OSCILLATION OF NONLINEAR DELAY DIFFERENTIAL EQUATION WITH NON-MONOTONE ARGUMENTS

ÖZKAN ÖCALAN ${ }^{1, *}$, NURTEN KILIÇ ${ }^{2}$, SERMIN ŞAHİN ${ }^{3}$ AND UMUT MUTLU ÖZKAN ${ }^{3}$

Abstract. Consider the first-order nonlinear retarded differential equation

$$
x^{\prime}(t)+p(t) f(x(\tau(t)))=0, \quad t \geq t_{0}
$$

where $p(t)$ and $\tau(t)$ are function of positive real numbers such that $\tau(t) \leq t$ for $t \geq t_{0}$, and $\lim _{t \rightarrow \infty} \tau(t)=$ ∞. Under the assumption that the retarded argument is non-monotone, new oscillation results are given. An example illustrating the result is also given.

Keywords: delay differential equation; non-monotone argument; oscillatory solutions; nonoscillatory solutions.

2010 Mathematics Subject Classification: 34K11, 34K06.

1. Introduction

Consider the nonlinear retarded differential equation

$$
\begin{equation*}
x^{\prime}(t)+p(t) f(x(\tau(t)))=0, \quad t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where $p(t)$ and $\tau(t)$ are functions of nonnegative real numbers, and $\tau(t)$ is non-monotone or nondecreasing such that

$$
\begin{equation*}
\tau(t) \leq t \text { for } t \geq t_{0}, \quad \text { and } \quad \lim _{t \rightarrow \infty} \tau(t)=\infty \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in C(\mathbb{R}, \mathbb{R}) \text { and } x f(x)>0 \text { for } x \neq 0 \tag{1.3}
\end{equation*}
$$

By a solution of (1.1) we mean a continuously differentiable function defined on $\left[\tau\left(T_{0}\right), \infty\right]$ for some $T_{0} \geq t_{0}$ and such that (1.1) is satisfied for $t \geq T_{0}$. Such a solution is called oscillatory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory.

Recently there has been an increasing interest in the study of the oscillatory behavior of the following special form of (1.1)

$$
\begin{equation*}
x^{\prime}(t)+p(t) x(\tau(t))=0, \quad t \geq t_{0} \tag{1.4}
\end{equation*}
$$

See, for example, $[1-19]$ and the references cited therein. The first systematic study for the oscillation of all solutions of equation (1.4) was made by Myshkis. In 1950 [17] he proved that every solution of (1.4) oscillates if

$$
\limsup _{t \rightarrow \infty}[t-\tau(t)]<\infty \text { and } \liminf _{t \rightarrow \infty}[t-\tau(t)] \liminf _{t \rightarrow \infty} p(t)>\frac{1}{e}
$$

In 1972, Ladas, Lakshmikantham and Papadakis [16] proved that the same conclusion holds if, in addition, τ is a non-decreasing function and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>1 \tag{1.5}
\end{equation*}
$$

In 1982, Koplatadze and Canturija [14] established the following result.

[^0]If $\tau(t)$ is a non-monotone or nondecreasing and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>\frac{1}{e} \tag{1.6}
\end{equation*}
$$

then all solutions of Eq.(1.4) oscillate, while if

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s<\frac{1}{e} \tag{1.7}
\end{equation*}
$$

then the equation (1.4) has a nonoscillatory solution.
To the best of our knowledge, there are few papers dealing with the oscillatory behavior of solutions of (1.1), see, for example, [9, 17]. The following theorem was given by Ladde et al. in [17].

THEOREM A. Assume that the f, p and τ in Eq.(1.1) satisfy the following conditions:
i) The condition (1.2) holds and let $\tau(t)$ be strictly increasing on \mathbb{R}_{+},
ii) $p(t)$ is locally integrable and $p(t) \geq 0$, a.e.;
iii) The condition (1.3) holds and let f be nondecreasing, and

$$
\lim _{x \rightarrow 0} \frac{x}{f(x)}=N<+\infty
$$

Assume further that

$$
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>N
$$

or

$$
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>\frac{N}{e}
$$

Then every solution of Eq.(1.1) is oscillatory.
The following theorem was given by Fukagai and Kusano in [9].
THEOREM B. Suppose that the conditions (1.2) and (1.3) hold. Suppose moreover that

$$
\limsup _{x \rightarrow 0} \frac{|x|}{|f(x)|}=\lambda<\infty
$$

If

$$
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>\frac{\lambda}{e}
$$

then every solution of Eq.(1.1) is oscillatory.
Thus, in this paper, our aim is to obtain some oscillation criteria for all solutions of Eq.(1.1) under the assumption that $\tau(t)$ is non-monotone.

