THE ESSENTIAL SPECTRUM OF A SEQUENCE OF LINEAR OPERATORS IN BANACH SPACES

AYMEN AMMAR ${ }^{1, *}$, NOUI DJAIDJA ${ }^{2}$ AND AREF JERIBI ${ }^{1}$

Abstract

In this work we introduce some essential spectra ($\sigma_{e i}, i=1, \ldots, 5$) of a sequence of closed linear operators $\left(T_{n}\right)_{n \in \mathbb{N}}$ on Banach space, we prove that if $\left(T_{n}\right)_{n \in \mathbb{N}}$ converges in the generalized sense to a closed linear operator T, then there exists $n_{0} \in \mathbb{N}$ such that, for every $n \geq n_{0}$, we have $\sigma_{e i}\left(\lambda_{0}-\left(T_{n}+B\right)\right) \subseteq \sigma_{e i}\left(\lambda_{0}-(T+B)\right), i=1, \ldots, 5$, where B is a bounded linear operator, and $\lambda_{0} \in \mathbb{C}$. The same treatment is made when $\left(T_{n}-T\right)$ converges to zero compactly.

1. Introduction

Let X and Y be two Banach spaces. We denote by $\mathcal{L}(X, Y)$ (resp., $\mathcal{C}(X, Y)$) the set of all bounded (resp., closed, densely defined) linear operators from X into Y while $\mathcal{K}(X, Y)$ designates the subspace of compact operators from X into Y. If $T \in \mathcal{C}(X, Y)$, we write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null space and range of T, we set $\alpha(T)=\operatorname{dim} \mathcal{N}(T), \beta(T)=\operatorname{codim} \mathcal{R}(T)$. The classes of Fredholm, upper semiFredholm and lower semi-Fredholm operators from X into Y are, respectively, the following:

$$
\begin{gathered}
\Phi(X, Y):=\{T \in \mathcal{C}(X, Y): \alpha(T)<\infty \text { and } \beta(T)<\infty, R(T) \text { is closed in } Y\} . \\
\Phi_{+}(X, Y):=\{T \in \mathcal{C}(X, Y): \alpha(T)<\infty \text { and } R(T) \text { is closed in } Y\} \\
\Phi_{-}(X, Y):=\{T \in \mathcal{C}(X, Y): \beta(T)<\infty \text { and } R(T) \text { is closed in } Y\} .
\end{gathered}
$$

The set of semi-Fredholm operators from X into Y is defined by

$$
\Phi_{ \pm}(X, Y):=\Phi_{+}(X, Y) \cup \Phi_{-}(X, Y)
$$

The set of Fredholm operators from X into Y is defined by

$$
\Phi(X, Y):=\Phi_{+}(X, Y) \cap \Phi_{-}(X, Y)
$$

For $T \in \Phi_{ \pm}(X, Y)$, the number $i(T)=\alpha(T)-\beta(T)$ is called the index of T.
Definition 1.1. An operator $F \in \mathcal{L}(X, Y)$ is called a Fredholm perturbation if $T+F \in \Phi(X, Y)$ whenever $T \in \Phi(X, Y) . F$ is called an upper (respectively, lower) Fredholm perturbation if $T+F \in \Phi_{+}(X, Y)$ (respectively, $\left.\Phi_{-}(X, Y)\right)$ whenever $T \in \Phi_{+}(X, Y)$ (respectively, $\Phi_{-}(X, Y)$). The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturbations are denoted by $\mathcal{F}(X, Y), \mathcal{F}_{+}(X, Y)$ and $\mathcal{F}_{-}(X, Y)$, respectively.

Let $\Phi^{b}(X, Y), \Phi_{+}^{b}(X, Y)$ and $\Phi_{-}^{b}(X, Y)$ denote the set $\Phi(X, Y) \cap \mathcal{L}(X, Y), \Phi_{+}(X, Y) \cap \mathcal{L}(X, Y)$ and $\Phi_{-}(X, Y) \cap \mathcal{L}(X, Y)$, respectively.

Definition 1.2. Let A be a closable linear operator in a Banach space X. The resolvent set and the spectrum of A are, respectively, defined as
$\rho(A):=\left\{\lambda \in \mathbb{C}\right.$, such that $(\lambda-A)$ is injective and $\left.(\lambda-A)^{-1} \in \mathcal{L}(X)\right\}$, $\sigma(A):=\mathbb{C} \backslash \rho(A)$.

Received 26 ${ }^{\text {th }}$ April, 2017; accepted $6^{\text {th }}$ July, 2017; published $1^{\text {st }}$ September, 2017.
2010 Mathematics Subject Classification. 47A10.
Key words and phrases. essential spectra; convergence in the generalized sense; convergence to zero compactly.

