THE ESSENTIAL SPECTRUM OF A SEQUENCE OF LINEAR OPERATORS IN BANACH SPACES

AYMEN AMMAR^{1,*}, NOUI DJAIDJA² AND AREF JERIBI¹

ABSTRACT. In this work we introduce some essential spectra $(\sigma_{ei}, i = 1, ..., 5)$ of a sequence of closed linear operators $(T_n)_{n \in \mathbb{N}}$ on Banach space, we prove that if $(T_n)_{n \in \mathbb{N}}$ converges in the generalized sense to a closed linear operator T, then there exists $n_0 \in \mathbb{N}$ such that, for every $n \ge n_0$, we have $\sigma_{ei}(\lambda_0 - (T_n + B)) \subseteq \sigma_{ei}(\lambda_0 - (T + B)), i = 1, ..., 5$, where B is a bounded linear operator, and $\lambda_0 \in \mathbb{C}$. The same treatment is made when $(T_n - T)$ converges to zero compactly.

1. INTRODUCTION

Let X and Y be two Banach spaces. We denote by $\mathcal{L}(X, Y)$ (resp., $\mathcal{C}(X, Y)$) the set of all bounded (resp., closed, densely defined) linear operators from X into Y while $\mathcal{K}(X, Y)$ designates the subspace of compact operators from X into Y. If $T \in \mathcal{C}(X, Y)$, we write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null space and range of T, we set $\alpha(T)=\dim \mathcal{N}(T)$, $\beta(T)=codim \mathcal{R}(T)$. The classes of Fredholm, upper semi-Fredholm and lower semi-Fredholm operators from X into Y are, respectively, the following:

$$\Phi(X,Y) := \{ T \in \mathcal{C}(X,Y) : \alpha(T) < \infty \text{ and } \beta(T) < \infty, R(T) \text{ is closed in } Y \}.$$

$$\Phi_+(X,Y) := \{ T \in \mathcal{C}(X,Y) : \alpha(T) < \infty \text{ and } R(T) \text{ is closed in } Y \}$$

$$\Phi_{-}(X,Y) := \{T \in \mathcal{C}(X,Y) : \beta(T) < \infty \text{ and } R(T) \text{ is closed in } Y \}.$$

The set of semi-Fredholm operators from X into Y is defined by

$$\Phi_+(X,Y) := \Phi_+(X,Y) \cup \Phi_-(X,Y).$$

The set of Fredholm operators from X into Y is defined by

$$\Phi(X,Y) := \Phi_+(X,Y) \cap \Phi_-(X,Y).$$

For $T \in \Phi_{\pm}(X, Y)$, the number $i(T) = \alpha(T) - \beta(T)$ is called the index of T.

Definition 1.1. An operator $F \in \mathcal{L}(X, Y)$ is called a Fredholm perturbation if $T + F \in \Phi(X, Y)$ whenever $T \in \Phi(X, Y)$. F is called an upper (respectively, lower) Fredholm perturbation if $T + F \in \Phi_+(X, Y)$ (respectively, $\Phi_-(X, Y)$) whenever $T \in \Phi_+(X, Y)$ (respectively, $\Phi_-(X, Y)$). The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted by $\mathcal{F}(X, Y)$, $\mathcal{F}_+(X, Y)$ and $\mathcal{F}_-(X, Y)$, respectively.

Let $\Phi^{b}(X,Y)$, $\Phi^{b}_{+}(X,Y)$ and $\Phi^{b}_{-}(X,Y)$ denote the set $\Phi(X,Y) \cap \mathcal{L}(X,Y)$, $\Phi_{+}(X,Y) \cap \mathcal{L}(X,Y)$ and $\Phi_{-}(X,Y) \cap \mathcal{L}(X,Y)$, respectively.

Definition 1.2. Let A be a closable linear operator in a Banach space X. The resolvent set and the spectrum of A are, respectively, defined as

 $\rho(A) := \{ \lambda \in \mathbb{C}, \text{ such that } (\lambda - A) \text{ is injective and } (\lambda - A)^{-1} \in \mathcal{L}(X) \}, \\ \sigma(A) := \mathbb{C} \setminus \rho(A).$

Received 26th April, 2017; accepted 6th July, 2017; published 1st September, 2017. 2010 *Mathematics Subject Classification*. 47A10.

Key words and phrases. essential spectra; convergence in the generalized sense; convergence to zero compactly.

©2017 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. **Definition 1.3.** Let A be a closed linear operator in a Banach space X. We define the sets $\sigma_{e1}(A) := \{\lambda \in \mathbb{C}, \text{ such that } \lambda - A \notin \Phi_+(X)\},$ $\sigma_{e2}(A) := \{\lambda \in \mathbb{C}, \text{ such that } \lambda - A \notin \Phi_-(X)\},$ $\sigma_{e3}(A) := \{\lambda \in \mathbb{C}, \text{ such that } \lambda - A \notin \Phi_-(X) \cup \Phi_+(X)\},$ $\sigma_{e4}(A) := \{\lambda \in \mathbb{C}, \text{ such that } \lambda - A \notin \Phi(X)\},$ $\sigma_{e5}(A) := \bigcap \sigma(T + K).$

 $\kappa \in \mathcal{K}(X)$ $\sigma_{e1}(.)$ and $\sigma_{e2}(.)$ are the Gustafson and Weidman's essential spectra. $\sigma_{e3}(.)$ is the Kato's essential spectrum. $\sigma_{e4}(.)$ is the Wolf's essential spectrum, and $\sigma_{e5}(.)$ is the Schechter's essential spectrum.

