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OSCILLATION OF NONLINEAR DELAY DIFFERENTIAL EQUATION WITH

NON-MONOTONE ARGUMENTS
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Abstract. Consider the first-order nonlinear retarded differential equation

x′(t) + p(t)f (x (τ(t))) = 0, t ≥ t0
where p(t) and τ(t) are function of positive real numbers such that τ(t) ≤ t for t ≥ t0, and limt→∞ τ(t) =
∞. Under the assumption that the retarded argument is non-monotone, new oscillation results are

given. An example illustrating the result is also given.
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1. Introduction

Consider the nonlinear retarded differential equation

x′(t) + p(t)f (x (τ(t))) = 0, t ≥ t0 (1.1)

where p(t) and τ(t) are functions of nonnegative real numbers, and τ(t) is non-monotone or nonde-
creasing such that

τ(t) ≤ t for t ≥ t0, and lim
t→∞

τ(t) =∞, (1.2)

and
f ∈ C(R,R) and xf(x) > 0 for x 6= 0. (1.3)

By a solution of (1.1) we mean a continuously differentiable function defined on [τ(T0),∞] for some
T0 ≥ t0 and such that (1.1) is satisfied for t ≥ T0. Such a solution is called oscillatory if it has
arbitrarily large zeros. Otherwise, it is called nonoscillatory.

Recently there has been an increasing interest in the study of the oscillatory behavior of the following
special form of (1.1)

x′(t) + p(t)x (τ(t)) = 0, t ≥ t0. (1.4)

See, for example, [1−19] and the references cited therein. The first systematic study for the oscilla-
tion of all solutions of equation (1.4) was made by Myshkis. In 1950 [17] he proved that every solution
of (1.4) oscillates if

lim sup
t→∞

[t− τ(t)] <∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) >
1

e
.

In 1972, Ladas, Lakshmikantham and Papadakis [16] proved that the same conclusion holds if, in
addition, τ is a non-decreasing function and

lim sup
t→∞

t∫
τ(t)

p(s)ds > 1. (1.5)

In 1982, Koplatadze and Canturija [14] established the following result.
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If τ(t) is a non-monotone or nondecreasing and

lim inf
t→∞

t∫
τ(t)

p(s)ds >
1

e
, (1.6)

then all solutions of Eq.(1.4) oscillate, while if

lim sup
t→∞

t∫
τ(t)

p(s)ds <
1

e
, (1.7)

then the equation (1.4) has a nonoscillatory solution.
To the best of our knowledge, there are few papers dealing with the oscillatory behavior of solutions

of (1.1), see, for example, [9, 17]. The following theorem was given by Ladde et al. in [17].
THEOREM A. Assume that the f, p and τ in Eq.(1.1) satisfy the following conditions:
i) The condition (1.2) holds and let τ(t) be strictly increasing on R+,
ii) p(t) is locally integrable and p(t) ≥ 0, a.e.;
iii) The condition (1.3) holds and let f be nondecreasing, and

lim
x→0

x

f(x)
= N < +∞.

Assume further that

lim sup
t→∞

t∫
τ(t)

p(s)ds > N,

or

lim inf
t→∞

t∫
τ(t)

p(s)ds >
N

e
.

Then every solution of Eq.(1.1) is oscillatory.
The following theorem was given by Fukagai and Kusano in [9].
THEOREM B. Suppose that the conditions (1.2) and (1.3) hold. Suppose moreover that

lim sup
x→0

|x|
|f(x)|

= λ <∞.

If

lim inf
t→∞

t∫
τ(t)

p(s)ds >
λ

e
,

then every solution of Eq.(1.1) is oscillatory.
Thus, in this paper, our aim is to obtain some oscillation criteria for all solutions of Eq.(1.1) under

the assumption that τ(t) is non-monotone.

2. Main Results

In this section, we present a new sufficient conditions for the oscillation of all solutions of Eq.(1.1),
under the assumption that the argument τ(t) is non-monotone or nondecreasing. Set

h(t) := sup
s≤t

τ(s), t ≥ 0. (2.1)

Clearly, h(t) is nondecreasing, and τ(t) ≤ h(t) for all t ≥ 0.
Assume that the f in Eq.(1.1) satisfy the following condition:

lim sup
x→0

x

f(x)
= M, 0 ≤M <∞. (2.2)
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Theorem 2.1. Assume that (1.2), (1.3) and (2.2) holds. If τ(t) is non-monotone or nondecreasing,
and

lim inf
t→∞

t∫
τ(t)

p(s)ds >
M

e
, (2.3)

then all solutions of Eq.(1.1) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of (1.1).
Since −x(t) is also a solution of (1.1), we can confine our discussion only to the case where the solution
x(t) is eventually positive. Then there exists t1 > t0 such that x(t), x (τ(t)) > 0, for all t ≥ t1. Thus,
from (1.1) we have

x′(t) = −p(t)f (x (τ(t))) ≤ 0, for all t ≥ t1.