Definition 1.3. Let A be a closed linear operator in a Banach space X. We define the sets $\sigma_{e 1}(A):=\left\{\lambda \in \mathbb{C}\right.$, such that $\left.\lambda-A \notin \Phi_{+}(X)\right\}$, $\sigma_{e 2}(A):=\left\{\lambda \in \mathbb{C}\right.$, such that $\left.\lambda-A \notin \Phi_{-}(X)\right\}$,
$\sigma_{e 3}(A):=\left\{\lambda \in \mathbb{C}\right.$, such that $\left.\lambda-A \notin \Phi_{-}(X) \cup \Phi_{+}(X)\right\}$,
$\sigma_{e 4}(A):=\{\lambda \in \mathbb{C}$, such that $\lambda-A \notin \Phi(X)\}$,
$\sigma_{e 5}(A):=\bigcap_{k \in \mathcal{K}(X)} \sigma(T+K)$.
$\sigma_{e 1}($.$) and \sigma_{e 2}($.$) are the Gustafson and Weidman's essential spectra. \sigma_{e 3}($.$) is the Kato's essential$ spectrum. $\sigma_{e 4}($.$) is the Wolf's essential spectrum, and \sigma_{e 5}($.$) is the Schechter's essential spectrum.$

Proposition 1.1. [8, Theorem 7.27, p.172] Let $T \in \mathcal{C}(X)$. Then $\lambda \notin \sigma_{e 5}(T)$ if, and only if, $(\lambda-T) \in$ $\Phi(X)$ and $i(\lambda-T)=0$.

Definition 1.4. Let X be a Banach space and E, F be closed subspaces of X. Let B_{E} be the unit sphere of E. Let us define

$$
\delta(E, F):=\left\{\begin{array}{l}
\sup _{x \in \mathrm{~B}_{E}} \operatorname{dist}(x, F), \text { if } E \neq\{0\} \\
0, \text { otherwise }
\end{array}\right.
$$

and $\widehat{\delta}(E, F):=\max \{\delta(E, F), \delta(F, E)\}$. The quantity $\widehat{\delta}(E, F)$ is called the gap between the subspaces E and F.

Remark 1.1. (i) The gap measures the distance between two subspaces and it easily follows, from the definitions,
$\left(i_{1}\right) \delta(E, F)=\delta(\bar{E}, \bar{F})$ and $\widehat{\delta}(E, F)=\widehat{\delta}(\bar{E}, \bar{F})$.
$\left(i_{2}\right) \delta(E, F)=0$ if, and only if, $\bar{E} \subset \bar{F}$.
$\left(i_{3}\right) \widehat{\delta}(E, F)=0$ if, and only if, $\bar{E}=\bar{F}$.
(ii) $\widehat{\delta}(\cdot, \cdot)$ is a metric on the set $\mathcal{V}(X)$ of all linear closed subspaces of X and the convergence $E_{n} \rightarrow F$ in $\mathcal{V}(X)$ is obviously defined by $\widehat{\delta}\left(E_{n}, F\right) \rightarrow 0$. Moreover, $(\mathcal{V}(X), \widehat{\delta})$ is a complete metric space.

Definition 1.5. (i) Let X and Y be two Banach spaces, and let T, S be two closed linear operators acting from X to Y. Let us define

$$
\begin{gathered}
\delta(G(T), G(S))=\sup _{x \in \mathcal{D}(T)}\left[\inf _{y \in \mathcal{D}(S)}\left(\|x-y\|^{2}+\|T x-S y\|^{2}\right)^{\frac{1}{2}}\right] \\
\|x\|^{2}+\|T x\|^{2}=1
\end{gathered}
$$

$\widehat{\delta}(T, S)$ is called the gap between S and T.
(ii) Let T and S be two closable operators. We define the gap between T and S by $\delta(T, S)=\delta(\bar{T}, \bar{S})$ and $\widehat{\delta}(T, S)=\widehat{\delta}(\bar{T}, \bar{S})$.

Definition 1.6. A sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of bounded linear operators mapping on X is said to converge to zero compactly if for all $x \in X, T_{n} x \rightarrow 0$ and $\left(T_{n} x_{n}\right)_{n}$ is relatively compact for every bounded sequence $\left(x_{n}\right)_{n} \subset X$.

Remark 1.2. Clearly, T_{n} converges to 0 implies that T_{n} converges to zero compactly.
Definition 1.7. Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a sequence of closable linear operators from X into Y and let T be a closable linear operator from X into $Y .\left(T_{n}\right)_{n \in \mathbb{N}}$ is said to converge in the generalized sense to T if $\widehat{\delta}\left(T_{n}, T\right)$ converges to 0 as, $n \rightarrow \infty$.

2. Preliminaries

Theorem 2.1. [2, Theorem 4] Let A_{n} be a sequence of bounded linear operators converging to zero compactly and let T be a closed linear operator. If T is a semi-Fredholm operator, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,
(i) $\left(T+A_{n}\right)$ is semi-Fredholm,
(ii) $\alpha\left(T+A_{n}\right)<\alpha(T)$,
(iii) $\beta\left(T+A_{n}\right)<\beta(T)$, and
(iv) $i\left(T+A_{n}\right)=i(T)$.

Proposition 2.1. [3, Proposition 7.8.1]. Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a sequence of bounded linear operators and let $T \in \mathcal{L}(X)$ such that $T_{n}-T$ converges to zero compactly. Then,
(i) If $T_{n} \in \mathcal{F}^{b}(X)$, then $T \in \mathcal{F}^{b}(X)$,
(ii) If $T_{n} \in \mathcal{F}_{+}^{b}(X)$, then $T \in \mathcal{F}_{+}^{b}(X)$, and
(iii) If $T_{n} \in \mathcal{F}_{-}^{b}(X)$, then $T \in \mathcal{F}_{-}^{b}(X)$.

