International Journal of Analysis and Applications ISSN 2291-8639 Volume 1, Number 2 (2013), 71-78 http://www.etamaths.com

ON HYERS-ULAM STABILITY FOR NONLINEAR DIFFERENTIAL EQUATIONS OF NTH ORDER

MAHER NAZMI QARAWANI

ABSTRACT. This paper considers the stability of nonlinear differential equations of nth order in the sense of Hyers and Ulam. It also considers the Hyers-Ulam stability for superlinear Emden-Fowler differential equation of nth order. Some illustrative examples are given.

1. INTRODUCTION

In 1940, Ulam [1] posed the stability problem of of functional equations: Given a group G_1 and a metric group G_2 with metric $\rho(.,.)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if $f: G_1 \to G_2$ satisfies $\rho(f(x), h(x)) < \delta$ for all $x, y \in G_1$, then a homomorphism $h: G_1 \to G_2$ exists with $\rho(f(x), h(x)) < \varepsilon$, for all $x, y \in G_1$? The problem for approximately additive mappings, on Banach spaces, was solved by Hyers [2]. The result obtained by Hyers was generalized by Rassias [3].

During the last two decades many mathematicians have extensively investigated the stability problems of functional equations (see [4-11]).

Alsina and Ger [12] were the first mathematicians who investigated the Hyers-Ulam stability of the differential equation g' = g. They proved that if a differentiable function $y: I \to R$ satisfies $|y' - y| \leq \varepsilon$ for all $t \in I$, then there exists a differentiable function $g: I \to R$ satisfying g'(t) = g(t) for any $t \in I$ such that $|g - y| \leq 3\varepsilon$, for all $t \in I$. This result of alsina and Ger has been generalized by Takahasi et al [13] to the case of the complex Banach space valued differential equation $y' = \lambda y$.

Furthermore, the results of Hyers-Ulam stability of differential equations of first order were also generalized by Miura *et al.* [14], Jung [15] and Wang *et al.* [16].

Li [17] established the stability of linear differential equation of second order in the sense of the Hyers and Ulam $y'' = \lambda y$. Li and Shen [18] proved the stability of nonhomogeneous linear differential equation of second order in the sense of the Hyers and Ulam y'' + p(x)y' + q(x)y + r(x) = 0, while Gavruta *et al.* [19] proved the Hyers-Ulam stability of the equation $y'' + \beta(x)y = 0$ with boundary and initial conditions.

The author in his study [20] established the Hyers-Ulam stability of the equations of the second order

$$z'' = F(x, z)$$

with the initial conditions $z(x_0) = 0 = z'(x_0)$.

In this paper we investigate the Hyers-Ulam stability of the following nonlinear differential equation of nth order

²⁰¹⁰ Mathematics Subject Classification. 39A99, 39A30.

Key words and phrases. Hyers-Ulam stability, superlinear, Emden-Fowler differential equation.

 $[\]odot$ 2013 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

QARAWANI

(1)
$$y^{(n)} = f(t, y, y', y'', ..., y^{(n-1)})$$

with the initial conditions

(2)
$$y(t_0) = y_0, y'(t_0) = y_1, \dots, y^{(n-1)}(t_0) = y_{n-1}$$

where $y \in C^{(n)}(I), I = [t_0, t_1], (t, [y]) \equiv (t, y, y', y'', ..., y^{(n-1)}) \in D, t \in I, -\infty < t_0 < t_1 < \infty$, and $f(t, y, y', y'', ..., y^{(n-1)})$ is defined on a closed bounded set $D \subset \mathbb{R}^{n+1}$ that satisfies the condition

(3)
$$|f(t,[y]) - f(t,[z])| \le g(t) \frac{|y(t) - z(t)|}{(t_1 - t_0)^{n-1}}$$

where $g(t): I \to (0, \infty)$ is integrable function.

Moreover we establish the Hyers-Ulam stability of the problem (1),(2) for f satisfying the Lipschitz condition

(4)
$$|f(t,[y]) - f(t,[z])| \le A_0 \sum_{i=0}^{n-1} |y^{(i)}(t) - z^{(i)}(t)|$$

where $A_0 > 0$.

Definition 1 We will say that the equation (1) has the Hyers -Ulam stability if there exists a positive constant K > 0 with the following property:

For every $\varepsilon > 0$, $y \in C^{(n)}(I)$, if

(5)
$$|y^{(n)} - f(t, [y])| \le \varepsilon$$

with the initial condition (2), then there exists a solution $z(t) \in C^{(n)}(I)$ of the equation (1), such that $|y(t) - z(t)| \leq K\varepsilon$, where K is a constant that does not depend on ε nor on y(t).

