INEQUALITIES FOR THE MODIFIED k-BESSEL FUNCTION

SAIFUL RAHMAN MONDAL ${ }^{1}$ AND KOTTAKKARAN SOOPPY NISAR ${ }^{2, *}$

Abstract. The article considers the generalized k-Bessel functions and represents it as Wright functions. Then we study the monotonicity properties of the ratio of two different orders k - Bessel functions, and the ratio of the k-Bessel and the k-Bessel functions. The log-convexity with respect to the order of the k-Bessel also given. An investigation regarding the monotonicity of the ratio of the k-Bessel and k-confluent hypergeometric functions are discussed.

1. Introduction

One of the generalization of the classical gamma function Γ studied in [4] is defined by the limit formula

$$
\begin{equation*}
\Gamma_{k}(x):=\lim _{n \rightarrow \infty} \frac{n!k^{n}\left(n^{k}\right)^{\frac{x}{k}-1}}{(x)_{n, k}}, \quad k>0 \tag{1.1}
\end{equation*}
$$

where $(x)_{n, k}:=x(x+k)(x+2 k) \ldots(x+(n-1) k)$ is called k-Pochhammer symbol. The above k-gamma function also have an integral representation as

$$
\begin{equation*}
\Gamma_{k}(x)=\int_{0}^{\infty} t^{x-1} e^{-\frac{t^{k}}{k}} d t, \quad \Re(x)>0 \tag{1.2}
\end{equation*}
$$

Properties of the k-gamma functions have been studies by many researchers [6, 8-11]. Following properties are required in sequel:
(i) $\Gamma_{k}(x+k)=x \Gamma_{k}(x)$
(ii) $\Gamma_{k}(x)=k^{\frac{x}{k}-1} \Gamma\left(\frac{x}{k}\right)$
(iii) $\Gamma_{k}(k)=1$
(iv) $\Gamma_{k}(x+n k)=\Gamma_{k}(x)(x)_{n, k}$

Motivated with the above generalization of the k-gamma functions, Romero et. al. [1] introduced the k-Bessel function of the first kind defined by the series

$$
\begin{equation*}
J_{k, \nu}^{\gamma, \lambda}(x):=\sum_{n=0}^{\infty} \frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+v+1)} \frac{(-1)^{n}(x / 2)^{n}}{(n!)^{2}} \tag{1.3}
\end{equation*}
$$

where $k \in \mathbb{R}^{+} ; \alpha, \lambda, \gamma, v \in C ; \Re(\lambda)>0$ and $\Re(v)>0$. They also established two recurrence relations for $J_{k, \nu}^{\gamma, \lambda}$.

In this article, we are considering the following function:

$$
\begin{equation*}
I_{k, \nu}^{\gamma, \lambda}(x):=\sum_{n=0}^{\infty} \frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+v+1)} \frac{(x / 2)^{n}}{(n!)^{2}} \tag{1.4}
\end{equation*}
$$

Since

$$
\lim _{k, \lambda, \gamma \rightarrow 1} I_{k, \nu}^{\gamma, \lambda}(x)=\sum_{n=0}^{\infty} \frac{1}{\Gamma(n+v+1)} \frac{(x / 2)^{n}}{n!}=\left(\frac{2}{x}\right)^{\frac{\nu}{2}} I_{\nu}(\sqrt{2 x})
$$

Received $18^{\text {th }}$ March, 2017; accepted $25^{\text {th }}$ May, 2017; published $3^{\text {rd }}$ July, 2017.
2010 Mathematics Subject Classification. 33C10, 26D07.
Key words and phrases. generalized k-Bessel functions; monotonicity; log-convexity; Turán type inequality.
the classical modified Bessel functions of first kind. In this sense, we can call $I_{k, \nu}^{\gamma, \lambda}$ as the modified k-Bessel functions of first kind. In fact, we can express both $J_{k, \nu}^{\gamma, \lambda}$ and $I_{k, \nu}^{\gamma, \lambda}$ together in

$$
\begin{equation*}
\mathrm{W}_{k, \nu, c}^{\gamma, \lambda}(x):=\sum_{n=0}^{\infty} \frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+\nu+1)} \frac{(-c)^{n}(x / 2)^{n}}{(n!)^{2}}, \quad c \in \mathbb{R} . \tag{1.5}
\end{equation*}
$$

We can termed $\mathrm{W}_{k, \nu}^{\gamma, \lambda}$ as the generalized k-Bessel function.
First we study the representation formulas for $W_{k, \nu}^{\gamma, \lambda}$ in term of the classical Wright functions. Then we will study about the monotonicity and log-convexity properties of $I_{k, \nu}^{\gamma, \lambda}$.