Theorem 2.2. [1, theorem 2.1] Let T and S be two closed densely defined linear operators. Then, we have:
(i) $\delta(T, S)=\delta\left(S^{*}, T^{*}\right)$ and $\widehat{\delta}(T, S)=\widehat{\delta}\left(S^{*}, T^{*}\right)$.
(ii) If S and T are one-to-one, then $\delta(S, T)=\delta\left(S^{-1}, T^{-1}\right)$ and $\widehat{\delta}(S, T)=\widehat{\delta}\left(S^{-1}, T^{-1}\right)$.
(iii) Let $A \in \mathcal{L}(X, Y)$. Then $\widehat{\delta}(A+S, A+T) \leq 2\left(1+\|A\|^{2}\right) \widehat{\delta}(S, T)$.
(iv) Let T be Fredholm operator (respectively semi-Fredholm operator). If $\widehat{\delta}(T, S)<\gamma(T)\left(1+[\gamma(T)]^{2}\right)^{\frac{-1}{2}}$, then S is Fredholm operator (respectively semi-Fredholm operator), $\alpha(S) \leq \alpha(T)$ and $\beta(S) \leq \beta(T)$. Furthermore, there exists $b>0$ such that $\widehat{\delta}(T, S)<b$, which implies $i(S)=i(T)$.
(v) Let $T \in \mathcal{L}(X, Y)$. If $S \in \mathcal{C}(X, Y)$ and $\widehat{\delta}(T, S) \leq\left[1+\|T\|^{2}\right]^{-\frac{1}{2}}$, then S is bounded operator (so that $\mathcal{D}(S)$ is closed).

Theorem 2.3. [1, theorem 2.3] Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a sequence of closable linear operators from X into Y and let T be a closable linear operator from X into Y.
(i) The sequence T_{n} converges in the generalized sense to T if, and only if, $T_{n}+S$ converges in the generalized sense to $T+S$, for all $S \in \mathcal{L}(X, Y)$.
(ii) Let $T \in \mathcal{L}(X, Y)$. T_{n} converges in the generalized sense to T if, and only if, $T_{n} \in \mathcal{L}(X, Y)$ for sufficiently larger n and T_{n} converges to T.
(iii) Let T_{n} converges in the generalized sense to T. Then, T^{-1} exists and $T^{-1} \in \mathcal{L}(Y, X)$, if, and only if, T_{n}^{-1} exists and $T_{n}^{-1} \in \mathcal{L}(Y, X)$ for sufficiently larger n and T_{n}^{-1} converges to T^{-1}.

3. The main result

In this section we investigate the essential spectra $\left(\sigma_{e i}, i=1, \ldots, 5\right)$ of the sequence of linear operators in a Banach space X.
Theorem 3.1. Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a bounded linear operators mapping on X, and let T and B be two operators in $\mathcal{L}(X), \lambda_{0} \in \mathbb{C}$, and $\mathcal{U} \subseteq \mathbb{C}$ is open.
(a) If $\left(\left(\lambda_{0}-T_{n}-B\right)-\left(\lambda_{0}-T-B\right)\right)$ converges to zero compactly, and $0 \in \mathcal{U}$, then there exists $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$.

$$
\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)+\mathcal{U}
$$

And, $\delta\left(\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=0, i=1, \ldots, 5$
(b) If $\left(\lambda_{0}-T_{n}-B\right)$ converges to zero compactly then there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$

$$
\sigma_{e i}\left(\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)
$$

$A n d, \delta\left(\sigma_{e i}\left(\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=0, i=1, \ldots, 5$.
Proof. (a) For $i=1$. Assume that the assertion fails. Then by passing to a subsequence, it may be deduced that, for each n, there exists $\lambda_{n} \in \sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right)$ such that $\lambda_{n} \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. It is clear that $\lim _{n \rightarrow+\infty} \lambda_{n}=\lambda$ since $\left(\lambda_{n}\right)$ is bounded, this implies that $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. Using
the fact that $0 \in \mathcal{U}$, hence we have $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)$, and therefore, $\left(\lambda-\left(\lambda_{0}-T-B\right)\right) \in \Phi_{+}^{b}(X)$. Let $A_{n}=\lambda_{n}-\lambda+\left(\lambda_{0}-T-B\right)-\left(\lambda_{0}-T_{n}-B\right)$. Since A_{n} converges to zero compactly, writing $\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)=\lambda-\left(\lambda_{0}-T-B\right)+A_{n}$ and according to Theorem 2.1, we infer that, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)\right) \in \Phi_{+}(X)$ and $i\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)\right)=$ $i\left(\lambda-\left(\lambda_{0}-T-B\right)+A_{n}\right)=i\left(\lambda-\left(\lambda_{0}-T-B\right)\right)$. So, $\lambda_{n} \notin \sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right)$, which is a contradiction. Then

$$
\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U}, \text { for all } n \geq n_{0}
$$

Since $0 \in \mathcal{U}$, we obtain $\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 1}\left(\lambda_{0}-T-B\right)$. Hence by Remark $1.1\left(i_{2}\right)$, we get $\delta\left(\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e 1}\left(\lambda_{0}-T-B\right)\right)=0$, for all $n \geq n_{0}$.