2. MAIN RESULTS ON HYERS-ULAM STABILITY

Theorem 1 If $y \in C^{(n)}(I)$ and $f(t, y, y', y'', ..., y^{(n-1)})$ satisfies condition (3) on a closed bounded set $D \subset \mathbb{R}^{n+1}$, then the initial value problem(1),(2) is stable in the sense of Hyers and Ulam.

Proof. Let $\varepsilon > 0$ and y(t) be an approximate solution of the initial value problem (1),(2).We will show that there exists a function $z(t) \in C^{(n)}(I)$ satisfying the equation (1) and the initial condition (2) such that

$$|y(t) - z(t)| \le K\varepsilon$$

From the inequality (5) we have

(6)
$$-\varepsilon \le y^{(n)} - f(t, [y]) \le \varepsilon$$

Integrating the last inequality n times, we obtain

(7)
$$\left| y(t) - \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} - \frac{1}{(n-1)!} \int_{t_0}^t (t-s)^{n-1} f(s, [y]) ds \right| \le \frac{(t-t_0)^n \varepsilon}{n!}$$

It is clear that

$$z(t) = \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} + \int_{t_0}^t f(s, [z]) \frac{(t-s)^{n-1}}{(n-1)!} ds$$

satisfies equation (1) and the initial condition (2).

Consider the difference

$$\begin{aligned} |y(t) - z(t)| &\leq \left| y(t) - \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} - \frac{1}{(n-1)!} \int_{t_0}^t (t-s)^{n-1} f(s, [y]) ds \right| \\ &+ \left| \int_{t_0}^t f(s, [y]) - f(s, [z]) \right| \frac{(t-s)^{n-1}}{(n-1)!} ds \right| \\ (8) &\leq \frac{(t-t_0)^n \varepsilon}{n!} + \frac{1}{(n-1)!} \int_{t_0}^t \frac{g(s) |y(s) - z(s)|}{(t_1 - t_0)^{n-1}} (t_1 - t_0)^{n-1} ds \end{aligned}$$

Applying Gronwall's inequality, we obtain from inequalities (7) and (8)

$$|y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} \exp\left(\frac{1}{(n-1)!} \int_{t_0}^t g(t) ds\right)$$

Whence

$$\max_{0 \le t \le t_1} |y(t) - z(t)| \le K\varepsilon$$

Hence the initial value problem (1),(2) is stable in the sense of Hyers and Ulam. **Theorem 2** If $y \in C^{(n)}(I)$ and $f(t, y, y', y'', ..., y^{(n-1)})$ satisfies the Lipschitz condition (4) on a closed bounded set $D \subset \mathbb{R}^{n+1}$, then the initial value problem(1),(2) is stable in the sense of Hyers and Ulam.

Proof. Given $\varepsilon > 0$, assume that y is an approximate solution of Eq. (1). We will show that there exists a function $z(t) \in C^{(n)}(I)$ satisfying equation (1) such that

$$|y(t) - z(t)| \le K\varepsilon$$

ε

From the inequality (5) we have

$$-\varepsilon \le y^{(n)} - f(t, [y]) \le$$

By integrating the inequality (9) k times, we obtain

t

(10)
$$\left| y^{(n-k)}(t) - \sum_{j=0}^{k-1} \frac{(t-t_0)^j y_{n-k+j}}{j!} - \frac{1}{(n-1)!} \int_{t_0}^t (t-s)^{n-1} f(s,[y]) ds \right| \le \frac{(t-t_0)^k \varepsilon}{k!}$$

where $1 \leq k \leq n$.

(9)

We can easily verify that the function z(t)

$$z^{(n-k)}(t) = \sum_{j=0}^{k-1} \frac{(t-t_0)^j y_{n-k+j}}{j!} + \int_{t_0}^t f(s, [z]) \frac{(t-s)^{k-1}}{(k-1)!} ds$$

must satisfy the initial value problem (1),(2)

Now let $\Delta^{(n-k)} \equiv |y^{(n-k)} - z^{(n-k)}|$. Then, using the inequalities (4),(10), we get the estimation

$$\begin{aligned} \Delta^{(n-k)} &\leq \left| y^{(n-k)}(t) - \sum_{j=0}^{k-1} \frac{(t-t_0)^j y_{n-k+j}}{j!} - \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s,[y]) ds \right| \\ &+ \frac{1}{(n-1)!} \int_{t_0}^t |f(s,[y]) - f(s,[z])| (t-s)^{n-1} ds \\ &\qquad (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \qquad A_0 n = \int_0^t |f(s,[y])| ds \\ &= (t_1 - t_0)^k \varepsilon \end{aligned}$$

