AN APPLICATION OF δ -QUASI MONOTONE SEQUENCE

HİKMET SEYHAN ÖZARSLAN*

ABSTRACT. In this paper, a known theorem dealing with $|A, p_n|_k$ summability method of infinite series has been generalized to $|A, p_n; \delta|_k$ summability method. Also, some results have been obtained.

1. INTRODUCTION

A sequence (d_n) is said to be δ -quasi-monotone, if $d_n \to 0$, $d_n > 0$ ultimately and $\Delta d_n \ge -\delta_n$, where $\Delta d_n = d_n - d_{n+1}$ and $\delta = (\delta_n)$ is a sequence of positive numbers (see [1]). Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$
 (1.1)

The sequence-to-sequence transformation

$$z_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$
(1.2)

defines the sequence (z_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [5]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \ge 1$, if (see [2])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\Delta z_{n-1}|^k < \infty, \tag{1.3}$$

where

$$\Delta z_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \ge 1.$$

Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \quad n = 0, 1, \dots$$
(1.4)

The series $\sum a_n$ is said to be summable $|A, p_n; \delta|_k$, $k \ge 1$ and $\delta \ge 0$, if (see [6])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |\bar{\Delta}A_n(s)|^k < \infty, \tag{1.5}$$

where

$$\Delta A_n(s) = A_n(s) - A_{n-1}(s).$$

If we set $\delta = 0$, then $|A, p_n; \delta|_k$ summability reduces to $|A, p_n|_k$ summability (see [8]). If we take $a_{nv} = \frac{p_v}{P_n}$ and $\delta = 0$, then $|A, p_n; \delta|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability.

C2017 Authors retain the copyrights of

²⁰¹⁰ Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.

Key words and phrases. summability factors; absolute matrix summability; quasi-monotone sequences; infinite series; Hölder inequality; Minkowski inequality.

their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License

In the special case $\delta = 0$ and $p_n = 1$ for all n, $|A, p_n; \delta|_k$ summability is the same as $|A|_k$ summability (see [9]). Also, if we take $a_{nv} = \frac{p_v}{P_n}$, then $|A, p_n; \delta|_k$ summability is the same as $|\bar{N}, p_n; \delta|_k$ summability (see [4]).

Before stating the main theorem we must first introduce some further notations.

Given a normal matrix $A = (a_{nv})$, we associate two lower semimatrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$
 (1.6)

and

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \dots$$
 (1.7)

It may be noted that \overline{A} and \widehat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$A_{n}(s) = \sum_{v=0}^{n} a_{nv} s_{v} = \sum_{v=0}^{n} \bar{a}_{nv} a_{v}$$
(1.8)

and

$$\bar{\Delta}A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v.$$
(1.9)

2. KNOWN RESULTS

In [3], Bor has proved the following theorem dealing with $|\bar{N}, p_n|_k$ summability.

Theorem 2.1. Let (X_n) be a positive non-decreasing sequence, $(\lambda_n) \to 0$ as $n \to \infty$ and (p_n) be a sequence of positive numbers such that

$$P_n = O(np_n) \qquad as \quad n \to \infty.$$
(2.1)

Suppose that there exist a sequence of numbers (B_n) which is δ -quasi monotone with $\sum nX_n\delta_n < \infty$, $\sum B_nX_n$ is convergent and $|\Delta\lambda_n| \leq |B_n|$ for all n. If

$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \qquad m \to \infty,$$
(2.2)

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

Later on, in [7], Özarslan and Şakar have proved the following theorem dealing with $|A, p_n|_k$ summability factors of infinite series.