For $i=2,3,4$, by using a similar proof as in $(i=1)$, by replacing $\sigma_{e 1}($.$) , and \Phi_{+}(X)$ by $\sigma_{e 2}($.$) ,$ $\sigma_{e 3}(),. \sigma_{e 4}($.$) , and \Phi_{-}(X), \Phi_{-}(X) \cup \Phi_{+}(X), \Phi(X)$, respectively, we get
If $\left(\left(\lambda_{0}-T_{n}-B\right)-\left(\lambda_{0}-T-B\right)\right)$ converges to zero compactly, and $0 \in \mathcal{U}$, then there exists $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$.

$$
\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)+\mathcal{U}
$$

And

$$
\delta\left(\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=0
$$

For $i=5$. Assume that the assertion fails. Then by passing to a subsequence, it may be deduced that, for each n, there exists $\lambda_{n} \in \sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right)$ such that $\lambda_{n} \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. It is clear that $\lim _{n \rightarrow+\infty} \lambda_{n}=\lambda$ since $\left(\lambda_{n}\right)$ is bounded, this implies that $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. Using the fact that $0 \in \mathcal{U}$, we have $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)$ and therefore, $\lambda-\left(\lambda_{0}-T-B\right) \in \Phi^{b}(X)$ and $i\left(\lambda-\left(\lambda_{0}-T-B\right)\right)=0$. Let $A_{n}=\lambda_{n}-\lambda+\left(\lambda_{0}-T-B\right)-\left(\lambda_{0}-T_{n}-B\right)$. Since A_{n} converges to zero compactly, writing $\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)=\lambda-\left(\lambda_{0}-T-B\right)+A_{n}$ and according to Theorem 2.1, we infer that, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right) \in \Phi(X)$ and $i\left(\lambda_{n}-\right.$ $\left.\left(\lambda_{0}-T_{n}-B\right)\right)=i\left(\lambda-\left(\lambda_{0}-T-B\right)+A_{n}\right)=i\left(\lambda-\left(\lambda_{0}-T-B\right)\right)=0$. So, $\lambda_{n} \notin \sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right)$, which is a contradiction. Then

$$
\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U}, \text { for all } n \geq n_{0}
$$

Since $0 \in \mathcal{U}$, we have $\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 5}\left(\lambda_{0}-T-B\right)$. Hence by Remark $1.1\left(i_{2}\right)$, we have

$$
\delta\left(\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e 5}\left(\lambda_{0}-T-B\right)\right)=0, \text { for all } n \geq n_{0}
$$

(b) For $i=1$. Let $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)$. Then, $\left(\lambda-\left(\lambda_{0}-T-B\right)\right) \in \Phi_{+}^{b}(X)$. Since $\left(\lambda_{0}-T_{n}-B\right)$ converges to zero compactly and applying $\left[2\right.$, Theorem 4] to the operators $\left(\lambda_{0}-T-B\right)$ and $\left(\lambda_{0}-T_{n}-B\right)$, we prove that, there exists $n_{0} \in \mathbb{N}$ such that $\left(\lambda-\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right) \in \Phi_{+}(X)$ for all $n \geq n_{0}$. Hence $\lambda \notin \sigma_{e 1}\left(\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right)$. We conclude that

$$
\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 1}\left(\lambda_{0}-T-B\right)
$$

Now applying Remark 1.1 (i_{2}) we obtain $\delta\left(\sigma_{e 1}\left(\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right), \sigma_{e 1}\left(\lambda_{0}-T-B\right)\right)=0$, for all $n \geq n_{0}$.

For $i=2,3,4$, by using a similar proof as in $(i=1)$, by replacing $\sigma_{e 1}($.$) , and \Phi_{+}(X)$ by $\sigma_{e 2}($.$) ,$ $\sigma_{e 3}(),. \sigma_{e 4}($.$) , and \Phi_{-}(X), \Phi_{-}(X) \cup \Phi_{+}(X), \Phi(X)$, respectively, we get

If $\left(\lambda_{0}-T_{n}-B\right)$ converges to zero compactly then there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$.

$$
\sigma_{e i}\left(\left(\lambda_{0}-T+B\right)+\left(\lambda_{0}-T_{n}-B\right)\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)
$$

And,

$$
\delta\left(\sigma_{e i}\left(\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=0, \text { for all } n \geq n_{0}
$$

For $i=5$. Let $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)$. Then, $\left(\lambda-\left(\lambda_{0}-T-B\right)\right) \in \Phi^{b}(X)$ and
$i\left(\lambda-\left(\lambda_{0}-T-B\right)\right)=0$. Since $\left(\lambda_{0}-T_{n}-B\right)$ converges to zero compactly and by applying the [2, Theorem 4] to the operators $\left(\lambda_{0}-T-B\right)$ and $\left(\lambda_{0}-T_{n}-B\right)$, we prove that, there exists $n_{0} \in \mathbb{N}$ such that $\left(\lambda-\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right) \in \Phi(X)$ for all $n \geq n_{0}$. Hence $\lambda \notin \sigma_{e 5}\left(\left(\lambda_{0}-T-B\right)+\right.$ $\left(\lambda_{0}-T_{n}-B\right)$). We conclude that

$$
\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 5}\left(\lambda_{0}-T-B\right)
$$