(11)
$$\leq \frac{(t_1 - t_0)^k \varepsilon}{k!} + \frac{A_0 n}{(n-1)!} \int_{t_0} \left| y^{(n-k)}(s) - z^{(n-k)}(s) \right| (t-s)^{n-1} ds$$

Thus, according to (4),(10) and (11), from Gronwall's inequality it follows that

$$\left| y^{(n-k)}(t) - z^{(n-k)}(t) \right| \le \frac{(t_1 - t_0)^k \varepsilon}{k!} \exp\left(\frac{A_0(t_1 - t_0)^n}{(n-1)!}\right)$$

Consequently for k = n, we have

$$\max_{t_0 \le t \le t_1} |y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} \exp\left(\frac{A_0(t_1 - t_0)^n}{(n)!}\right)$$

Hence the initial value problem (1),(2) is stable in the sense of Hyers and Ulam.

Remark 1 Suppose that $y \in C^{(n)}(I)$ satisfies the inequality (9) with the zero initial condition $y(t_0) = 0$, $y'(t_0) = 0$, ..., $y^{(n-1)}(t_0) = 0$. If f(t, [z]) satisfies Lipschitz condition (4) and $f(t, 0, ..., 0) \equiv 0$, then one can similarly show that the zero solution $z_0 \equiv 0$ of equation (1) is stable in the sense of Hyers and Ulam.

3. HYERS-ULAM STABILITY FOR SUPERLINEAR NTH ORDER DIFFERENTIAL EQUATION

In this section we investigate the Hyers Ulam stability of solutions for superlinear nth order differential equation

(12)
$$y^{(n)} = h(t) |y|^{\alpha} sgny \quad , \quad \alpha > 1$$

with the initial condition

(13)
$$y(t_0) = y_0 , y'(t_0) = y_1, \dots, y^{(n-1)}(t_0) = y_{n-1}$$

where $y \in C^{(n)}(I), I = [t_0, t_1], -\infty < t_0 < t_1 < \infty$, and $h(t) : I \to \mathbb{R}$ is continuous.

Theorem 3 If $y \in C^{(n)}(I)$, and $h(t) : I \to \mathbb{R}$ is continuous, then the initial value problem (12), (13) is stable in the sense of Hyers and Ulam.

Proof. Given $\varepsilon > 0$, Suppose y(t) is an approximate solution of the initial value problem (12), (13). We show that there exists an exact solution $z(t) \in C^{(n)}(I)$ satisfying the equation (12) such that

$$|y(t) - z(t)| \le K\varepsilon$$

where k is a constant that does not explicitly depend on ε nor on y(t). From the inequality (5) we have

(14)
$$-\varepsilon \le y^{(n)} - h(t) |y|^{\alpha} \operatorname{sgny} \le \varepsilon$$

By integrating the last inequality n times, we obtain

(15)
$$\left| y(t) - \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} - \frac{1}{(n-1)!} \int_{t_0}^t h(s) \left| y \right|^\alpha sgny. (t-s)^{n-1} ds \right| \le \frac{(t-t_0)^n \varepsilon}{n!}$$

where $1 \leq k \leq n$.

We can easily verify that the function z(t)

$$z(t) = \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} + \frac{1}{(n-1)!} \int_{t_0}^t h(s) \left|z\right|^{\alpha} sgnz.(t-s)^{n-1} ds$$

must satisfy the initial value problem (12),(13).

Now since the derivative $\left|\frac{\partial(h(t)y^{\alpha})}{\partial y}\right|$ is bounded on *S*, then the function $f(t,y) = h(t) |y|^{\alpha} sgny$ satisfies Lipschitz condition

$$|f(t,y) - f(t,z)| \le L |y(t) - z(t)| \quad , (t,y), (t,z) \in S$$

where $S = [t_0, t_1] \times [-M, M] \subset \mathbb{R}^2$, and $M = \max_{t_0 \leq t \leq t_1} |y(t)|$.

Since h is continuous on I, then $\exists B_0 > 0$, $|h(t)| \leq B_0$, and from the inequality (15), we get the estimation

$$|y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} + \frac{B_0 L}{(n-1)!} \int_{t_0}^t |y(s) - z(s)| (t-s)^{n-1} ds$$

From Gronwall's inequality it follows that

$$|y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} \exp\left(\frac{B_0 L (t_1 - t_0)^n}{n!}\right)$$

Consequently, we have

$$\max_{t_0 \le t \le t_1} |y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} \exp\left(\frac{(t_1 - t_0)^n}{(n)!}\right)$$

Hence the initial value problem (12),(13) is stable in the sense of Hyers and Ulam.