Theorem 2.2. Let $A = (a_{nv})$ be a positive normal matrix such that

$$\bar{a}_{n0} = 1, \quad n = 0, 1, ...,$$
(2.3)

$$a_{n-1,v} \ge a_{nv} \quad for \quad n \ge v+1, \tag{2.4}$$

$$a_{nn} = O\left(\frac{p_n}{P_n}\right),\tag{2.5}$$

$$|\hat{a}_{n,v+1}| = O(v |\Delta_v \hat{a}_{nv}|).$$
(2.6)

If (X_n) is a positive non-decreasing sequence and the conditions of Theorem 2.1 are satisfied, then the series $\sum a_n \lambda_n$ is summable $|A, p_n|_k, k \ge 1$.

ÖZARSLAN

3. Main Result

The purpose of this paper is to generalize Theorem 2.2 for $|A, p_n; \delta|_k$ summability. Now, we shall prove the following more general theorem.

Theorem 3.1. Let $A = (a_{nv})$ be a positive normal matrix such that

$$\sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v \hat{a}_{nv}| = O\left\{\left(\frac{P_v}{p_v}\right)^{\delta k-1}\right\} \quad as \quad m \to \infty.$$
(3.1)

If all conditions of Theorem 2.2 with condition (2.2) replaced by:

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k-1} |t_n|^k = O(X_m) \quad as \quad m \to \infty,$$
(3.2)

are satisfied, then the series $\sum a_n \lambda_n$ is summable $|A, p_n; \delta|_k$, $k \ge 1$ and $0 \le \delta < 1/k$.

We require the following lemmas for the proof of Theorem 3.1.

Lemma 3.1. ([3]). Under the conditions of Theorem 3.1, we have that

$$\left|\lambda_{n}\right|X_{n}=O\left(1\right)\quad as\quad n\to\infty.$$
(3.3)

Lemma 3.2. ([3]). Let (X_n) be a positive non-decreasing sequence. If (B_n) is δ -quasi monotone with $\sum nX_n\delta_n < \infty$ and $\sum B_nX_n$ is convergent, then

$$nB_nX_n = O(1) \quad as \quad n \to \infty,$$
 (3.4)

$$\sum_{n=1}^{\infty} nX_n |\Delta B_n| < \infty.$$
(3.5)

4. Proof of Theorem 3.1

Let (I_n) denotes A-transform of the series $\sum a_n \lambda_n$. Then, by (1.8) and (1.9), we have

$$\bar{\Delta}I_n = \sum_{v=0}^n \hat{a}_{nv} a_v \lambda_v = \sum_{v=1}^n \frac{\hat{a}_{nv} \lambda_v}{v} v a_v.$$

Applying Abel's transformation to this sum, we get that

$$\begin{split} \bar{\Delta}I_n &= \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv}\lambda_v}{v}\right) \sum_{r=1}^v ra_r + \frac{\hat{a}_{nn}\lambda_n}{n} \sum_{r=1}^n ra_r \\ &= \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_v \left(\hat{a}_{nv}\right) \lambda_v t_v + \sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n,v+1} \Delta \lambda_v t_v \\ &+ \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_{v+1} \frac{t_v}{v} + \frac{n+1}{n} a_{nn} \lambda_n t_n \\ &= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}. \end{split}$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left|I_{n,r}\right|^k < \infty, \quad for \quad r=1,2,3,4.$$

First, when k > 1, applying Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we have that

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,1}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v| |t_v|\right)^k$$
$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v|^k |t_v|^k\right)$$
$$\times \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})|\right)^{k-1}.$$

By (1.6) and (1.7), we have that

$$\Delta_v(\hat{a}_{nv}) = \hat{a}_{nv} - \hat{a}_{n,v+1} = \bar{a}_{nv} - \bar{a}_{n-1,v} - \bar{a}_{n,v+1} + \bar{a}_{n-1,v+1} = a_{nv} - a_{n-1,v}.$$

Thus using (1.6), (2.3) and (2.4)

$$\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| = \sum_{v=1}^{n-1} (a_{n-1,v} - a_{nv}) \le a_{nn}.$$

Hence, we get

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,1}|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v|^k |t_v|^k\right) \\ &= O(1) \sum_{v=1}^m |\lambda_v|^{k-1} |\lambda_v| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{\delta k-1} |\lambda_v| |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^v \left(\frac{P_r}{p_r}\right)^{\delta k-1} |t_r|^k \\ &+ O(1) |\lambda_m| \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{\delta k-1} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} |\Delta\lambda_v| X_v + O(1) |\lambda_m| X_m \\ &= O(1) \sum_{v=1}^{m-1} B_v X_v + O(1) |\lambda_m| X_m \\ &= O(1) as \quad m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.