Now applying Remark $1.1\left(i_{2}\right)$ we have $\delta\left(\sigma_{e 5}\left(\left(\lambda_{0}-T-B\right)+\left(\lambda_{0}-T_{n}-B\right)\right), \sigma_{e 5}\left(\lambda_{0}-T-B\right)\right)=0$, for all $n \geq n_{0}$.
Theorem 3.2. Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a sequence of closed linear operators mapping on Banach spaces X and let $T \in \mathcal{C}(X)$, and let B and L be two operators in $\mathcal{L}(X), \lambda_{0} \in \mathbb{C}$ such that T_{n} converges in the generalized sense to T, and $\lambda_{0} \in \rho(T+B), \mathcal{U} \subseteq \mathbb{C}$ is open.
(a) If $0 \in \mathcal{U}$, then there exists $n_{0} \in \mathbb{N}$ such that, for every $n \geq n_{0}$, we have

$$
\begin{equation*}
\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)+\mathcal{U} \tag{3.1}
\end{equation*}
$$

And, $\delta\left(\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=0, i=1, \ldots, 5$.
(b) There exist $\varepsilon>0$ and $n \in \mathbb{N}$ such that, for all $\|L\|<\varepsilon$, we have $\sigma_{e i}\left(\lambda_{0}-T_{n}-B+L\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)+\mathcal{U}$, for all $n \geq n_{0}$.
And, $\delta\left(\sigma_{e i}\left(\lambda_{0}-T_{n}-B+L\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=\delta\left(\sigma_{e i}\left(\lambda_{0}-T-B+L\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right), i=1, \ldots, 5$. \diamond

Proof. (a) For $i=1$, since $\left(B-\lambda_{0}\right)$ be a bounded operator and $\lambda_{0} \in \rho(T+B)$. According to Theorem $2.3(i)$ and $(i i i)$ the sequence $\left(\lambda_{0}-T_{n}-B\right)$ converges in the generalized sense to $\left(\lambda_{0}-T-B\right)$, and $\lambda_{0} \in \rho\left(T_{n}+B\right)$ for a sufficiently large n and $\left(\lambda_{0}-T_{n}-B\right)^{-1}$ converges to $\left(\lambda_{0}-T-B\right)^{-1}$. Now to prove such that the inclusion (3.1)holds it suffices to prove there exist $n_{0} \in \mathbb{N}$, such that for all $n \geq n_{0}$, we have

$$
\begin{equation*}
\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right)^{-1} \subseteq \sigma_{e 1}\left(\lambda_{0}-T-B\right)^{-1}+\mathcal{U} \tag{3.2}
\end{equation*}
$$

In first step by an indirect proof, we suppose that the (3.2) does not hold, and for each $n \in \mathbb{N}$ there exists $\lambda_{n} \in \sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right)^{-1}$ such that $\lambda_{n} \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)^{-1}+\mathcal{U}$. It is clear that $\lim _{n \rightarrow+\infty} \lambda_{n}=\lambda$ since $\left(\lambda_{n}\right)$ is bounded, this implies that $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)^{-1}+\mathcal{U}$. Using the fact that $0 \in \mathcal{U}$ hence we have $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)^{-1}$. Therefore $\left(\lambda-\left(\lambda_{0}-T-B\right)^{-1}\right) \in \Phi_{+}^{b}(X)$ and applying Theorem 2.3 (ii), we conclude that

$$
\widehat{\delta}\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)^{-1}, \lambda-\left(\lambda_{0}-T-B\right)^{-1}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Let $\gamma\left(\lambda-\left(\lambda_{0}-T-B\right)^{-1}\right)=\delta>0$. Then there exists $N \in \mathbb{N}$ such that, for all $n \geq N$ we have $\widehat{\delta}\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)^{-1}, \lambda-\left(\lambda_{0}-T-B\right)^{-1}\right) \leq \frac{\delta}{\sqrt{1+\delta^{2}}}$. According Theorem 2.2 (iv) we infer $\left(\lambda_{n}-\right.$ $\left.\left(\lambda_{0}-T_{n}-B\right)^{-1}\right) \in \Phi_{+}^{b}(X)$. Then we obtain $\lambda_{n} \notin \sigma_{e 1}\left(\left(\lambda_{0}-T_{n}-B\right)^{-1}\right)$, which this is a contradicts our assumption. Hence (3.2) holds. Now, if $\lambda \in \sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right)$ then $\frac{1}{\lambda} \in \sigma_{e 1}\left(\left(\lambda_{0}-T_{n}-B\right)^{-1}\right)$. According then (3.1) we conclude that

$$
\begin{equation*}
\frac{1}{\lambda} \in \sigma_{e 1}\left(\left(\lambda_{0}-T-B\right)^{-1}\right)+\mathcal{U} \tag{3.3}
\end{equation*}
$$

Since $0 \in \mathcal{U}$, then (3.3) implies that $\frac{1}{\lambda} \in \sigma_{e 1}\left(\left(\lambda_{0}-T-B\right)^{-1}\right)$. We have to prove

$$
\begin{equation*}
\lambda \in \sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U} \tag{3.4}
\end{equation*}
$$