Proposition 1.1. [8, Theorem 7.27, p.172] Let $T \in \mathcal{C}(X)$. Then $\lambda \notin \sigma_{e5}(T)$ if, and only if, $(\lambda - T) \in \Phi(X)$ and $i(\lambda - T) = 0$.

Definition 1.4. Let X be a Banach space and E, F be closed subspaces of X. Let B_E be the unit sphere of E. Let us define

$$\delta(E,F) := \begin{cases} \sup_{x \in \mathcal{B}_E} dist(x,F), & \text{if } E \neq \{0\}, \\ 0, & \text{otherwise,} \end{cases}$$

and $\widehat{\delta}(E,F) := \max \{ \delta(E,F), \delta(F,E) \}$. The quantity $\widehat{\delta}(E,F)$ is called the gap between the subspaces E and F.

Remark 1.1. (*i*) The gap measures the distance between two subspaces and it easily follows, from the definitions,

- $(i_1) \ \delta(E,F) = \delta(\overline{E},\overline{F}) \ and \ \widehat{\delta}(E,F) = \widehat{\delta}(\overline{E},\overline{F}).$
- (*i*₂) $\delta(E, F) = 0$ if, and only if, $\overline{E} \subset \overline{F}$.
- (*i*₃) $\hat{\delta}(E, F) = 0$ if, and only if, $\overline{E} = \overline{F}$.

(ii) $\hat{\delta}(\cdot, \cdot)$ is a metric on the set $\mathcal{V}(X)$ of all linear closed subspaces of X and the convergence $E_n \to F$ in $\mathcal{V}(X)$ is obviously defined by $\hat{\delta}(E_n, F) \to 0$. Moreover, $(\mathcal{V}(X), \hat{\delta})$ is a complete metric space.

Definition 1.5. (i) Let X and Y be two Banach spaces, and let T, S be two closed linear operators acting from X to Y. Let us define

$$\delta(G(T), G(S)) = \sup_{\substack{x \in \mathcal{D}(T) \\ \|x\|^2 + \|Tx\|^2 = 1}} \left[\inf_{\substack{y \in \mathcal{D}(S) \\ \|x\|^2 + \|Tx\|^2 = 1}} (\|x - y\|^2 + \|Tx - Sy\|^2)^{\frac{1}{2}} \right].$$

 $\widehat{\delta}(T,S)$ is called the gap between S and T.

(ii) Let T and S be two closable operators. We define the gap between T and S by $\delta(T,S) = \delta(\overline{T},\overline{S})$ and $\hat{\delta}(T,S) = \hat{\delta}(\overline{T},\overline{S})$.

Definition 1.6. A sequence $(T_n)_{n \in \mathbb{N}}$ of bounded linear operators mapping on X is said to converge to zero compactly if for all $x \in X$, $T_n x \to 0$ and $(T_n x_n)_n$ is relatively compact for every bounded sequence $(x_n)_n \subset X$.

Remark 1.2. Clearly, T_n converges to 0 implies that T_n converges to zero compactly.

Definition 1.7. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of closable linear operators from X into Y and let T be a closable linear operator from X into Y. $(T_n)_{n \in \mathbb{N}}$ is said to converge in the generalized sense to T if $\hat{\delta}(T_n, T)$ converges to 0 as, $n \to \infty$.

2. Preliminaries

Theorem 2.1. [2, Theorem 4] Let A_n be a sequence of bounded linear operators converging to zero compactly and let T be a closed linear operator. If T is a semi-Fredholm operator, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

(i) $(T + A_n)$ is semi-Fredholm, (ii) $\alpha(T + A_n) < \alpha(T)$, (iii) $\beta(T + A_n) < \beta(T)$, and (iv) $i(T + A_n) = i(T)$.

Proposition 2.1. [3, Proposition 7.8.1]. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of bounded linear operators and let $T \in \mathcal{L}(X)$ such that $T_n - T$ converges to zero compactly. Then,

(i) If
$$T_n \in \mathcal{F}^b(X)$$
, then $T \in \mathcal{F}^b(X)$,

(ii) If $T_n \in \mathcal{F}^b_+(X)$, then $T \in \mathcal{F}^b_+(X)$, and

(*iii*) If $T_n \in \mathcal{F}^b_-(X)$, then $T \in \mathcal{F}^b_-(X)$.

Theorem 2.2. [1, theorem 2.1] Let T and S be two closed densely defined linear operators. Then, we have:

(i) $\delta(T, S) = \delta(S^*, T^*)$ and $\widehat{\delta}(T, S) = \widehat{\delta}(S^*, T^*)$.

(ii) If S and T are one-to-one, then $\delta(S,T) = \delta(S^{-1},T^{-1})$ and $\widehat{\delta}(S,T) = \widehat{\delta}(S^{-1},T^{-1})$.