2. Main Results

In this section, we present a new sufficient conditions for the oscillation of all solutions of Eq.(1.1), under the assumption that the argument $\tau(t)$ is non-monotone or nondecreasing. Set

$$
\begin{equation*}
h(t):=\sup _{s \leq t} \tau(s), \quad t \geq 0 \tag{2.1}
\end{equation*}
$$

Clearly, $h(t)$ is nondecreasing, and $\tau(t) \leq h(t)$ for all $t \geq 0$.
Assume that the f in Eq.(1.1) satisfy the following condition:

$$
\begin{equation*}
\limsup _{x \rightarrow 0} \frac{x}{f(x)}=M, \quad 0 \leq M<\infty \tag{2.2}
\end{equation*}
$$

Theorem 2.1. Assume that (1.2), (1.3) and (2.2) holds. If $\tau(t)$ is non-monotone or nondecreasing, and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>\frac{M}{e} \tag{2.3}
\end{equation*}
$$

then all solutions of Eq.(1.1) oscillate.
Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution $x(t)$ of (1.1). Since $-x(t)$ is also a solution of (1.1), we can confine our discussion only to the case where the solution $x(t)$ is eventually positive. Then there exists $t_{1}>t_{0}$ such that $x(t), x(\tau(t))>0$, for all $t \geq t_{1}$. Thus, from (1.1) we have

$$
x^{\prime}(t)=-p(t) f(x(\tau(t))) \leq 0, \quad \text { for all } t \geq t_{1}
$$

Thus $x(t)$ is nonincreasing and has a limit $l \geq 0$ as $t \rightarrow \infty$.
Now, we claim that $l=0$. Condition (2.3) implies that

$$
\begin{equation*}
\int_{a}^{\infty} p(t) d t=\infty \tag{2.4}
\end{equation*}
$$

In view of (2.4) and by the Theorem 3.1.5 in [17] that $\lim _{t \rightarrow \infty} x(t)=0$. Suppose $M>0$. Then, in view of (2.2) we can choose $t_{2}>t_{1}$ so large that

$$
\begin{equation*}
f(x(t)) \geq \frac{1}{2 M} x(t) \quad \text { for } t \geq t_{2} \tag{2.5}
\end{equation*}
$$

On the other hand, we know from Lemma 2.1.1 [7] that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{h(t)}^{t} p(s) d s=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s \tag{2.6}
\end{equation*}
$$

Since $h(t) \geq \tau(t)$ and $x(t)$ is nonincreasing, by (1.1) and (2.5) we have

$$
\begin{equation*}
x^{\prime}(t)+\frac{1}{2 M} p(t) x(h(t)) \leq 0, \quad t \geq t_{3} \tag{2.7}
\end{equation*}
$$

Also, from (2.3) and (2.6) it follows that there exists a constant $c>0$ such that

$$
\begin{equation*}
\int_{h(t)}^{t} p(s) d s \geq c>\frac{M}{e}, \quad t \geq t_{3} \geq t_{2} \tag{2.8}
\end{equation*}
$$

So, from (2.8), there exists a real number $t^{*} \in(h(t), t)$, for all $t \geq t_{3}$ such that

$$
\begin{equation*}
\int_{h(t)}^{t^{*}} p(s) d s>\frac{M}{2 e} \quad \text { and } \quad \int_{t^{*}}^{t} p(s) d s>\frac{M}{2 e} \tag{2.9}
\end{equation*}
$$

Integrating (2.7) from $h(t)$ to t^{*} and using $x(t)$ is nonincreasing then we have

$$
x\left(t^{*}\right)-x(h(t))+\frac{1}{2 M} \int_{h(t)}^{t^{*}} p(s) x(h(s)) d s \leq 0
$$

or

$$
x\left(t^{*}\right)-x(h(t))+\frac{1}{2 M} x\left(h\left(t^{*}\right)\right) \int_{h(t)}^{t^{*}} p(s) d s \leq 0
$$