Remark 2 Suppose that $y \in C^{(n)}(I)$ satisfies the inequality (6) with the zero initial condition $y(t_0) = 0, y'(t_0) = 0, ..., y^{(n-1)}(t_0) = 0$. If the function $h: I \to \mathbb{R}$ is continuous, then one can similarly establish the Hyers-Ulam stability of zero solution $z_0 \equiv 0$ of (12).

Example1 Consider the problem

(16)
$$y^{(5)} = 8y^2 \sin t + e^t$$

(17)
$$y^{(k)}(t_0) = 0, \ k = \overline{0,4}$$

and the inequality

(18)
$$-\varepsilon \le y^{(5)} - y^2 \sin t + e^t \le \varepsilon$$

where
$$(t, y) \in [t_0, t_1] \times [-M_1, M_1], \ M_1 = \max_{t_0 \le t \le t_1} |y(t)|.$$

Integrating the inequality (18) five times and using the initial condition (17), we get that

$$\left| y(t) - \frac{1}{3} \int_{t_0}^t (y^3 \sin t + e^t)(t-s)^4 ds \right| \le \frac{(t-t_0)^5 \varepsilon}{5!}$$

One can easily show that z(t)

$$z(t) = \frac{1}{3} \int_{t_0}^t (z^3 \sin t + e^t)(t-s)^4 ds$$

has to satisfy the initial value problem (16),(17).

Now Let us estimate the difference:

$$\begin{aligned} |y(t) - z(t)| &\leq \left| y(t) - \frac{1}{3} \int_{t_0}^t (t-s)^4 (y^3 \sin t + e^t) ds \right| \\ &+ \frac{1}{3} \int_{t_0}^t (t-s)^4 \left| y^3 - z^3 \right| |\sin t| \, ds \\ &\leq \frac{(t_1 - t_0)^5 \varepsilon}{5!} + M_1^2 \int_{t_0}^t (t-s)^4 \left| y - z \right| \, ds \end{aligned}$$

Therefore, we obtain

$$\max_{t_0 \le t \le t_1} |y(t) - z(t)| \le \frac{(t_1 - t_0)^5 \varepsilon}{5!} \exp\left(\frac{M_1^2 (t_1 - t_0)^5}{5!}\right)$$

Hence the initial value problem (16),(17) is stable in the sense of Hyers and Ulam.

4. A SPECIAL CASE OF EQUATION (11)

Consider the equation

(19)
$$y^{(n)} = h(t)y$$

with the initial conditions

(20)
$$y(t_0) = y_0 , y'(t_0) = y_1, \dots, y^{(n-1)}(t_0) = y_{n-1}$$

where $y \in C^{(n)}(I)$, $I = [t_0, t_1]$, $-\infty < t_0 < t_1 < \infty$, and $h(t) : I \to \mathbb{R}$ is continuous. **Theorem 4** If $y \in C^{(n)}(I)$, and $h(t) : I \to \mathbb{R}$ is continuous, then the initial value problem (19), (20) is stable in the sense of Hyers and Ulam.

Proof. assume that $\varepsilon > 0$ and that y is n times continuously differentiable realvalued function on $I = [t_0, t_1]$. We will show that there exists a function $z(t) \in c^2(I)$ satisfying equation (19) such that

$$|y(t) - z(t)| \le K\varepsilon$$

We have

(21)
$$-\varepsilon \le y^{(n)} - h(t)y \le \varepsilon$$

By integrating the inequality (21) n times, we obtain

$$\left| y(t) - \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} - \frac{1}{(n-1)!} \int_{t_0}^t (t-s)^{n-1} h(s) y ds \right| \le \frac{(t-t_0)^n \varepsilon}{n!}$$

where $1 \leq k \leq n$.

It is easily to verify that the function z(t)

$$z(t) = \sum_{k=0}^{n-1} \frac{(t-t_0)^k y_k}{k!} + \frac{1}{(n-1)!} \int_{t_0}^t (t-s)^{n-1} h(s) z ds$$

satisfies the initial value problem (19),(20). One can get the estimation

$$(22) |y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} + \frac{B_0}{(n-1)!} \int_{t_0}^t |y(t) - z(t)| (t-s)^{n-1} ds$$

Using Gronwall's inequality we have Hence

$$\max_{t_0 \le t \le t_1} |y(t) - z(t)| \le \frac{(t_1 - t_0)^n \varepsilon}{n!} \exp\left(\frac{B_0(t_1 - t_0)^n}{(n)!}\right)$$

Therefore, the initial value problem (19),(20) is stable in the sense of Hyers and Ulam.