(iii) Let $A \in \mathcal{L}(X, Y)$. Then $\widehat{\delta}(A + S, A + T) \leq 2(1 + ||A||^2)\widehat{\delta}(S, T)$.

(iv) Let T be Fredholm operator (respectively semi-Fredholm operator). If $\hat{\delta}(T,S) < \gamma(T)(1+[\gamma(T)]^2)^{\frac{-1}{2}}$, then S is Fredholm operator (respectively semi-Fredholm operator), $\alpha(S) \leq \alpha(T)$ and $\beta(S) \leq \beta(T)$. Furthermore, there exists b > 0 such that $\hat{\delta}(T,S) < b$, which implies i(S) = i(T).

(v) Let $T \in \mathcal{L}(X,Y)$. If $S \in \mathcal{C}(X,Y)$ and $\widehat{\delta}(T,S) \leq \left[1 + ||T||^2\right]^{-\frac{1}{2}}$, then S is bounded operator (so that $\mathcal{D}(S)$ is closed).

Theorem 2.3. [1, theorem 2.3] Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of closable linear operators from X into Y and let T be a closable linear operator from X into Y.

(i) The sequence T_n converges in the generalized sense to T if, and only if, $T_n + S$ converges in the generalized sense to T + S, for all $S \in \mathcal{L}(X, Y)$.

(ii) Let $T \in \mathcal{L}(X, Y)$. T_n converges in the generalized sense to T if, and only if, $T_n \in \mathcal{L}(X, Y)$ for sufficiently larger n and T_n converges to T.

(iii) Let T_n converges in the generalized sense to T. Then, T^{-1} exists and $T^{-1} \in \mathcal{L}(Y, X)$, if, and only if, T_n^{-1} exists and $T_n^{-1} \in \mathcal{L}(Y, X)$ for sufficiently larger n and T_n^{-1} converges to T^{-1} .

3. The main result

In this section we investigate the essential spectra (σ_{ei} , $i = 1, \ldots, 5$) of the sequence of linear operators in a Banach space X.

Theorem 3.1. Let $(T_n)_{n \in \mathbb{N}}$ be a bounded linear operators mapping on X, and let T and B be two operators in $\mathcal{L}(X)$, $\lambda_0 \in \mathbb{C}$, and $\mathcal{U} \subseteq \mathbb{C}$ is open.

(a) If $((\lambda_0 - T_n - B) - (\lambda_0 - T - B))$ converges to zero compactly, and $0 \in \mathcal{U}$, then there exists $n_0 \in \mathbb{N}$ such that, for all $n \geq n_0$.

$$\sigma_{ei}(\lambda_0 - T_n - B) \subseteq \sigma_{ei}(\lambda_0 - T - B) + \mathcal{U}$$

And,
$$\delta(\sigma_{ei}(\lambda_0 - T_n - B), \sigma_{ei}(\lambda_0 - T - B)) = 0, i=1,\ldots,5$$

(b) If $(\lambda_0 - T_n - B)$ converges to zero compactly then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$

$$\sigma_{ei}((\lambda_0 - T - B) + (\lambda_0 - T_n - B)) \subseteq \sigma_{ei}(\lambda_0 - T - B)$$

And, $\delta(\sigma_{ei}((\lambda_0 - T - B) + (\lambda_0 - T_n - B)), \sigma_{ei}(\lambda_0 - T - B)) = 0, \ i = 1, \dots, 5.$

Proof. (a) For i = 1. Assume that the assertion fails. Then by passing to a subsequence, it may be deduced that, for each n, there exists $\lambda_n \in \sigma_{e1}(\lambda_0 - T_n - B)$ such that $\lambda_n \notin \sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}$. It is clear that $\lim_{n \to +\infty} \lambda_n = \lambda$ since (λ_n) is bounded, this implies that $\lambda \notin \sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}$. Using

the fact that $0 \in \mathcal{U}$, hence we have $\lambda \notin \sigma_{e1}(\lambda_0 - T - B)$, and therefore, $(\lambda - (\lambda_0 - T - B)) \in \Phi_+^b(X)$. Let $A_n = \lambda_n - \lambda + (\lambda_0 - T - B) - (\lambda_0 - T_n - B)$. Since A_n converges to zero compactly, writing $\lambda_n - (\lambda_0 - T_n - B) = \lambda - (\lambda_0 - T - B) + A_n$ and according to Theorem 2.1, we infer that, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $(\lambda_n - (\lambda_0 - T_n - B)) \in \Phi_+(X)$ and $i(\lambda_n - (\lambda_0 - T_n - B)) = i(\lambda - (\lambda_0 - T - B))$. So, $\lambda_n \notin \sigma_{e1}(\lambda_0 - T_n - B)$, which is a contradiction. Then

$$\sigma_{e1}(\lambda_0 - T_n - B) \subseteq \sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}, \text{ for all } n \ge n_0.$$

Since $0 \in \mathcal{U}$, we obtain $\sigma_{e1}(\lambda_0 - T_n - B) \subseteq \sigma_{e1}(\lambda_0 - T - B)$. Hence by Remark 1.1 (i_2) , we get $\delta(\sigma_{e1}(\lambda_0 - T_n - B), \sigma_{e1}(\lambda_0 - T - B)) = 0$, for all $n \ge n_0$.