Thus, by (2.9), we have

$$
\begin{equation*}
-x(h(t))+\frac{1}{2 M} x\left(h\left(t^{*}\right)\right) \frac{M}{2 e}<0 \tag{2.10}
\end{equation*}
$$

Integrating (2.7) from t^{*} to t and using the same facts, we get

$$
x(t)-x\left(t^{*}\right)+\frac{1}{2 M} \int_{t^{*}}^{t} p(s) x(h(s)) d s \leq 0
$$

Thus, by (2.9), we have

$$
\begin{equation*}
-x\left(t^{*}\right)+\frac{1}{2 M} x(h(t)) \frac{M}{2 e}<0 \tag{2.11}
\end{equation*}
$$

Combining the inequalities (2.10) and (2.11), we obtain

$$
x\left(t^{*}\right)>x(h(t)) \frac{1}{4 e}>x\left(h\left(t^{*}\right)\right)\left(\frac{1}{4 e}\right)^{2}
$$

and hence we have

$$
\frac{x\left(h\left(t^{*}\right)\right)}{x\left(t^{*}\right)}<(4 e)^{2} \quad \text { for } t \geq t_{4}
$$

Let

$$
w=\frac{x\left(h\left(t^{*}\right)\right)}{x\left(t^{*}\right)} \geq 1
$$

and because of $1 \leq w<(4 e)^{2}, w$ is finite.
Now dividing (1.1) with $x(t)$ and then integrating from $h(t)$ to t we obtain

$$
\int_{h(t)}^{t} \frac{x^{\prime}(s)}{x(s)} d s+\int_{h(t)}^{t} p(s) \frac{f(x(\tau(s)))}{x(s)} d s=0
$$

and

$$
\ln \frac{x(t)}{x(h(t))}+\int_{h(t)}^{t} p(s) \frac{f(x(\tau(s)))}{x(\tau(s))} \frac{x(\tau(s))}{x(s)} d s=0
$$

Since $x(t)$ is nonincreasing, we get

$$
\ln \frac{x(t)}{x(h(t))}+\int_{h(t)}^{t} p(s) \frac{f(x(\tau(s)))}{x(\tau(s))} \frac{x(h(s))}{x(s)} d s \leq 0
$$

and

$$
\begin{equation*}
\ln \frac{x(h(t))}{x(t)} \geq \frac{f(x(\tau(\xi)))}{x(\tau(\xi))} \frac{x(h(\xi))}{x(\xi)} \int_{h(t)}^{t} p(s) d s \tag{2.12}
\end{equation*}
$$

where ξ is defined with $h(t)<\xi<t$, while $t \longrightarrow \infty, \xi \longrightarrow \infty$ and because of this $h(t) \longrightarrow \infty$. Then taking lower limit on both side of (2.12), we obtain $\ln w \geq \frac{w}{e}$. But this is impossible since $\ln x \leq \frac{x}{e}$ for all $x>0$. The case where $M=0$ can be discussed similarly. The proof of the theorem is completed.

Theorem 2.2. Assume that (1.2), (1.3), (2.2) and (2.4) holds. If $\tau(t)$ is non-monotone, and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{t} p(s) d s>2 M \tag{2.13}
\end{equation*}
$$

where $h(t)$ is defined by (2.1), then all solutions of Eq.(1.1) oscillate.

Proof. Assume, for the sake of contradiction, that there exist a nonoscillatory solution $x(t)$ of (1.1). In view of (2.4), we know from Theorem 2.1 that $\lim _{t \rightarrow \infty} x(t)=0$, for $t \geq t_{1}$.