Thus x(t) is nonincreasing and has a limit l ≥ 0 as t→∞.
Now, we claim that l = 0. Condition (2.3) implies that

∞∫
a

p(t)dt =∞. (2.4)

In view of (2.4) and by the Theorem 3.1.5 in [17] that limt→∞ x (t) = 0. Suppose M > 0. Then, in
view of (2.2) we can choose t2 > t1 so large that

f(x (t)) ≥ 1

2M
x(t) for t ≥ t2. (2.5)

On the other hand, we know from Lemma 2.1.1 [7] that

lim inf
t→∞

t∫
h(t)

p(s)ds = lim inf
t→∞

t∫
τ(t)

p(s)ds. (2.6)

Since h(t) ≥ τ(t) and x(t) is nonincreasing , by (1.1) and (2.5) we have

x′(t) +
1

2M
p(t)x(h(t)) ≤ 0, t ≥ t3. (2.7)

Also, from (2.3) and (2.6) it follows that there exists a constant c > 0 such that

t∫
h(t)

p(s)ds ≥ c > M

e
, t ≥ t3 ≥ t2. (2.8)

So, from (2.8), there exists a real number t∗ ∈ (h(t), t), for all t ≥ t3 such that

t∗∫
h(t)

p(s)ds >
M

2e
and

t∫
t∗

p(s)ds >
M

2e
. (2.9)

Integrating (2.7) from h(t) to t∗ and using x(t) is nonincreasing then we have

x(t∗)− x (h(t)) +
1

2M

t∗∫
h(t)

p(s)x (h(s)) ds ≤ 0,

or

x(t∗)− x (h(t)) +
1

2M
x (h(t∗))

t∗∫
h(t)

p(s)ds ≤ 0.

Thus, by (2.9), we have

− x (h(t)) +
1

2M
x (h(t∗))

M

2e
< 0. (2.10)
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Integrating (2.7) from t∗ to t and using the same facts , we get

x(t)− x (t∗) +
1

2M

t∫
t∗

p(s)x (h(s)) ds ≤ 0.

Thus, by (2.9), we have

− x (t∗) +
1

2M
x (h(t))

M

2e
< 0. (2.11)

Combining the inequalities (2.10) and (2.11), we obtain

x(t∗) > x (h(t))
1

4e
> x (h(t∗))

(
1

4e

)2

,

and hence we have
x (h(t∗))

x(t∗)
< (4e)

2
for t ≥ t4.

Let

w =
x(h(t∗))

x(t∗)
≥ 1,

and because of 1 ≤ w < (4e)2 , w is finite.
Now dividing (1.1) with x(t) and then integrating from h(t) to t we obtain

t∫
h(t)

x′(s)

x(s)
ds+

t∫
h(t)

p(s)
f(x(τ(s)))

x(s)
ds = 0

and

ln
x(t)

x(h(t))
+

t∫
h(t)

p(s)
f(x(τ(s)))

x(τ(s))

x(τ(s))

x(s)
ds = 0

Since x(t) is nonincreasing, we get

ln
x(t)

x(h(t))
+

t∫
h(t)

p(s)
f(x(τ(s)))

x(τ(s))

x(h(s))

x(s)
ds ≤ 0

and

ln
x(h(t))

x(t)
≥ f(x(τ(ξ)))

x(τ(ξ))

x(h(ξ))

x(ξ)

t∫
h(t)

p(s)ds, (2.12)

where ξ is defined with h(t) < ξ < t, while t −→ ∞, ξ −→ ∞ and because of this h(t) −→ ∞. Then
taking lower limit on both side of (2.12), we obtain lnw ≥ w

e . But this is impossible since lnx ≤ x
e for

all x > 0. The case where M = 0 can be discussed similarly. The proof of the theorem is completed. �

Theorem 2.2. Assume that (1.2), (1.3), (2.2) and (2.4) holds. If τ(t) is non-monotone, and

lim sup
t→∞

t∫
h(t)

p(s)ds > 2M (2.13)

where h(t) is defined by (2.1), then all solutions of Eq.(1.1) oscillate.
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Proof. Assume, for the sake of contradiction, that there exist a nonoscillatory solution x(t) of (1.1).
In view of (2.4), we know from Theorem 2.1 that lim

t→∞
x(t) = 0, for t ≥ t1.