For i = 2, 3, 4, by using a similar proof as in (i = 1), by replacing $\sigma_{e1}(.)$, and $\Phi_+(X)$ by $\sigma_{e2}(.)$, $\sigma_{e3}(.)$, $\sigma_{e4}(.)$, and $\Phi_-(X)$, $\Phi_-(X) \cup \Phi_+(X)$, $\Phi(X)$, respectively, we get

If $((\lambda_0 - T_n - B) - (\lambda_0 - T - B))$ converges to zero compactly, and $0 \in \mathcal{U}$, then there exists $n_0 \in \mathbb{N}$ such that, for all $n \geq n_0$.

$$\sigma_{ei}(\lambda_0 - T_n - B) \subseteq \sigma_{ei}(\lambda_0 - T - B) + \mathcal{U}_{\mathcal{I}}$$

And

$$\delta(\sigma_{ei}(\lambda_0 - T_n - B), \sigma_{ei}(\lambda_0 - T - B)) = 0.$$

For i = 5. Assume that the assertion fails. Then by passing to a subsequence, it may be deduced that, for each n, there exists $\lambda_n \in \sigma_{e5}(\lambda_0 - T_n - B)$ such that $\lambda_n \notin \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}$. It is clear that $\lim_{n \to +\infty} \lambda_n = \lambda$ since (λ_n) is bounded, this implies that $\lambda \notin \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}$. Using the fact that $0 \in \mathcal{U}$, we have $\lambda \notin \sigma_{e5}(\lambda_0 - T - B)$ and therefore, $\lambda - (\lambda_0 - T - B) \in \Phi^b(X)$ and $i(\lambda - (\lambda_0 - T - B)) = 0$. Let $A_n = \lambda_n - \lambda + (\lambda_0 - T - B) - (\lambda_0 - T_n - B)$. Since A_n converges to zero compactly, writing $\lambda_n - (\lambda_0 - T_n - B) = \lambda - (\lambda_0 - T - B) + A_n$ and according to Theorem 2.1, we infer that, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $\lambda_n - (\lambda_0 - T_n - B) \in \Phi(X)$ and $i(\lambda_n - (\lambda_0 - T_n - B)) = i(\lambda - (\lambda_0 - T - B) + A_n) = i(\lambda - (\lambda_0 - T - B)) = 0$. So, $\lambda_n \notin \sigma_{e5}(\lambda_0 - T_n - B)$, which is a contradiction. Then

$$\sigma_{e5}(\lambda_0 - T_n - B) \subseteq \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}, \text{ for all } n \ge n_0.$$

Since $0 \in \mathcal{U}$, we have $\sigma_{e5}(\lambda_0 - T_n - B) \subseteq \sigma_{e5}(\lambda_0 - T - B)$. Hence by Remark 1.1 (i_2) , we have

$$\delta\big(\sigma_{e5}(\lambda_0 - T_n - B), \sigma_{e5}(\lambda_0 - T - B)\big) = 0, \text{ for all } n \ge n_0.$$

(b) For i = 1. Let $\lambda \notin \sigma_{e1}(\lambda_0 - T - B)$. Then, $(\lambda - (\lambda_0 - T - B)) \in \Phi^b_+(X)$. Since $(\lambda_0 - T_n - B)$ converges to zero compactly and applying [2, Theorem 4] to the operators $(\lambda_0 - T - B)$ and $(\lambda_0 - T_n - B)$, we prove that, there exists $n_0 \in \mathbb{N}$ such that $(\lambda - (\lambda_0 - T - B) + (\lambda_0 - T_n - B)) \in \Phi_+(X)$ for all $n \ge n_0$. Hence $\lambda \notin \sigma_{e1}((\lambda_0 - T - B) + (\lambda_0 - T_n - B))$. We conclude that

$$\sigma_{e1}(\lambda_0 - T_n - B) \subseteq \sigma_{e1}(\lambda_0 - T - B).$$

Now applying Remark 1.1 (*i*₂) we obtain $\delta(\sigma_{e1}((\lambda_0 - T - B) + (\lambda_0 - T_n - B)), \sigma_{e1}(\lambda_0 - T - B)) = 0$, for all $n \ge n_0$.

For i = 2, 3, 4, by using a similar proof as in (i = 1), by replacing $\sigma_{e1}(.)$, and $\Phi_+(X)$ by $\sigma_{e2}(.)$, $\sigma_{e3}(.), \sigma_{e4}(.)$, and $\Phi_-(X), \Phi_-(X) \cup \Phi_+(X)$, $\Phi(X)$, respectively, we get

If $(\lambda_0 - T_n - B)$ converges to zero compactly then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$.

$$\sigma_{ei}((\lambda_0 - T + B) + (\lambda_0 - T_n - B)) \subseteq \sigma_{ei}(\lambda_0 - T - B).$$

And,

$$\delta\big(\sigma_{ei}((\lambda_0 - T - B) + (\lambda_0 - T_n - B)), \sigma_{ei}(\lambda_0 - T - B)\big) = 0, \text{ for all } n \ge n_0$$