Considering equation (1.1)

$$
x^{\prime}(t)+p(t) f(x(\tau(t)))=0
$$

by (2.5) we get

$$
x^{\prime}(t)+\frac{1}{2 M} p(t) x(\tau(t)) \leq 0
$$

Since $h(t) \geq \tau(t)$ and $x(t)$ is nonincreasing

$$
\begin{equation*}
x^{\prime}(t)+\frac{1}{2 M} p(t) x(h(t)) \leq 0 \tag{2.14}
\end{equation*}
$$

Integrating (2.14) from $h(t)$ to t, and using the fact that the function $x(t)$ is nonincreasing and the function $h(t)$ is nondecreasing

$$
x(t)-x(h(t))+\frac{1}{2 M} \int_{h(t)}^{t} p(s) x(h(s)) d s \leq 0
$$

or

$$
x(t)-x(h(t))+\frac{1}{2 M} x(h(t)) \int_{h(t)}^{t} p(s) d s \leq 0
$$

This implies

$$
x(t)-x(h(t))+\left[1-\frac{1}{2 M} \int_{h(t)}^{t} p(s) d s\right] \leq 0
$$

and hence

$$
\int_{h(t)}^{t} p(s) d s<2 M
$$

for sufficiently t. Therefore,

$$
\limsup _{t \rightarrow \infty} \int_{h(t)}^{t} p(s) d s \leq 2 M
$$

This is a contradiction to (2.13). The proof is completed.
Now, assume that f is nondecreasing function then we have the following result.
Theorem 2.3. Assume that (1.2), (1.3), (2.2) and (2.4) hold. If $\tau(t)$ is non-monotone, f is nondecreasing function and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>M \tag{2.15}
\end{equation*}
$$

where $h(t)$ is defined by (2.1), then all solutions of Eq.(1.1) oscillate.

Proof. Assume, for the sake of contradiction, that there exist a nonoscillatory solution $x(t)$ of (1.1). In view of (2.4), we know from Theorem 2.1 that $\lim _{t \rightarrow \infty} x(t)=0$, for $t \geq t_{1}$.

Considering equation (1.1)

$$
x^{\prime}(t)+p(t) f(x(\tau(t)))=0
$$

Since $\tau(t) \leq h(t), x(t)$ is nonincreasing and f is nondecreasing we have

$$
\begin{equation*}
x^{\prime}(t)+p(t) f(x(h(t))) \leq 0 \tag{2.16}
\end{equation*}
$$

Integrating (2.16) from $h(t)$ to t and using the fact that $x(t)$ is nonincreasing and $f, h(t)$ are nondecreasing

$$
x(t)-x(h(t))+\int_{h(t)}^{t} p(s) f(x(h(s))) d s \leq 0
$$

or

$$
x(t)-x(h(t))+f(x(h(t))) \int_{h(t)}^{t} p(s) d s \leq 0
$$

and so

$$
x(t)-x(h(t))\left[1-\frac{f(x(h(t)))}{x(h(t))} \int_{h(t)}^{t} p(s) d s\right] \leq 0
$$

Therefore

$$
\begin{aligned}
1 & >\frac{f(x(h(t)))}{x(h(t))} \int_{h(t)}^{t} p(s) d s \\
& \geq \frac{1}{M} \limsup _{t \rightarrow \infty} \int_{h(t)}^{t} p(s) d s
\end{aligned}
$$

That is a contradiction. The proof is completed.
We remark that if $\tau(t)$ is nondecreasing, then we have $\tau(t)=h(t)$ for all t, and the condition (2.13) and (2.15), respectively, reduce to

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>2 M \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s>M \tag{2.17}
\end{equation*}
$$

Now, we have the following example.
Example 2.1. Consider the nonlinear delay differential equation

$$
\begin{equation*}
x^{\prime}(t)+\frac{1}{e} x(\tau(t)) \ln (10+|x(\tau(t))|)=0, \quad t>0 \tag{2.18}
\end{equation*}
$$

where

$$
\tau(t)=\left\{\begin{array}{ll}
t-1, & \text { if } t \in[3 k, 3 k+1] \\
-3 t+12 k+3, & \text { if } t \in[3 k+1,3 k+2] \\
5 t-12 k-13, & \text { if } t \in[3 k+2,3 k+3]
\end{array}, \quad k \in \mathbb{N}_{0}\right.
$$