We will proceed by contradiction, we suppose that $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. The fact that $0 \in \mathcal{U}$ implies that $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)$ and so, $\frac{1}{\lambda} \notin \sigma_{e 1}\left(\left(\lambda_{0}-T-B\right)^{-1}\right)$ which this is a contradicts our assumption. So $\lambda \in \sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. Therefore (3.1) holds. Since \mathcal{U} is an arbitrary neighborhood of 0 and by using the relation (3.1) we have $\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 1}\left(T+B-\lambda_{0}\right)$, for all $n \geq n_{0}$. Hence by Remark 1.1 (i_{2})

$$
\delta\left(\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e 1}\left(\lambda_{0}-T-B\right)\right)=\delta\left(\overline{\sigma_{e 1}\left(\lambda_{0}-T_{n}-B\right)}, \overline{\sigma_{e 1}\left(\lambda_{0}-T+B\right)}\right)=0
$$

for all $n \geq n_{0}$. This ends the proof ($\mathrm{i}=1$).
For $i=2,3,4$, by using a similar proof as in $((a)$ for $i=1)$, by replacing $\sigma_{e 1}($.$) , and \Phi_{+}(X)$ by $\sigma_{e 2}(),. \sigma_{e 3}(),. \sigma_{e 4}($.$) , and \Phi_{-}(X), \Phi_{-}(X) \cup \Phi_{+}(X), \Phi(X)$, respectively, we get

$$
\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)+\mathcal{U}
$$

And, $\delta\left(\sigma_{e i}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=0$, for all $n \geq n_{0}$.

For $i=5$, since $\left(\lambda_{0}-B\right)$ be a bounded operator and $\lambda_{0} \in \rho(T+B)$, according to Theorem 2.3 (i) and (iii) the sequence $\left(\lambda_{0}-T_{n}-B\right)$ converges in the generalized sense to $\left(\lambda_{0}-T-B\right)$, and $\lambda_{0} \in \rho\left(T_{n}+B\right)$ for a sufficiently large n and $\left(\lambda_{0}-T_{n}-B\right)^{-1}$ converges to $\left(\lambda_{0}-T-B\right)^{-1}$. Now to prove that (3.1)holds it suffices to prove there exist $n_{0} \in \mathbb{N}$, such that for all $n \geq n_{0}$, we have

$$
\begin{equation*}
\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right)^{-1} \subseteq \sigma_{e 5}\left(\lambda_{0}-T-B\right)^{-1}+\mathcal{U} \tag{3.5}
\end{equation*}
$$

In first step by an indirect proof, we suppose that the inclusion (3.5) does not hold, and for each $n \in \mathbb{N}$ there exists $\lambda_{n} \in \sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right)^{-1}$ such that $\lambda_{n} \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)^{-1}+\mathcal{U}$. It is clear that $\lim _{n \rightarrow+\infty} \lambda_{n}=\lambda$ since $\left(\lambda_{n}\right)$ is bounded, this implies that $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)^{-1}+\mathcal{U}$. Using the fact that $0 \in \mathcal{U}$, hence we have $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)^{-1}$. Therefore $\left(\lambda-\left(\lambda_{0}-T-B\right)^{-1}\right) \in \Phi^{b}(X)$ and $i\left(\lambda-\left(\lambda_{0}-T-B\right)^{-1}\right)=0$, and applying Theorem 2.3 (ii), we conclude that

$$
\widehat{\delta}\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)^{-1}, \lambda-\left(\lambda_{0}-T-B\right)^{-1}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Let $\gamma\left(\lambda-\left(\lambda_{0}-T-B\right)^{-1}\right)=\delta>0$. Then there exists $N \in \mathbb{N}$ such that, for all $n \geq N$ we have

$$
\widehat{\delta}\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)^{-1}, \lambda-\left(\lambda_{0}-T-B\right)^{-1}\right) \leq \frac{\delta}{\sqrt{1+\delta^{2}}}
$$

According to Theorem 2.2 (iv) we infer $\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)^{-1}\right) \in \Phi^{b}(X)$ and
$i\left(\lambda_{n}-\left(\lambda_{0}-T_{n}-B\right)^{-1}\right)=i\left(\lambda-\left(\lambda_{0}-T-B\right)^{-1}\right)=0$. Then we obtain $\lambda_{n} \notin \sigma_{e 5}\left(\left(\lambda_{0}-T_{n}-B\right)^{-1}\right)$, which this is a contradicts our assumption. Hence (3.1) holds. Now, if $\lambda \in \sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right)$ then $\frac{1}{\lambda} \in \sigma_{e 5}\left(\left(\lambda_{0}-T_{n}-B\right)^{-1}\right)$. According then (3.1) we conclude that

$$
\begin{equation*}
\frac{1}{\lambda} \in \sigma_{e 5}\left(\left(\lambda_{0}-T-B\right)^{-1}\right)+\mathcal{U} \tag{3.6}
\end{equation*}
$$

Since $0 \in \mathcal{U}$, then (3.6) implies that $\frac{1}{\lambda} \in \sigma_{e 5}\left(\lambda_{0}-T-B\right)^{-1}$. We have to prove

$$
\begin{equation*}
\lambda \in \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U} \tag{3.7}
\end{equation*}
$$