For i = 5. Let $\lambda \notin \sigma_{e5}(\lambda_0 - T - B)$. Then, $(\lambda - (\lambda_0 - T - B)) \in \Phi^b(X)$ and $i(\lambda - (\lambda_0 - T - B)) = 0$. Since $(\lambda_0 - T_n - B)$ converges to zero compactly and by applying the [2, Theorem 4] to the operators $(\lambda_0 - T - B)$ and $(\lambda_0 - T_n - B)$, we prove that, there exists $n_0 \in \mathbb{N}$ such that $(\lambda - (\lambda_0 - T - B) + (\lambda_0 - T_n - B)) \in \Phi(X)$ for all $n \ge n_0$. Hence $\lambda \notin \sigma_{e5}((\lambda_0 - T - B) + (\lambda_0 - T_n - B))$. We conclude that

$$\sigma_{e5}(\lambda_0 - T_n - B) \subseteq \sigma_{e5}(\lambda_0 - T - B)$$

Now applying Remark 1.1 (i_2) we have

$$\delta\big(\sigma_{e5}((\lambda_0 - T - B) + (\lambda_0 - T_n - B)), \sigma_{e5}(\lambda_0 - T - B)\big) = 0, \text{ for all } n \ge n_0.$$

Theorem 3.2. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of closed linear operators mapping on Banach spaces X and let $T \in \mathcal{C}(X)$, and let B and L be two operators in $\mathcal{L}(X)$, $\lambda_0 \in \mathbb{C}$ such that T_n converges in the generalized sense to T, and $\lambda_0 \in \rho(T+B)$, $\mathcal{U} \subseteq \mathbb{C}$ is open.

(a) If $0 \in \mathcal{U}$, then there exists $n_0 \in \mathbb{N}$ such that, for every $n \ge n_0$, we have

$$\sigma_{ei}(\lambda_0 - T_n - B) \subseteq \sigma_{ei}(\lambda_0 - T - B) + \mathcal{U}.$$
(3.1)

And, $\delta \Big(\sigma_{ei} (\lambda_0 - T_n - B), \sigma_{ei} (\lambda_0 - T - B) \Big) = 0, \ i = 1, \dots, 5.$

(b) There exist $\varepsilon > 0$ and $n \in \mathbb{N}$ such that, for all $||L|| < \varepsilon$, we have

$$\sigma_{ei}(\lambda_0 - T_n - B + L) \subseteq \sigma_{ei}(\lambda_0 - T - B) + \mathcal{U}, \text{ for all } n \ge n_0.$$

And,
$$\delta \left(\sigma_{ei}(\lambda_0 - T_n - B + L), \sigma_{ei}(\lambda_0 - T - B) \right) = \delta \left(\sigma_{ei}(\lambda_0 - T - B + L), \sigma_{ei}(\lambda_0 - T - B) \right), i = 1, \dots, 5.$$

Proof. (a) For i = 1, since $(B - \lambda_0)$ be a bounded operator and $\lambda_0 \in \rho(T+B)$. According to Theorem 2.3 (i) and (iii) the sequence $(\lambda_0 - T_n - B)$ converges in the generalized sense to $(\lambda_0 - T - B)$, and $\lambda_0 \in \rho(T_n + B)$ for a sufficiently large n and $(\lambda_0 - T_n - B)^{-1}$ converges to $(\lambda_0 - T - B)^{-1}$. Now to prove such that the inclusion (3.1) holds it suffices to prove there exist $n_0 \in \mathbb{N}$, such that for all $n \ge n_0$, we have

$$\sigma_{e1}(\lambda_0 - T_n - B)^{-1} \subseteq \sigma_{e1}(\lambda_0 - T - B)^{-1} + \mathcal{U}.$$
(3.2)

In first step by an indirect proof, we suppose that the (3.2) does not hold, and for each $n \in \mathbb{N}$ there exists $\lambda_n \in \sigma_{e1}(\lambda_0 - T_n - B)^{-1}$ such that $\lambda_n \notin \sigma_{e1}(\lambda_0 - T - B)^{-1} + \mathcal{U}$. It is clear that $\lim_{n \to +\infty} \lambda_n = \lambda$ since (λ_n) is bounded, this implies that $\lambda \notin \sigma_{e1}(\lambda_0 - T - B)^{-1} + \mathcal{U}$. Using the fact that $0 \in \mathcal{U}$ hence we have $\lambda \notin \sigma_{e1}(\lambda_0 - T - B)^{-1}$. Therefore $(\lambda - (\lambda_0 - T - B)^{-1}) \in \Phi^b_+(X)$ and applying Theorem 2.3 (*ii*), we conclude that

$$(\lambda_n - (\lambda_0 - T_n - B)^{-1}, \lambda - (\lambda_0 - T - B)^{-1}) \to 0, \ as \ n \to \infty$$

Let $\gamma(\lambda - (\lambda_0 - T - B)^{-1}) = \delta > 0$. Then there exists $N \in \mathbb{N}$ such that, for all $n \geq N$ we have $\widehat{\delta}(\lambda_n - (\lambda_0 - T_n - B)^{-1}, \lambda - (\lambda_0 - T - B)^{-1}) \leq \frac{\delta}{\sqrt{1+\delta^2}}$. According Theorem 2.2 (*iv*) we infer $(\lambda_n - (\lambda_0 - T_n - B)^{-1}) \in \Phi^b_+(X)$. Then we obtain $\lambda_n \notin \sigma_{e1}((\lambda_0 - T_n - B)^{-1})$, which this is a contradicts our assumption. Hence (3.2) holds. Now, if $\lambda \in \sigma_{e1}(\lambda_0 - T_n - B)$ then $\frac{1}{\lambda} \in \sigma_{e1}((\lambda_0 - T_n - B)^{-1})$. According then (3.1) we conclude that

$$\frac{1}{\lambda} \in \sigma_{e1}((\lambda_0 - T - B)^{-1}) + \mathcal{U}.$$
(3.3)