By (2.1), we see that

$$
h(t):=\sup _{s \leq t} \tau(s)=\left\{\begin{array}{ll}
t-1, & \text { if } t \in[3 k, 3 k+1] \\
3 k, & \text { if } t \in[3 k+1,3 k+2.6] \\
5 t-12 k-13, & \text { if } t \in[3 k+2.6,3 k+3]
\end{array}, \quad k \in \mathbb{N}_{0}\right.
$$

If we put $p(t)=\frac{1}{e}$ and $f(x)=x \ln (10+|x|)$. Then, we have

$$
M=\limsup _{x \rightarrow 0} \frac{x}{f(x)}=\limsup _{x \rightarrow 0} \frac{x}{x \ln (10+|x|)}=\frac{1}{\ln 10}
$$

and

$$
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) d s=\frac{1}{e}>\frac{M}{e}=\frac{1}{e \ln 10}
$$

that is, all conditions of Theorem 2.1 are satisfied and therefore all solutions of (2.18) oscillate.

References

[1] O. Arino, I. Győri and A. Jawhari, Oscillation criteria in delay equations, J. Differential Equations 53 (1984), 115-123.
[2] L. Berezansky and E. Braverman, On some constants for oscillation and stability of delay equations, Proc. Amer. Math. Soc. 139 (11) (2011), 4017-4026.
[3] E. Braverman, B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011) 3880-3887.
[4] George E. Chatzarakis and Özkan Öcalan, Oscillations of differential equations with non-monotone retarded arguments, LMS J. Comput. Math., 19 (1) (2016) 98-104.
[5] A. Elbert and I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ of Ioannina T. R. No 172 (1990), Recent trends in differential equations, 163-178, World Sci. Ser. Appl. Anal., 1, World Sci. Publishing Co. (1992).
[6] A. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510.
[7] L. H. Erbe, Qingkai Kong and B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[8] L. H. Erbe and B. G. Zhang, Oscillation of first order linear differential equations with deviating arguments, Differential Integral Equations, 1 (1988), 305-314.
[9] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl.,136 (1984), 95-117.
[10] K.Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992.
[11] M. K. Grammatikopoulos, R. G. Koplatadze and I. P. Stavroulakis, On the oscillation of solutions of first order differential equations with retarded arguments, Georgian Math. J., 10 (2003), 63-76.
[12] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
[13] B. R. Hunt and J. A. Yorke, When all solutions of $x^{\prime}=\sum q_{i}(t) x\left(t-T_{i}(t)\right)$ oscillate, J. Differential Equations 53 (1984), 139-145.
[14] R. G. Koplatadze and T. A. Chanturija, Oscillating and monotone solutions of first-order differential equations with deviating arguments, (Russian), Differentsial'nye Uravneniya, 8 (1982), 1463-1465.
[15] G. Ladas, Sharp conditions for oscillations caused by delay, Applicable Anal., 9 (1979), 93-98.
[16] G. Ladas, V. Laskhmikantham and J.S. Papadakis, Oscillations of higher-order retarded differential equations generated by retarded arguments, Delay and Functional Differential Equations and Their Applications, Academic Press, New York, 1972, 219-231.
[17] G.S. Ladde, V. Lakshmikantham, B.G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987.
[18] A. D. Myshkis, Linear homogeneous differential equations of first order with deviating arguments, Uspekhi Mat. Nauk, 5 (1950), 160-162 (Russian).
[19] X.H. Tang, Oscillation of first order delay differential equations with distributed delay, J. Math. Anal. Appl. 289 (2004), 367-378.
${ }^{1}$ Akdeniz University, Faculty of Science, Department of Mathematics, 07058, Antalya, Turkey
${ }^{2}$ Dumlupinar University, Faculty of Science and Arts, Department of Mathematics, 43000, Kütahya, Turkey
${ }^{3}$ Afyon Kocatepe University, Faculty of Science and Arts, Department of Mathematics, Ans Campus, 03200, Afyon, Turkey
*CORRESPONDING AUTHOR: ozkanocalan@akdeniz.edu.tr

[^0]: Received $12^{\text {th }}$ April, 2017; accepted $5^{\text {th }}$ June, 2017; published $3^{\text {rd }}$ July, 2017.
 2010 Mathematics Subject Classification. 34K11, 34K06.
 Key words and phrases. delay differential equation; non-monotone argument; oscillatory solutions; nonoscillatory solutions.