Considering equation (1.1)

x′(t) + p(t)f(x(τ(t))) = 0

by (2.5) we get

x′(t) +
1

2M
p(t)x(τ(t)) ≤ 0

Since h(t) ≥ τ(t) and x(t) is nonincreasing

x′(t) +
1

2M
p(t)x(h(t)) ≤ 0 (2.14)

Integrating (2.14) from h(t) to t, and using the fact that the function x(t) is nonincreasing and the
function h(t) is nondecreasing

x(t)− x(h(t)) +
1

2M

t∫
h(t)

p(s)x(h(s))ds ≤ 0

or

x(t)− x(h(t)) +
1

2M
x(h(t))

t∫
h(t)

p(s)ds ≤ 0

This implies

x(t)− x(h(t)) +

1− 1

2M

t∫
h(t)

p(s)ds

 ≤ 0

and hence

t∫
h(t)

p(s)ds < 2M

for sufficiently t. Therefore,

lim sup
t→∞

t∫
h(t)

p(s)ds ≤ 2M

This is a contradiction to (2.13). The proof is completed. �

Now, assume that f is nondecreasing function then we have the following result.

Theorem 2.3. Assume that (1.2), (1.3), (2.2) and (2.4) hold. If τ(t) is non-monotone, f is nonde-
creasing function and

lim sup
t→∞

t∫
τ(t)

p(s)ds > M (2.15)

where h(t) is defined by (2.1), then all solutions of Eq.(1.1) oscillate.
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Proof. Assume, for the sake of contradiction, that there exist a nonoscillatory solution x(t) of (1.1).
In view of (2.4), we know from Theorem 2.1 that lim

t→∞
x(t) = 0, for t ≥ t1.

Considering equation (1.1)

x′(t) + p(t)f(x(τ(t))) = 0

Since τ(t) ≤ h(t), x(t) is nonincreasing and f is nondecreasing we have

x′(t) + p(t)f(x(h(t))) ≤ 0 (2.16)

Integrating (2.16) from h(t) to t and using the fact that x(t) is nonincreasing and f, h(t) are
nondecreasing

x(t)− x(h(t)) +

t∫
h(t)

p(s)f(x(h(s)))ds ≤ 0

or

x(t)− x(h(t)) + f(x(h(t)))

t∫
h(t)

p(s)ds ≤ 0

and so

x(t)− x(h(t))

1− f(x(h(t)))

x(h(t))

t∫
h(t)

p(s)ds

 ≤ 0

Therefore

1 >
f(x(h(t)))

x(h(t))

t∫
h(t)

p(s)ds

≥ 1

M
lim sup
t→∞

t∫
h(t)

p(s)ds

That is a contradiction. The proof is completed. �

We remark that if τ(t) is nondecreasing, then we have τ(t) = h(t) for all t, and the condition (2.13)
and (2.15), respectively, reduce to

lim sup
t→∞

t∫
τ(t)

p(s)ds > 2M (2.16)

and

lim sup
t→∞

t∫
τ(t)

p(s)ds > M (2.17)

Now, we have the following example.

Example 2.1. Consider the nonlinear delay differential equation

x′(t) +
1

e
x (τ(t)) ln (10 + |x (τ(t))|) = 0, t > 0, (2.18)
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where

τ(t) =

 t− 1, if t ∈ [3k, 3k + 1]
−3t+ 12k + 3, if t ∈ [3k + 1, 3k + 2]
5t− 12k − 13, if t ∈ [3k + 2, 3k + 3]

, k ∈ N0.

By (2.1), we see that

h(t) := sup
s≤t

τ(s) =

 t− 1, if t ∈ [3k, 3k + 1]
3k, if t ∈ [3k + 1, 3k + 2.6]
5t− 12k − 13, if t ∈ [3k + 2.6, 3k + 3]

, k ∈ N0.

If we put p(t) = 1
e and f(x) = x ln(10 + |x|). Then, we have

M = lim sup
x→0

x

f(x)
= lim sup

x→0

x

x ln(10 + |x|)
=

1

ln 10

and

lim inf
t→∞

∫ t

τ(t)

p(s)ds =
1

e
>
M

e
=

1

e ln 10

that is, all conditions of Theorem 2.1 are satisfied and therefore all solutions of (2.18) oscillate.
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[4] George E. Chatzarakis and Özkan Öcalan, Oscillations of differential equations with non-monotone retarded argu-

ments, LMS J. Comput. Math., 19 (1) (2016) 98–104.
[5] A. Elbert and I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ

of Ioannina T. R. No 172 (1990), Recent trends in differential equations, 163-178, World Sci. Ser. Appl. Anal., 1,

World Sci. Publishing Co. (1992).
[6] A. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer.

Math. Soc., 123 (1995), 1503-1510.
[7] L. H. Erbe, Qingkai Kong and B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker,

New York, 1995.

[8] L. H. Erbe and B. G. Zhang, Oscillation of first order linear differential equations with deviating arguments,
Differential Integral Equations, 1 (1988), 305-314.

[9] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating argu-

ments, Ann. Mat. Pura Appl.,136 (1984), 95-117.
[10] K.Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic

Publishers, 1992.

[11] M. K. Grammatikopoulos, R. G. Koplatadze and I. P. Stavroulakis, On the oscillation of solutions of first order
differential equations with retarded arguments, Georgian Math. J., 10 (2003), 63-76.
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