We will proceed by contradiction, we suppose that $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. The fact that $0 \in \mathcal{U}$ implies that $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)$ and so, $\frac{1}{\lambda} \notin \sigma_{e 5}\left(\left(\lambda_{0}-T-B\right)^{-1}\right)$ which this is a contradicts our assumption. So $\lambda \in \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U}$. Therefore (3.1)holds. Since \mathcal{U} is an arbitrary neighborhood of 0 and by using (3.1) we have $\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right) \subseteq \sigma_{e 5}\left(\lambda_{0}-T-B\right)$ for all $n \geq n_{0}$. Hence by Remark $1.1\left(i_{2}\right)$

$$
\delta\left(\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right), \sigma_{e 5}\left(\lambda_{0}-T-B\right)\right)=\delta\left(\overline{\sigma_{e 5}\left(\lambda_{0}-T_{n}-B\right)}, \overline{\sigma_{e 5}\left(\lambda_{0}-T-B\right)}\right)=0
$$

for all $n \geq n_{0}$. This ends the proof of, (a).
(b) For $i=1$, since $\lambda_{0} \in \rho(T+B)$, then $\left(T+B-\lambda_{0}\right)^{-1}$ exists and bounded. We put $\frac{1}{\left\|\left(\lambda_{0}-T-B\right)^{-1}\right\|}=\varepsilon_{1}$. Let $L \in \mathcal{L}(X)$ such that $\|L\|<\varepsilon_{1}$ this implies

$$
\left\|L\left(\lambda_{0}-T-B\right)^{-1}\right\|<1
$$

By according Theorem $2.3(i)$ the squence $\left(\lambda_{0}-T_{n}-B+L\right)$ converges in the generalized sense to $\left(\lambda_{0}-\right.$ $T-B+L)$, and the Neumann series $\sum_{k=0}^{\infty}\left(-L\left(\lambda_{0}-T-B\right)^{-1}\right)^{k}$ converges to $\left(I+L\left(\lambda_{0}-T-B\right)^{-1}\right)^{-1}$ and

$$
\left\|\left(I+L\left(\lambda_{0}-T-B\right)^{-1}\right)^{-1}\right\|<\frac{1}{1-\|L\|\left\|\left(\lambda_{0}-T-B\right)^{-1}\right\|}
$$

Since $\left.\left.\left(\lambda_{0}-T-B+L\right)^{-1}=\left(\lambda_{0}-T-B\right)^{-1}\right)\left(I+L\left(\lambda_{0}-T-B\right)^{-1}\right)\right)^{-1}$, then $\lambda_{0} \in \rho(T+B+L)$. Now applying $((a)$ for $i=1)$, we deduce that there exists $n_{0} \in \mathbb{N}$ such that $\sigma_{e 1}\left(\lambda_{0}-T_{n}-B+L\right) \subseteq$ $\sigma_{e 1}\left(\lambda_{0}-T-B+L\right)+\mathcal{U}$, for all $n \geq n_{0}$. Let $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B\right)$. Then $\left(\lambda-\left(\lambda_{0}-T-B\right)\right) \in \Phi_{+}(X)$. By applying [8, Theorem 7.9] there exists $\varepsilon_{2}>0$ such that for $\|L\|<\varepsilon_{2}$, one has $\left(\lambda-\left(\lambda_{0}-T-B\right)-L\right) \in$ $\Phi_{+}(X)$ and, this implies that $\lambda \notin \sigma_{e 1}\left(\lambda_{0}-T-B+L\right)$. From what has been mentioned and if we take $\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$ then for all $\|L\|<\varepsilon$, there exists $n_{0} \in \mathbb{N}$ such that $\sigma_{e 1}\left(\lambda_{0}-T_{n}-B+L\right) \subseteq$ $\sigma_{e 1}\left(\lambda_{0}-T-B\right)+\mathcal{U}$, for all $n \geq n_{0}$. Since $0 \in \mathcal{U}$ then we have

$$
\delta\left(\sigma_{e 1}\left(\lambda_{0}-T_{n}-B+L\right), \sigma_{e 1}\left(\lambda_{0}-T-B\right)\right)=0
$$

and

$$
\delta\left(\sigma_{e 1}\left(\lambda_{0}-T-B+L\right), \sigma_{e 1}\left(\lambda_{0}-T-B\right)\right)=0
$$

Therefore, $(i=1)$ holds.
For $i=2,3,4$. By using a similar proof as in $((b)$ for $i=1)$, by replacing $\sigma_{e 1}($.$) , and \Phi_{+}(X)$ by $\sigma_{e 2}(),. \sigma_{e 3}(),. \sigma_{e 4}($.$) , and \Phi_{-}(X), \Phi_{-}(X) \cup \Phi_{+}(X), \Phi(X)$, respectively, we get There exist $\varepsilon>0$ and $n \in \mathbb{N}$ such that, for all $\|L\|<\varepsilon$, we have

$$
\sigma_{e i}\left(\lambda_{0}-T_{n}-B+L\right) \subseteq \sigma_{e i}\left(\lambda_{0}-T-B\right)+\mathcal{U}, \text { for all } n \geq n_{0}
$$