Again, by using Hölder's inequality, we have that

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v|\right)^k$$
$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left(\sum_{v=1}^{n-1} v |\Delta_v(\hat{a}_{nv})| |B_v| |t_v|^k\right)$$
$$\times \left(\sum_{v=1}^{n-1} v |\Delta_v(\hat{a}_{nv})| |B_v|\right)^{k-1}.$$

By using (3.4), we get

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} \left(\sum_{v=1}^{n-1} v |\Delta_v(\hat{a}_{nv})| |B_v||t_v|^k\right)$$
$$= O(1) \sum_{v=1}^m v |B_v||t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v(\hat{a}_{nv})|$$
$$= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{\delta k-1} v |B_v||t_v|^k.$$

Now, applying Abel's transformation to this sum, we have that

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,2}|^k &= O(1) \sum_{v=1}^{m-1} |\Delta \left(v|B_v|\right)| \sum_{r=1}^v \left(\frac{P_r}{p_r}\right)^{\delta k-1} |t_r|^k \\ &+ O(1)m |B_m| \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{\delta k-1} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta B_v| X_v + O(1) \sum_{v=1}^{m-1} B_v X_v + O(1) m B_m X_m \\ &= O(1) \quad as \quad m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Also, as in ${\cal I}_{n,1},$ we have that

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,3}|^k &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| \frac{|t_v|}{v}\right)^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_{v+1}|^k |t_v|^k\right) \\ &\times \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})|\right)^{k-1} \\ &= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k-1} |\lambda_{v+1}| |t_v|^k \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by using (2.5), (2.6), (3.1), (3.2) and (3.3).

Finally, as in $I_{n,1}$, we have that

$$\begin{split} \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,4}|^k &= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |\lambda_n|^k |t_n|^k a_{nn}^k \\ &= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k-1} |\lambda_n| |\lambda_n|^{k-1} |t_n|^k \\ &= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k-1} |\lambda_n| |t_n|^k \\ &= O(1) \ as \ m \to \infty, \end{split}$$

by using (2.5), (3.1), (3.2) and (3.3). This completes the proof of Theorem 3.1.

It should be noted that if we take $\delta = 0$ in Theorem 3.1, then we get Theorem 2.2. In this case, condition (3.2) reduces to condition (2.2). Also, if we take $\delta = 0$ and $a_{nv} = \frac{p_v}{P_n}$, then we get Theorem 2.1.

References

- [1] R. P. Boas, Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. 14A (1965), 38-46.
- [2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149.
- [3] H. Bor, On quasi-monotone sequences and their applications, Bull. Austral. Math. Soc. 43 (1991), 187-192.
- [4] H. Bor, On local property of $|\bar{N}, p_n; \delta|_k$ summability of factored Fourier series, J. Math. Anal. Appl. 179 (1993), 646–649.
- [5] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
- [6] H. S. Özarslan and H. N. Öğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl. 1 (1) (2004), Article 13, 7 pp.
- [7] H. S. Özarslan and M. Ö. Şakar, A new application of absolute matrix summability, Math. Sci. Appl. E-Notes 3 (2015), 36-43.
- [8] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34 (11) (2003), 1547-1557.
- [9] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser. III 14 (34) (1979), 87-97.

DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY, 38039 KAYSERI, TURKEY

*CORRESPONDING AUTHOR: seyhan@erciyes.edu.tr; hseyhan38@gmail.com