# AN APPLICATION OF $\delta$-QUASI MONOTONE SEQUENCE 

## HİKMET SEYHAN ÖZARSLAN*

Abstract. In this paper, a known theorem dealing with $\left|A, p_{n}\right|_{k}$ summability method of infinite series has been generalized to $\left|A, p_{n} ; \delta\right|_{k}$ summability method. Also, some results have been obtained.

## 1. Introduction

A sequence ( $d_{n}$ ) is said to be $\delta$-quasi-monotone, if $d_{n} \rightarrow 0, d_{n}>0$ ultimately and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n+1}$ and $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers (see [1]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) . \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
z_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left(z_{n}\right)$ of the Riesz mean or simply the ( $\bar{N}, p_{n}$ ) mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [5]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta z_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

where

$$
\Delta z_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 .
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then $A$ defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{1.4}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty, \tag{1.5}
\end{equation*}
$$

where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) .
$$

If we set $\delta=0$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability (see [8]). If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $\delta=0$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability.

[^0]In the special case $\delta=0$ and $p_{n}=1$ for all $n,\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as $|A|_{k}$ summability (see [9]). Also, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability (see [4]).
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{1.7}
\end{equation*}
$$

It may be noted that $\bar{A}$ and $\hat{A}$ are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{1.9}
\end{equation*}
$$

## 2. Known Results

In [3], Bor has proved the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability.
Theorem 2.1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence, $\left(\lambda_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

Suppose that there exist a sequence of numbers $\left(B_{n}\right)$ which is $\delta$-quasi monotone with $\sum n X_{n} \delta_{n}<\infty, \sum B_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all $n$. If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.2}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Later on, in [7], Özarslan and Şakar have proved the following theorem dealing with $\left|A, p_{n}\right|_{k}$ summability factors of infinite series.
Theorem 2.2. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, \quad n=0,1, \ldots  \tag{2.3}\\
a_{n-1, v} \geq a_{n v} \quad \text { for } \quad n \geq v+1  \tag{2.4}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right)  \tag{2.5}\\
\left|\hat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v} \hat{a}_{n v}\right|\right) \tag{2.6}
\end{gather*}
$$

If $\left(X_{n}\right)$ is a positive non-decreasing sequence and the conditions of Theorem 2.1 are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|A, p_{n}\right|_{k}, k \geq 1$.

## 3. Main Result

The purpose of this paper is to generalize Theorem 2.2 for $\left|A, p_{n} ; \delta\right|_{k}$ summability. Now, we shall prove the following more general theorem.

Theorem 3.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\right\} \quad \text { as } \quad m \rightarrow \infty \tag{3.1}
\end{equation*}
$$

If all conditions of Theorem 2.2 with condition (2.2) replaced by:

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3.2}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
We require the following lemmas for the proof of Theorem 3.1.
Lemma 3.1. ([3]). Under the conditions of Theorem 3.1, we have that

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

Lemma 3.2. ([3]). Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If $\left(B_{n}\right)$ is $\delta$-quasi monotone with $\sum n X_{n} \delta_{n}<\infty$ and $\sum B_{n} X_{n}$ is convergent, then

$$
\begin{gather*}
n B_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty  \tag{3.4}\\
\sum_{n=1}^{\infty} n X_{n}\left|\Delta B_{n}\right|<\infty \tag{3.5}
\end{gather*}
$$

## 4. Proof of Theorem 3.1

Let $\left(I_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by (1.8) and (1.9), we have

$$
\bar{\Delta} I_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v} .
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
& =\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v}+\frac{n+1}{n} a_{n n} \lambda_{n} t_{n} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4}
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

First, when $k>1$, applying Hölder's inequality with indices $k$ and $k^{\prime}$, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right) \| \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

By (1.6) and (1.7), we have that

$$
\Delta_{v}\left(\hat{a}_{n v}\right)=\hat{a}_{n v}-\hat{a}_{n, v+1}=\bar{a}_{n v}-\bar{a}_{n-1, v}-\bar{a}_{n, v+1}+\bar{a}_{n-1, v+1}=a_{n v}-a_{n-1, v}
$$

Thus using (1.6), (2.3) and (2.4)

$$
\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{n n}
$$

Hence, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|t_{r}\right|^{k} \\
& +O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} B_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) a s m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.

Again, by using Hölder's inequality, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|B_{v}\right|\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|B_{v}\right|\right)^{k-1} .
\end{aligned}
$$

By using (3.4), we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|B_{v}\right|\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m} v\left|B_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1} v\left|B_{v} \| t_{v}\right|^{k} .
\end{aligned}
$$

Now, applying Abel's transformation to this sum, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|B_{v}\right|\right)\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1}\left|t_{r}\right|^{k} \\
& +O(1) m\left|B_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta B_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} B_{v} X_{v}+O(1) m B_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Also, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 3}\right|^{k} & \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
& =O(1) a s \quad m \rightarrow \infty
\end{aligned}
$$

by using (2.5), (2.6), (3.1), (3.2) and (3.3).

Finally, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} a_{n n}^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by using (2.5), (3.1), (3.2) and (3.3). This completes the proof of Theorem 3.1.
It should be noted that if we take $\delta=0$ in Theorem 3.1, then we get Theorem 2.2. In this case, condition (3.2) reduces to condition (2.2). Also, if we take $\delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get Theorem 2.1.

## References

[1] R. P. Boas, Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. 14A (1965), 38-46.
[2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149.
[3] H. Bor, On quasi-monotone sequences and their applications, Bull. Austral. Math. Soc. 43 (1991), 187-192.
[4] H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. 179 (1993), 646-649.
[5] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[6] H. S. Özarslan and H. N. Öğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl. 1 (1) (2004), Article 13, 7 pp.
[7] H. S. Özarslan and M. Ö. Şakar, A new application of absolute matrix summability, Math. Sci. Appl. E-Notes 3 (2015), 36-43.
[8] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34 (11) (2003), 1547-1557.
[9] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser. III 14 (34) (1979), 87-97.
Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey
*CORRESPONDING AUTHOR: seyhan@erciyes.edu.tr; hseyhan38@gmail.com


[^0]:    2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.
    Key words and phrases. summability factors; absolute matrix summability; quasi-monotone sequences; infinite series; Hölder inequality; Minkowski inequality.