And,
$\delta\left(\sigma_{e i}\left(\lambda_{0}-T_{n}-B+L\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)=\delta\left(\sigma_{e i}\left(\lambda_{0}-T-B+L\right), \sigma_{e i}\left(\lambda_{0}-T-B\right)\right)$.
For $i=5$, since $\lambda_{0} \in \rho(T+B)$, then $\left(\lambda_{0}-T-B\right)^{-1}$ exists and bounded. We put $\frac{1}{\left\|\left(\lambda_{0}-T-B\right)^{-1}\right\|}=\varepsilon_{1}$. Let $L \in \mathcal{L}(X)$ such that $\|L\|<\varepsilon_{1}$ this implies

$$
\left\|L\left(\lambda_{0}-T-B\right)^{-1}\right\|<1
$$

By according theorem $2.3(i)$ we have $\left(\lambda_{0}-T_{n}-B+L\right)$ converges in the generalized sense to $\left(\lambda_{0}-T-\right.$ $B+L)$, and the Neumann series $\sum_{k=0}^{\infty}\left(-L\left(\lambda_{0}-T-B\right)^{-1}\right)^{k}$ converges to $\left(I+L\left(\lambda_{0}-T-B\right)^{-1}\right)^{-1}$ and

$$
\left\|\left(I+L\left(\lambda_{0}-T-B\right)^{-1}\right)^{-1}\right\|<\frac{1}{1-\|L\|\left\|\left(\lambda_{0}-T-B\right)^{-1}\right\|}
$$

Since $\left.\left.\left(\lambda_{0}-T-B+L\right)^{-1}=\left(\lambda_{0}-T-B\right)^{-1}\right)\left(I+L\left(\lambda_{0}-T-B\right)^{-1}\right)\right)^{-1}$, then $\lambda_{0} \in \rho(T+B+L)$. Now applying $((a)$ for $i=5)$, we deduce that there exists $n_{0} \in \mathbb{N}$ such that $\sigma_{e 5}\left(\lambda_{0}-T_{n}-B+L\right) \subseteq$ $\sigma_{e 5}\left(\lambda_{0}-T-B+L\right)+\mathcal{U}$, for all $n \geq n_{0}$. Let $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B\right)$. Then $\left(\lambda-\left(\lambda_{0}-T-B\right)\right) \in \Phi(X)$. By applying [8, Theorem 7.9] there exists $\varepsilon_{2}>0$ such that for $\|L\|<\varepsilon_{2}$, one has $\left(\lambda-\left(\lambda_{0}-T-B\right)-L\right) \in$ $\Phi(X)$ and $i\left(\lambda-\left(\lambda_{0}-T-B-L\right)\right)=i\left(\lambda-\left(\lambda_{0}-T-B\right)=0\right.$. This implies that $\lambda \notin \sigma_{e 5}\left(\lambda_{0}-T-B+L\right)$. From what has been mentioned and if we take $\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$ then for all $\|L\|<\varepsilon$, there exists $n_{0} \in \mathbb{N}$ such that $\sigma_{e 5}\left(\lambda_{0}-T_{n}-B+L\right) \subseteq \sigma_{e 5}\left(\lambda_{0}-T-B\right)+\mathcal{U}$, for all $n \geq n_{0}$. Since $0 \in \mathcal{U}$ then we have

$$
\delta\left(\sigma_{e 5}\left(\lambda_{0}-T_{n}-B+L\right), \sigma_{e 5}\left(\lambda_{0}-T-B\right)\right)=0=\delta\left(\sigma_{e 5}\left(\lambda_{0}-T-B+L\right), \sigma_{e 5}\left(\lambda_{0}-T-B\right)\right)
$$

Therefore, $(i=5)$ holds.

References

[1] A. Ammar and A. Jeribi, The weyl essential spectrum of a sequence of linear operators in Banach spaces, Indag. Math., New Ser. 27 (1) (2016), 282-295.
[2] S. Goldberg, Perturbations of semi-Fredholm operators by operators converging to zero compactly, Proc. Amer. Math. Soc. 45 (1974), 93-98 .
[3] A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer-Verlag, New York, 2015.
[4] A. Jeribi and N. Moalla, A characterisation of some subsets of Schechter's essential spectrum and applications to singular transport equation, J. Math. Anal. Appl. 358 (2) (2009), 434-444.
[5] A.Jeribi, Une nouvelle caractrisation du spectre essentiel et application, Comp Rend.Acad.Paris serie I, 331 (2000),525-530.
[6] T. Kato, Perturbation theory for linear operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1966.
[7] K. Latrach, A. Jeribi, Some results on Fredholm operators, essential spectra, and application, J. Math. Anal. Appl. 225 (1998), 461-485.
[8] M. Schechter, Principles of Functional Analysis, Grad. Stud. Math. vol. 36, Amer. Math. Soc., Providence, 2002.
[9] M. Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. 74 (1968), 1139-1144.
${ }^{1}$ Department of Mathematics, University of Sfax, Faculty of Sciences of Sfax, Tunisia
${ }^{2}$ Department of Mathematics, University of Mohamed Boudiaf, M'sila, Algeria
*CORRESPONDING AUTHOR: ammar_aymen84@yahoo.fr