2. Representation formula for the generalized k-Bessel function

The generalized hypergeometric function ${ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; c_{1}, \ldots, c_{q} ; x\right)$, is given by the power series

$$
\begin{equation*}
{ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; c_{1}, \ldots, c_{q} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(c_{1}\right)_{k} \cdots\left(c_{q}\right)_{k}(1)_{k}} z^{k}, \quad|z|<1 \tag{2.1}
\end{equation*}
$$

where the c_{i} can not be zero or a negative integer. Here p or q or both are allowed to be zero. The series (2.1) is absolutely convergent for all finite z if $p \leq q$ and for $|z|<1$ if $p=q+1$. When $p>q+1$, then the series diverge for $z \neq 0$ and the series does not terminate.

The generalized Wright hypergeometric function ${ }_{p} \psi_{q}(z)$ is given by the series

$$
{ }_{p} \psi_{q}(z)={ }_{p} \psi_{q}\left[\left.\begin{array}{c}
\left(a_{i}, \alpha_{i}\right)_{1, p} \tag{2.2}\\
\left(b_{j}, \beta_{j}\right)_{1, q}
\end{array} \right\rvert\, z\right]=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i}+\alpha_{i} k\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j}+\beta_{j} k\right)} \frac{z^{k}}{k!},
$$

where $a_{i}, b_{j} \in \mathbb{C}$, and real $\alpha_{i}, \beta_{j} \in \mathbb{R}(i=1,2, \ldots, p ; j=1,2, \ldots, q)$. The asymptotic behavior of this function for large values of argument of $z \in \mathbb{C}$ were studied in $[13,14]$ and under the condition

$$
\begin{equation*}
\sum_{j=1}^{q} \beta_{j}-\sum_{i=1}^{p} \alpha_{i}>-1 \tag{2.3}
\end{equation*}
$$

in literature $[18,19]$. The more properties of the Wright function are investigated in $[14-16]$.
Now we will give the representation of the generalized k-Bessel functions in terms of the Wright and generalized hypergeometric functions.

Proposition 2.1. Let, $k \in \mathbb{R}$ and $\lambda, \gamma, \nu \in \mathbb{C}$ such that $\Re(\lambda)>0, \Re(\nu)>0$. Then

$$
\mathrm{W}_{k, \nu, c}^{\gamma, \lambda}(x)=\frac{1}{k^{\frac{\nu+k+1}{k}} \Gamma\left(\frac{\gamma}{k}\right)} 1 \psi_{2}\left[\begin{array}{c|c}
\left(\frac{\gamma}{k}, 1\right) & \\
\left(\frac{\nu+1}{k}, \frac{\gamma}{k}\right) & (1,1)
\end{array}-\frac{c x}{2 k^{\frac{\lambda}{k}-1}}\right]
$$

Proof. Using the relations $\Gamma_{k}(x)=k^{\frac{x}{k}-1} \Gamma\left(\frac{x}{k}\right)$ and $\Gamma_{k}(x+n k)=\Gamma_{k}(x)(x)_{n, k}$, the generalized k-Bessel functions defined in (1.5) can be rewrite as

$$
\begin{align*}
\mathrm{W}_{k, \nu, c}^{\gamma, \lambda}(x) & =\sum_{n=0}^{\infty} \frac{\Gamma_{k}(\gamma+n k)}{\Gamma_{k}(\lambda n+\nu+1) \Gamma_{k}(\gamma)} \frac{(-c)^{n}}{(n!)^{2}}\left(\frac{x}{2}\right)^{n} \tag{2.4}\\
& =\frac{1}{k^{\frac{\nu+k+1}{k}} \Gamma\left(\frac{\gamma}{k}\right)} \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{\gamma}{k}+n\right)}{\Gamma\left(\frac{\lambda}{k} n+\frac{\nu+1}{k}\right) \Gamma\left(\frac{\gamma}{k}\right)} \frac{(-c)^{n}}{\Gamma(n+1) \Gamma(n+1)}\left(\frac{x}{2 k^{\frac{\lambda}{k}-1}}\right)^{n} \tag{2.5}\\
& =\frac{1}{k^{\frac{\nu+k+1}{k}} \Gamma\left(\frac{\gamma}{k}\right)} 1 \psi_{2}\left[\begin{array}{c|c}
\left(\frac{\gamma}{k}, 1\right) \\
\left(\frac{\nu+1}{k}, \frac{\gamma}{k}\right) \quad(1,1) & \left.-\frac{c x}{2 k^{\frac{\lambda}{k}-1}}\right]
\end{array}, l\right) \tag{2.6}
\end{align*}
$$

Hence the result follows.

