 2R \ {∅}, α ∈ (2, 3), t ∈ [a, T ] and the other quantities are the same as defined
in the problem (1.1).

Before proceeding for the existence result for the problem (5.1), which relies on Bohnenblust-Karlin
fixed point theorem, we outline the background material for multi-valued maps [35,36].

Let C[a, T ] denote a Banach space of continuous functions from [a, T ] into R with the norm ‖x‖ =
supt∈[a,T ]{|x(t)|}. Let L1([a, T ],R) be the Banach space of functions x : [a, T ]→ R which are Lebesgue

integrable and normed by ‖x‖L1 =
∫ T
a
|x(t)|dt.

A multi-valued map H : X → 2X

(a): is convex (closed) valued if H(x) is convex (closed) for all x ∈ X, where (X, ‖.‖) is a Banach
space.
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(b): is bounded on a bounded set if H(B) = ∪x∈BG(x) is bounded in X for any bounded set B
of X (that is, supx∈B{sup{|y| : y ∈ H(x)}} <∞).

(c): is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set H(x0) is a nonempty
closed subset of X, and if for each open set B of X containing H(x0), there exists an open
neighborhood N of x0 such that H(N ) ⊆ B.

(d): is said to be completely continuous if G(B) is relatively compact for every bounded subset
B of X.

(e): has a fixed point if there is x ∈ X such that x ∈ H(x).

If the multi-valued map H is completely continuous with nonempty compact values, then H is u.s.c.
if and only if H has a closed graph, that is, xn → x∗, yn → y∗, yn ∈ H(xn) imply y∗ ∈ H(x∗).

In the following study, BCC(X) denotes the set of all nonempty bounded, closed and convex subset
of X. Furthermore, we need the following assumptions:

(M1) Let F : [a, T ]×R→ BCC(R); (t, x)→ f(t, x) be measurable with respect to t for each x ∈ R,
u.s.c. with respect to x for a.e. t ∈ [a, T ], and for each fixed x ∈ R, the set SF,x := {f ∈
L1([a, T ],R) : f(t) ∈ F (t, x) for a.e. t ∈ [a, T ]} is nonempty.

(M2) For each ρ > 0, there exists a function pρ ∈ L1([a, T ],R+) such that ‖F (t, x)‖ = sup{|v| :
v(t) ∈ F (t, x)} ≤ pρ(t) for each (t, x) ∈ [a, T ]× R with |x| ≤ ρ, and

lim inf
ρ→+∞

(∫ T
a
pρ(t)dt

ρ

)
= µ <∞. (5.2)

Next we state the known lemmas which we need in the forthcoming analysis.

Lemma 5.1. (Bohnenblust-Karlin [37]) Let D ⊂ X be nonempty bounded, closed, and convex. Let

H : D → 2X \ {0} be u.s.c. with closed, convex values such that H(D) ⊂ D and H(D) is compact.
Then H has a fixed point.

Lemma 5.2. [38] Let F be a multi-valued map satisfying the condition (M1) and φ is linear continuous
from L1(I,R)→ C(I). Then the operator φ ◦ SF : C(I)→ BCC(C(I)), x 7→ (φ ◦ SF )(x) = φ(SF,x) is
a closed graph operator in C(I)× C(I), where I is a compact real interval.

Theorem 3.1. Assume that (M1) and (M2) hold and that

µ <
Γ(α− 1)

(T − a)α−1
, (5.3)

where µ is given by (5.2). Then there exists at least one solution for the problem (5.1) on [a, T ].

Proof. In order to transform the problem (5.1) into a fixed point problem, we introduce a multi-valued
map Ω : C[a, T ]→ 2C[a,T ] given by

Ω(x) =
{
h ∈ C[a, T ] : h(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf(r, x(r))drds, f ∈ SF,x

}
.

The proof will be complete once it is shown that Ω satisfies all the assumptions of Lemma 5.1. In
consequence, Ω will have a fixed point, showing that the problem (5.1) has a solution.
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In the first step, we show that Ω(x) is convex for each x ∈ C[a, T ]. For that, let h1, h2 ∈ Ω(x). Then
there exist f1, f2 ∈ SF,x such that for each t ∈ [a, T ], we have

hi(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sfi(r, x(r))drds, i = 1, 2.

Let 0 ≤ σ ≤ 1. Then, for each t ∈ [a, T ], we have

[σh1 + (1− σ)h2](t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 s[σf1 + (1− σ)f2](r, x(r))drds.