Since $0 \in \mathcal{U}$, then (3.3) implies that $\frac{1}{\lambda} \in \sigma_{e1}((\lambda_0 - T - B)^{-1})$. We have to prove

$$\lambda \in \sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}. \tag{3.4}$$

We will proceed by contradiction, we suppose that $\lambda \notin \sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}$. The fact that $0 \in \mathcal{U}$ implies that $\lambda \notin \sigma_{e1}(\lambda_0 - T - B)$ and so, $\frac{1}{\lambda} \notin \sigma_{e1}((\lambda_0 - T - B)^{-1})$ which this is a contradicts our assumption. So $\lambda \in \sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}$. Therefore (3.1) holds. Since \mathcal{U} is an arbitrary neighborhood of 0 and by using the relation (3.1) we have $\sigma_{e1}(\lambda_0 - T_n - B) \subseteq \sigma_{e1}(T + B - \lambda_0)$, for all $n \geq n_0$. Hence by Remark 1.1 (i_2)

$$\delta\Big(\sigma_{e1}(\lambda_0 - T_n - B), \sigma_{e1}(\lambda_0 - T - B)\Big) = \delta\Big(\overline{\sigma_{e1}(\lambda_0 - T_n - B)}, \overline{\sigma_{e1}(\lambda_0 - T + B)}\Big) = 0$$

for all $n \ge n_0$. This ends the proof (i=1).

 $\widehat{\delta}$

For i = 2, 3, 4, by using a similar proof as in ((a) for i = 1), by replacing $\sigma_{e1}(.)$, and $\Phi_+(X)$ by $\sigma_{e2}(.)$, $\sigma_{e3}(.)$, $\sigma_{e4}(.)$, and $\Phi_-(X)$, $\Phi_-(X) \cup \Phi_+(X)$, $\Phi(X)$, respectively, we get $\sigma_{ei}(\lambda_0 - T_n - B) \subseteq \sigma_{ei}(\lambda_0 - T - B) + \mathcal{U}$.

And,
$$\delta \Big(\sigma_{ei} (\lambda_0 - T_n - B), \sigma_{ei} (\lambda_0 - T - B) \Big) = 0$$
, for all $n \ge n_0$.

For i = 5, since $(\lambda_0 - B)$ be a bounded operator and $\lambda_0 \in \rho(T + B)$, according to Theorem 2.3 (i) and (iii) the sequence $(\lambda_0 - T_n - B)$ converges in the generalized sense to $(\lambda_0 - T - B)$, and $\lambda_0 \in \rho(T_n + B)$ for a sufficiently large n and $(\lambda_0 - T_n - B)^{-1}$ converges to $(\lambda_0 - T - B)^{-1}$. Now to prove that (3.1)holds it suffices to prove there exist $n_0 \in \mathbb{N}$, such that for all $n \ge n_0$, we have

$$\sigma_{e5}(\lambda_0 - T_n - B)^{-1} \subseteq \sigma_{e5}(\lambda_0 - T - B)^{-1} + \mathcal{U}.$$
(3.5)

In first step by an indirect proof, we suppose that the inclusion (3.5) does not hold, and for each $n \in \mathbb{N}$ there exists $\lambda_n \in \sigma_{e5}(\lambda_0 - T_n - B)^{-1}$ such that $\lambda_n \notin \sigma_{e5}(\lambda_0 - T - B)^{-1} + \mathcal{U}$. It is clear that $\lim_{n \to +\infty} \lambda_n = \lambda \text{ since } (\lambda_n) \text{ is bounded, this implies that } \lambda \notin \sigma_{e5}(\lambda_0 - T - B)^{-1} + \mathcal{U}. \text{ Using the fact}$ that $0 \in \mathcal{U}$, hence we have $\lambda \notin \sigma_{e5}(\lambda_0 - T - B)^{-1}$. Therefore $(\lambda - (\lambda_0 - T - B)^{-1}) \in \Phi^b(X)$ and $i(\lambda - (\lambda_0 - T - B)^{-1}) = 0$, and applying Theorem 2.3 (ii), we conclude that

$$\widehat{\delta}(\lambda_n - (\lambda_0 - T_n - B)^{-1}, \lambda - (\lambda_0 - T - B)^{-1}) \to 0 \text{ as } n \to \infty.$$

Let $\gamma(\lambda - (\lambda_0 - T - B)^{-1}) = \delta > 0$. Then there exists $N \in \mathbb{N}$ such that, for all $n \ge N$ we have

$$\widehat{\delta}(\lambda_n - (\lambda_0 - T_n - B)^{-1}, \lambda - (\lambda_0 - T - B)^{-1}) \le \frac{\delta}{\sqrt{1 + \delta^2}}.$$