Example 2 Consider the equation

(23)
$$y^{(4)} - (1 + \cos t)y = 0$$

(24)
$$y(0) = 0, y'(0) = 1, y''(0) = -1, y'''(0) = 0$$

and the inequality

$$\left| y^{(4)} - (1 + \cos t) y \right| \le \varepsilon$$

where $0 \le t \le b, b \in \mathbb{R}$.

Integrating the last inequality four times, we get

$$\left| y(t) - t + \frac{t^2}{2} - \frac{1}{6} \int_0^t (t-s)^3 (1+\cos t) \, y \, ds \right| \le \frac{t^3 \varepsilon}{6}$$

One can easily find that z(t)

$$z(t) = t - \frac{t^2}{2} + \frac{1}{6} \int_0^t (t-s)^3 \left(1 + \cos t\right) z ds$$

satisfies the equation (23) and initial condition (24)Then, we obtain an estimation

$$|y(t) - z(t)| \le \frac{b^3\varepsilon}{6} \exp(b^4/12)$$

Hence Eq. (23) has the Hyers -Ulam stability.

QARAWANI

References

- Ulam S.M., (1964), Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, Science edition.
- [2] Hyers D. H., (1941), On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222–224.
- [3] Rassias T. M. (1978), On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathemaical Society, vol. 72, no. 2, pp. 297–300.
- [4] Miura T., Takahasi S.-E., Choda H., (2001), On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo Journal of Mathematics 24, pp. 467-476.
- [5] Jung S. M., (1996), On the Hyers-Ulam-Rassias stability of approximately addi- tive mappings, Journal of Mathematics Analysis and Application 204, pp. 221-226.
- [6] Park C. G., (2002), On the stability of the linear mapping in Banach modules, Journal of Mathematics Analysis and Application 275, pp. 711-720.
- [7] Gavruta P., (1994), A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436.
- [8] Jun K.-W., Lee Y. -H., (2004), A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratice quations, Journal of Mathematcal Analysis and Applications , vol. 297, no. 1, pp. 70– 86.
- [9] Jung S.-M. (2001), Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, U SA.
- [10] Park C. , (2005), Homomorphisms between Poisson JC*-algebras, Bulletin of the Brazilian Mathematical Society, vol. 36, no. 1, pp. 79–97.
- [11] C. Park, Cho Y.-S. and Han M., (2007), Functional inequalities associated with Jordan-von Neumanntype additive functional equations, Journal of Inequalities and Applications , vol. 2007, Article ID 41820, 13 pages.
- [12] Alsina C., Ger R., (1998), On some inequalities and stability results related to the exponential function, Journal of Inequalities and Application 2, pp 373-380.
- [13] Takahasi E., Miura T., and Miyajima S., (2002), On the Hyers-Ulam stability of the Banach space-valued differential equation $y' = \lambda y$, Bulletin of the Korean Mathematical Society, vol. 39, no. 2, pp 309–315.
- [14] Miura T., Miyajima S., Takahasi S.-E., (2007), A characterization of Hyers-Ulam stability of first order linear differential operators, Journal of Mathematics Analysis and Application 286. pp. 136-146.
- [15] Jung S. M., (2005), Hyers-Ulam stability of linear differential equations of first order, Journal of Mathematics Analysis and Application 311, pp. 139-146.
- [16] Wang G., Zhou M. and Sun L. (2008), Hyers-Ulam stability of linear differential equations of first order, Applied Mathematics Letters 21, pp 1024-1028.
- [17] Li Y., (2010), Hyers-Ulam Stability of Linear Differential Equations, Thai Journal of Mathematics, Vol. 8 No 2, pp 215–219.
- [18] Li Y. and Shen Y., (2009), Hyers-Ulam Stability of Nonhomogeneous Linear Differential Equations of Second Order, International Journal of Mathematics and Mathematical Sciences, Vol. 2009, Article ID 576852, pp. 7.
- [19] Gavruta P., Jung S. and Li Y., (2011), Hyers-Ulam Stability For Second-Order Linear Differential Equations With Boundary Conditions, EJDE, Vol.2011, No. 80, pp1-7, .http://ejde.math.txstate.edu/Volumes/2011/80/gavruta.pdf.
- [20] Qarawani M. N., (2012), Hyers-Ulam Stability of a Generalized Second- Order Nonlinear Differential Equation, Applied Mathematics, Vol. 3, No. 12, pp. 1857-1861. doi: 10.4236/am.2012.312252.

DEPARTMENT OF MATHEMATICS, ALQUDS OPEN UNIVERSITY, PALESTINE, WEST-BANK, SALFIT P.O.Box 37