Since SF,x is convex (F has convex values), therefore it follows that σh1 + (1− σ)h2 ∈ Ω(x).
Next we show that there exists a positive number ρ such that Ω(Bρ) ⊆ Bρ, where Bρ = {x ∈ C[a, T ] :
‖x‖ ≤ ρ}. Clearly Bρ is a bounded closed convex set in C[a, T ] for each positive constant ρ. If it is not
true, then for each positive number ρ, there exists a function xρ ∈ Bρ, hρ ∈ Ω(xρ) with ‖Ω(xρ)‖ > ρ,
and

hr(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 spρ(r)drds, for some pρ ∈ SF,xρ .

On the other hand, in view of (A2), we have

r < ‖Ω(xr)‖ ≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 spρ(r)drds

≤ |b0|+ |b1|
(
|λ1|
λ2

+
|λ1|
λ2

e−
λ1
2 (T−a) + (T − a) e−

λ1
2 (T−a)

)
+ |b2|

(
1

λ2
+

1

λ2
e−

λ1
2 (T−a) +

2

|λ1|
(T − a) e−

λ1
2 (T−a)

)
+

(T − a)(α−1)

Γ(α− 1)

∫ T

a

pρ(s)ds.

Dividing both sides by ρ and taking the lower limit as ρ→∞, we find that

µ ≥ Γ(α− 1)

(T − a)α−1
,

which contradicts (5.3). Hence there exists a positive number ρ1 such that Ω(Bρ1) ⊆ Bρ1.
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Now we show that Ω(Bρ) is equicontinuous. Let a < t1 < t2 < T , x ∈ Bρ and h ∈ Ω(x), then there
exists f ∈ SF,x such that for each t ∈ [a, T ], we have

h(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf(r)drds

}
and

|h(t2)− h(t1)| ≤ |b1λ1|
λ2

∣∣∣e−λ12 (t1−t2) − 1
∣∣∣ e−λ12 (t2−a)

+ |b1|
∣∣∣(t1 − t2) e−

λ1
2 (t1−t2) + (t2 − a)

(
e−

λ1
2 (t1−t2) − 1

)∣∣∣ e−λ12 (t2−a)

+
|b2|
λ2

∣∣∣e−λ12 (t1−t2) − 1
∣∣∣ e−λ12 (t2−a)

+
|b2|
λ2

∣∣∣(t1 − t2) e−
λ1
2 (t1−t2) + (t2 − a)

(
e−

λ1
2 (t1−t2) − 1

)∣∣∣ e−λ12 (t2−a)

+
e−

λ1
2 t1e−

λ1
2 (t2−t1)

Γ(α− 2)

∫ t1

a

∫ s

a

(t2 − t1) (s− r)α−3
e
λ1
2 spρ(s)drds

+
e−

λ1
2 t1

(
e−

λ1
2 (t2−t1) − 1

)
Γ(α− 2)

∫ t1

a

∫ s

a

(t1 − s) (s− r)α−3
e
λ1
2 spρ(s)drds

+
e−

λ1
2 t1e−

λ1
2 (t2−t1)

Γ(α− 2)

∫ t2

t1

∫ s

a

(t2 − s) (s− r)α−3
e
λ1
2 spρ(s)drds,

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Bρ as t2 → t1.
Thus, Ω is equi-continuous. As Ω satisfies the above three assumptions, therefore it follows by Ascoli-
Arzela theorem that Ω is a compact multi-valued map.
Finally, we show that Ω has a closed graph. Let xn → x∗, hn ∈ Ω(xn) and hn → h∗. We will show
that h∗ ∈ Ω(x∗). By the relation hn ∈ Ω(xn), we mean that there exists fn ∈ SF,xn such that for each
t ∈ [a, T ],

hn(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sfn(r)drds

}
.

Thus we need to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [a, T ],

h∗(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf∗(r)drds

}
.
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Let us consider the continuous linear operator φ : L1[a, T ],R)→ C[a, T ] so that

f 7→ φ(f)(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf(r)drds

}
.

Observe that

‖hn(t)− h∗(t)‖

=

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 s
(
fn(r)− f∗(r))drds→ 0 as n→∞.

Thus, it follows by Lemma 2.2 that φ◦SF is a closed graph operator. Further, we have hn(t) ∈ φ(SF,xn).
Since xn → x∗, therefore, Lemma 2.2 yields

h∗(t) = b0 + b1

[
λ1

λ2
−
(λ1

λ2
+ (t− a)

)
e−

λ1
2 (t−a)

]
+b2

[
1

λ2
−
( 1

λ2
+

2

λ1
(t− a)

)
e−

λ1
2 (t−a)

]
+

e−
λ1
2 t

Γ(α− 2)

∫ t

a

∫ s

a

(t− s) (s− r)α−3
e
λ1
2 sf∗(r)drds

}
.