According to Theorem 2.2 (iv) we infer $(\lambda_n - (\lambda_0 - T_n - B)^{-1}) \in \Phi^b(X)$ and $i(\lambda_n - (\lambda_0 - T_n - B)^{-1}) = i(\lambda - (\lambda_0 - T - B)^{-1}) = 0$. Then we obtain $\lambda_n \notin \sigma_{e5}((\lambda_0 - T_n - B)^{-1})$, which this is a contradicts our assumption. Hence (3.1) holds. Now, if $\lambda \in \sigma_{e5}(\lambda_0 - T_n - B)$ then $\frac{1}{\lambda} \in \sigma_{e5}((\lambda_0 - T_n - B)^{-1})$. According then (3.1) we conclude that

$$\frac{1}{\lambda} \in \sigma_{e5}((\lambda_0 - T - B)^{-1}) + \mathcal{U}.$$
(3.6)

Since $0 \in \mathcal{U}$, then (3.6) implies that $\frac{1}{\lambda} \in \sigma_{e5}(\lambda_0 - T - B)^{-1}$. We have to prove

$$\lambda \in \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}. \tag{3.7}$$

We will proceed by contradiction, we suppose that $\lambda \notin \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}$. The fact that $0 \in \mathcal{U}$ implies that $\lambda \notin \sigma_{e5}(\lambda_0 - T - B)$ and so, $\frac{1}{\lambda} \notin \sigma_{e5}((\lambda_0 - T - B)^{-1})$ which this is a contradicts our assumption. So $\lambda \in \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}$. Therefore (3.1)holds. Since \mathcal{U} is an arbitrary neighborhood of 0 and by using (3.1) we have $\sigma_{e5}(\lambda_0 - T_n - B) \subseteq \sigma_{e5}(\lambda_0 - T - B)$ for all $n \ge n_0$. Hence by Remark $1.1(i_2)$

$$\delta\Big(\sigma_{e5}(\lambda_0 - T_n - B), \sigma_{e5}(\lambda_0 - T - B)\Big) = \delta\Big(\overline{\sigma_{e5}(\lambda_0 - T_n - B)}, \overline{\sigma_{e5}(\lambda_0 - T - B)}\Big) = 0$$

for all $n \ge n_0$. This ends the proof of, (a).

(b) For i = 1, since $\lambda_0 \in \rho(T+B)$, then $(T+B-\lambda_0)^{-1}$ exists and bounded. We put $\frac{1}{\|(\lambda_0-T-B)^{-1}\|} = \varepsilon_1$. Let $L \in \mathcal{L}(X)$ such that $||L|| < \varepsilon_1$ this implies

$$|L(\lambda_0 - T - B)^{-1}|| < 1.$$

By according Theorem 2.3 (i) the squence $(\lambda_0 - T_n - B + L)$ converges in the generalized sense to $(\lambda_0 - L)$ T-B+L), and the Neumann series $\sum_{k=0}^{\infty} (-L(\lambda_0 - T - B)^{-1})^k$ converges to $(I+L(\lambda_0 - T - B)^{-1})^{-1}$ and

$$\|(I + L(\lambda_0 - T - B)^{-1})^{-1}\| < \frac{1}{1 - \|L\| \|(\lambda_0 - T - B)^{-1}\|}$$

Since $(\lambda_0 - T - B + L)^{-1} = (\lambda_0 - T - B)^{-1}(I + L(\lambda_0 - T - B)^{-1}))^{-1}$, then $\lambda_0 \in \rho(T + B + L)$. Now applying (a) for i = 1, we deduce that there exists $n_0 \in \mathbb{N}$ such that $\sigma_{e1}(\lambda_0 - T_n - B + L) \subseteq$ $\sigma_{e1}(\lambda_0 - T - B + L) + \mathcal{U}$, for all $n \ge n_0$. Let $\lambda \notin \sigma_{e1}(\lambda_0 - T - B)$. Then $(\lambda - (\lambda_0 - T - B)) \in \Phi_+(X)$. By applying [8, Theorem 7.9] there exists $\varepsilon_2 > 0$ such that for $||L|| < \varepsilon_2$, one has $(\lambda - (\lambda_0 - T - B) - L) \in$ $\Phi_+(X)$ and, this implies that $\lambda \notin \sigma_{e1}(\lambda_0 - T - B + L)$. From what has been mentioned and if we take $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ then for all $\|L\| < \varepsilon$, there exists $n_0 \in \mathbb{N}$ such that $\sigma_{e_1}(\lambda_0 - T_n - B + L) \subseteq$ $\sigma_{e1}(\lambda_0 - T - B) + \mathcal{U}$, for all $n \ge n_0$. Since $0 \in \mathcal{U}$ then we have

$$\delta\big(\sigma_{e1}(\lambda_0 - T_n - B + L), \sigma_{e1}(\lambda_0 - T - B)\big) = 0$$

and

$$\delta\big(\sigma_{e1}(\lambda_0 - T - B + L), \sigma_{e1}(\lambda_0 - T - B)\big) = 0$$

Therefore, (i = 1) holds.