Hence, we conclude that Ω is a compact multi-valued map, u.s.c. with convex closed values. Thus,
all the assumptions of Lemma 5.1 are satisfied and so by the conclusion of Lemma 5.1, Ω has a fixed
point x which is a solution of problem (5.1). This completes the proof. �

6. Coupled system of equations

In this section, we study an initial value problem of coupled sequential fractional differential equa-
tions given by 

(
CDα1

a+ + λ11
CDα1−1

a+ + λ21
CDα1−2

a+

)
u1(t) = f1(t, u1(t), u2(t)),(

CDα2
a+ + λ12

CDα2−1
a+ + λ22

CDα2−2
a+

)
u2(t) = f2(t, u1(t), u2(t)),

u
(k)
1 (a) = bk1, u

(k)
2 (a) = bk2, k = 0, 1, 2

(6.1)

where αi ∈ (2, 3), t ∈ J, λij ∈ R, λ2
1j = 4λ2j and fi : J × R2 → R (i, j = 1, 2) are continuous function

satisfying the following condition.

(S1): There exist Ci ∈ R+ such that

|fi(t, u1, u2)− fi(t, v1, v2)| ≤ Ci(|u1 − v1|+ |u2 − v2|), ui, vi ∈ R, t ∈ J.

Consider the Banach product space Y = C(J,R) × C(J,R) of all ordered pairs (x, y) such that
x, y ∈ C(J,R), and equipped with the norm ‖(x, y)‖Y = ‖x‖+ ‖y‖ . In view of Lemma 2.2, we define
an operator Λ : Y → Y by

Λ(u1, u2)(t) = (Λ1(u1, u2)(t),Λ2(u1, u2)(t)) , t ∈ J,

where

Λi(u1, u2)(t) = b0i + b1i

(
λ1i

λ2i
− λ1i

λ2i
e−

λ1i
2 (t−a) − (t− a) e−

λ1i
2 (t−a)

)
+b2i

(
1

λ2i
− 1

λ2i
e−

λ1i
2 (t−a) − 2

λ1i
(t− a) e−

λ1i
2 (t−a)

)
+

e−
λ1i
2 t

Γ(αi − 2)

∫ t

a

∫ s

a

(t− s) (s− r)αi−3
e
λ1i
2 sfi(r, u1(r), u2(r))drds, i = 1, 2.
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Theorem 6.1. Assume that (S1) is satisfied. Then there exists a unique solution for the problem (6.1)
on J whenever β1 + β2 < 1, where

βi =
2Ci (T − a)

αi−1

|λ1i|Γ(αi − 1)

(
1 + e−

λ1i
2 (T−a)

)
, i = 1, 2.

Proof. Let us set supt∈J |fi(t, 0, 0)| = Ai, and r ≥ (1− β1 − β2)
−1

(γ1 + γ2) , where

γi = |b0i|+ |b1i|
(
|λ1i|
λ2i

+
|λ1i|
λ2i

e−
λ1i
2 (T−a) + (T − a) e−

λ1i
2 (T−a)

)
+ |b2i|

(
1

λ2i
+

1

λ2i
e−

λ1i
2 (T−a) +

2

|λ1i|
(T − a) e−

λ1i
2 (T−a)

)
+

2Ai (T − a)
αi−1

|λ1i|Γ(αi − 1)

(
1 + e−

λ1i
2 (T−a)

)
, i = 1, 2.

Then

|Λi(u1, u2)(t)| ≤ |b0i|+ |b1i|
(
|λ1i|
λ2i

+
|λ1i|
λ2i

e−
λ1i
2 (T−a) + (T − a) e−

λ1i
2 (T−a)

)
+ |b2i|

(
1

λ2i
+

1

λ2i
e−

λ1i
2 (T−a) +

2

|λ1i|
(T − a) e−

λ1i
2 (T−a)

)
+

2Ai (T − a)
αi−1

|λ1i|Γ(αi − 1)

(
1 + e−

λ1i
2 (T−a)

)
+

2Ci (T − a)
αi−1

|λ1i|Γ(αi − 1)

(
1 + e−

λ1i
2 (T−a)

)
(‖u1‖+ ‖u2‖)

≤ γi + βi (‖u1‖+ ‖u2‖) .

Taking the norm of the above inequality for t ∈ J, it easily follows that ΛBr ⊂ Br, where Br =
{(x, y) ∈ Y : ‖(x, y)‖Y ≤ r}. Moreover, for (u1, u2), (v1, v2) ∈ Y and for each t ∈ J , we have

|Λ(u1, u2)(t)− Λ(v1, v2)(t)|
≤ |(Λ1(u1, u2)(t)− Λ1(v1, v2)(t)|+ |(Λ2(u1, u2)(t)− Λ2(v1, v2)(t)|

≤ 2C1 (T − a)
α1−1

|λ11|Γ(α1 − 1)

(
1 + e−

λ11
2 (T−a)

)
(‖u1 − v1‖+ ‖u2 − v2‖)

+
2C2 (T − a)

α2−1

|λ12|Γ(α2 − 1)

(
1 + e−

λ12
2 (T−a)

)
(‖u1 − v1‖+ ‖u2 − v2‖)

≤ (β1 + β2) (‖u1 − v1‖+ ‖u2 − v2‖) ,

which, on taking the norm for t ∈ J and using the condition β1+β2 < 1, implies that Λ is a contraction.
Thus, the conclusion of the theorem follows by the contraction mapping principle. This completes the
proof. �

Our second result is based on Leray-Schauder alternative [39].

Theorem 6.2. (Leray–Schauder alternative) Let F : E → E be a completely continuous operator and

E(F ) = {x ∈ E : x = λF (x), for some 0 < λ < 1} .

Then either the set E(F ) is unbounded, or F has at least one fixed point.

In the sequel, we need the following growth condition:

(S2): There exist Ki ∈ R+ such that

|fi(t, u1, u2)| ≤ Ki(1 + |u1|+ |u2|), ui ∈ R, t ∈ J, i = 1, 2.
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For computational convenience, we define

Di =
2Ki (T − a)

αi−1

|λ1i|Γ(αi − 1)

(
1 + e−

λ1i
2 (T−a)

)
, (6.2)

Bi = Di + |b0i|+ |b1i|
(
|λ1i|
λ2i

+
|λ1i|
λ2i

e−
λ1i
2 (T−a) + (T − a) e−

λ1i
2 (T−a)

)
+ |b2i|

(
1

λ2i
+

1

λ2i
e−

λ1i
2 (T−a) +

2

|λ1i|
(T − a) e−

λ1i
2 (T−a)

)
. (6.3)

Theorem 6.3. Assume that (S2) is satisfied. Then there exists at least one solution for the problem
(6.1) on J whenever D1 +D2 < 1

Proof. Clearly continuity of fi (i = 1, 2) implies the continuity of Λi and hence the continuity of
Λ. Let U be a bounded proper subset of Y , there exist positive constants L1 and L2 such that
|fi(t, u1(t), u2(t))| ≤ Li for t ∈ J, (u1, u2) ∈ Y. Following the procedure of the proof in Theorem
3.1, one can show that the operator Λ : Y → Y is completely continuous. Let (u1, u2) ∈ E(Λ), such
that (u1, u2) = λΛ(u1, u2). For any t ∈ J, u1(t) = λΛ1(u1, u2), and u2(t) = λΛ2(u1, u2). Then, using
the assumption (S2) and (6.2)-(6.3), we obtain

|ui(t)| ≤ |Λi(u1, u2)(t)|

≤ |b0i|+ |b1i|
(
|λ1i|
λi2

+
|λ1i|
λ2i

e−
λ1i
2 (T−a) + (T − a) e−

λ1i
2 (T−a)

)
+ |bi2|

(
1

λ2i
+

1

λ2i
e−

λ1i
2 (T−a) +

2

|λ1i|
(T − a) e−

λ1i
2 (T−a)

)
+

2Ki (T − a)
αi−1

|λ1i|Γ(αi − 1)

(
1 + e−

λ1i
2 (T−a)

)
(1 + ‖u1‖+ ‖u2‖)

≤ Bi +Di (‖u1‖+ ‖u2‖) .
Taking the norm of the above inequality for t ∈ J, it follows in a straightforward manner that

‖(u1, u2)‖ ≤ B1 +B2

1−D1 −D2
.

Hence the set E(Λ) = {(u1, u2) ∈ Y : (u1, u2) = λΛ(u1, u2) for some 0 < λ < 1} is bounded. By the
application of Leray-Schauder alternative Theorem, we deduce that the problem (6.1) has at least one
solution on J. This completes the proof. �
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