For i = 2, 3, 4. By using a similar proof as in (b) for i = 1), by replacing $\sigma_{e1}(.)$, and $\Phi_+(X)$ by $\sigma_{e2}(.), \sigma_{e3}(.), \sigma_{e4}(.)$, and $\Phi_-(X), \Phi_-(X) \cup \Phi_+(X), \Phi(X)$, respectively, we get There exist $\varepsilon > 0$ and $n \in \mathbb{N}$ such that, for all $||L|| < \varepsilon$, we have

$$\sigma_{ei}(\lambda_0 - T_n - B + L) \subseteq \sigma_{ei}(\lambda_0 - T - B) + \mathcal{U}, \text{ for all } n \ge n_0.$$

And,

$$\delta\Big(\sigma_{ei}(\lambda_0 - T_n - B + L), \sigma_{ei}(\lambda_0 - T - B)\Big) = \delta\Big(\sigma_{ei}(\lambda_0 - T - B + L), \sigma_{ei}(\lambda_0 - T - B)\Big)$$

For i = 5, since $\lambda_0 \in \rho(T+B)$, then $(\lambda_0 - T - B)^{-1}$ exists and bounded. We put $\frac{1}{\|(\lambda_0 - T - B)^{-1}\|} = \varepsilon_1$. Let $L \in \mathcal{L}(X)$ such that $\|L\| < \varepsilon_1$ this implies

$$||L(\lambda_0 - T - B)^{-1}|| < 1.$$

By according theorem 2.3 (i) we have $(\lambda_0 - T_n - B + L)$ converges in the generalized sense to $(\lambda_0 - T - B + L)$, and the Neumann series $\sum_{k=0}^{\infty} (-L (\lambda_0 - T - B)^{-1})^k$ converges to $(I + L (\lambda_0 - T - B)^{-1})^{-1}$ and

$$\|(I + L(\lambda_0 - T - B)^{-1})^{-1}\| < \frac{1}{1 - \|L\| \|(\lambda_0 - T - B)^{-1}\|}$$

Since $(\lambda_0 - T - B + L)^{-1} = (\lambda_0 - T - B)^{-1})(I + L(\lambda_0 - T - B)^{-1}))^{-1}$, then $\lambda_0 \in \rho(T + B + L)$. Now applying ((a) for i = 5), we deduce that there exists $n_0 \in \mathbb{N}$ such that $\sigma_{e5}(\lambda_0 - T_n - B + L) \subseteq \sigma_{e5}(\lambda_0 - T - B + L) + \mathcal{U}$, for all $n \ge n_0$. Let $\lambda \notin \sigma_{e5}(\lambda_0 - T - B)$. Then $(\lambda - (\lambda_0 - T - B)) \in \Phi(X)$. By applying [8, Theorem 7.9] there exists $\varepsilon_2 > 0$ such that for $||L|| < \varepsilon_2$, one has $(\lambda - (\lambda_0 - T - B) - L) \in \Phi(X)$ and $i(\lambda - (\lambda_0 - T - B - L)) = i(\lambda - (\lambda_0 - T - B) = 0$. This implies that $\lambda \notin \sigma_{e5}(\lambda_0 - T - B + L)$. From what has been mentioned and if we take $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ then for all $||L|| < \varepsilon$, there exists $n_0 \in \mathbb{N}$ such that $\sigma_{e5}(\lambda_0 - T_n - B + L) \subseteq \sigma_{e5}(\lambda_0 - T - B) + \mathcal{U}$, for all $n \ge n_0$. Since $0 \in \mathcal{U}$ then we have

$$\delta(\sigma_{e5}(\lambda_0 - T_n - B + L), \sigma_{e5}(\lambda_0 - T - B)) = 0 = \delta(\sigma_{e5}(\lambda_0 - T - B + L), \sigma_{e5}(\lambda_0 - T - B)).$$

Therefore, (i = 5) holds.

References

- A. Ammar and A. Jeribi, The weyl essential spectrum of a sequence of linear operators in Banach spaces, Indag. Math., New Ser. 27 (1) (2016), 282-295.
- S. Goldberg, Perturbations of semi-Fredholm operators by operators converging to zero compactly, Proc. Amer. Math. Soc. 45 (1974), 93-98.
- [3] A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer-Verlag, New York, 2015.
- [4] A. Jeribi and N. Moalla, A characterisation of some subsets of Schechter's essential spectrum and applications to singular transport equation, J. Math. Anal. Appl. 358 (2) (2009), 434-444.
- [5] A.Jeribi, Une nouvelle caractrisation du spectre essentiel et application, Comp Rend.Acad.Paris serie I, 331 (2000),525-530.
- [6] T. Kato, Perturbation theory for linear operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1966.
- [7] K. Latrach, A. Jeribi, Some results on Fredholm operators, essential spectra, and application, J. Math. Anal. Appl. 225 (1998), 461-485.
- [8] M. Schechter, Principles of Functional Analysis, Grad. Stud. Math. vol. 36, Amer. Math. Soc., Providence, 2002.
- [9] M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. 74 (1968), 1139-1144.

¹Department of Mathematics, University of Sfax, Faculty of Sciences of Sfax, Tunisia

²DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MOHAMED BOUDIAF, M'SILA, ALGERIA

*Corresponding Author: ammar_aymen84@yahoo.fr