3. Monotonicity and LOG-CONVEXity properties

This section discuss the monotonicity and log-convexity properties for the modified k-Bessel functions $\mathrm{W}_{k, \nu,-1}^{\gamma, \lambda}(x)=\mathrm{I}_{k, \nu}^{\gamma, \lambda}(x)$.

Following lemma due to Biernacki and Krzyż [7] will be required.

Lemma 3.1. [7] Consider the power series $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$, where $a_{k} \in \mathbb{R}$ and $b_{k}>0$ for all k. Further suppose that both series converge on $|x|<r$. If the sequence $\left\{a_{k} / b_{k}\right\}_{k \geq 0}$ is increasing (or decreasing), then the function $x \mapsto f(x) / g(x)$ is also increasing (or decreasing) on (0, r).

The above lemma still holds when both f and g are even, or both are odd functions.
Theorem 3.1. The following results holds true for the modified k-Bessel functions.
(1) For $\mu \geq \nu>-1$, the function $x \mapsto \mathrm{I}_{k, \mu}^{\gamma, \lambda}(x) / \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x)$ is increasing on $(0, \infty)$ for some fixed $k>0$.
(2) If $k \geq \lambda \geq m>0$, the function $x \mapsto \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x) / \mathrm{I}_{m, \nu}^{\gamma, \lambda}(x)$ is increasing on $(0, \infty)$ for some fixed $\nu>-1$ and $\gamma \geq \nu+1$.
(3) The function $\nu \mapsto \mathcal{I}_{k, \nu}^{\gamma, \lambda}(x)$ is log-convex on $(0, \infty)$ for some fixed $k, \gamma>0$ and $x>0$. Here, $\mathcal{I}_{k, \nu}^{\gamma, \lambda}(x):=\Gamma_{k}(\nu+1) \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x)$.
(4) Suppose that $\lambda \geq k>0$ and $\nu>-1$. Then
(a) The function $x \mapsto \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x) / \Phi_{k}(a, c ; x)$ is decreasing on $(0, \infty)$ for $a \geq c>0$ and $0<\gamma \leq$ $\nu+1$. Here, $\Phi_{k}(a ; c ; x)$ is the k-confluent hypergeometric functions.
(b) The function $x \mapsto \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x) / \Phi_{k}(\gamma ; \lambda ; x / 2)$ is decreasing on $(0,1)$ for $\gamma>0$ and $0<k \leq$ $\lambda \leq \nu+1$.
(c) The function $x \mapsto \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x) / \Phi_{k}(\gamma ; \lambda ; x / 2)$ is decreasing on $[1, \infty)$ for $\gamma>0$ and $0<k \leq$ $\min \{\lambda, \nu+1\}$.
Proof. (1) Form (1.4) it follows that

$$
\mathrm{I}_{k, \nu}^{\gamma, \lambda}(x)=\sum_{n=0}^{\infty} a_{n}(\nu) x^{n} \quad \text { and } \quad \mathrm{I}_{k, \nu}^{\gamma, \lambda}(x)=\sum_{n=0}^{\infty} a_{n}(\mu) x^{n}
$$

where

$$
a_{n}(\nu)=\frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+\nu+1)(n!)^{2} 2^{n}} \quad \text { and } \quad a_{n}(\mu)=\frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+\mu+1)(n!)^{2} 2^{n}}
$$

Consider the function

$$
f(t):=\frac{\Gamma_{k}(\lambda t+\mu+1)}{\Gamma_{k}(\lambda t+\nu+1)}
$$

Then the logarithmic differentiation yields

$$
\frac{f^{\prime}(t)}{f(t)}=\lambda\left(\Psi_{k}(\lambda t+\mu+1)-\Psi_{k}(\lambda t+\nu+1)\right)
$$

Here, $\Psi_{k}=\Gamma_{k}^{\prime} / \Gamma_{k}$ is the k-digamma functions studied in [5] and defined by

$$
\begin{equation*}
\Psi_{k}(t)=\frac{\log (k)-\gamma_{1}}{k}-\frac{1}{t}+\sum_{n=1}^{\infty} \frac{t}{n k(n k+t)} \tag{3.1}
\end{equation*}
$$

where γ_{1} is the Euler-Mascheronis constant.
A calculation yields

$$
\begin{equation*}
\Psi_{k}^{\prime}(t)=\sum_{n=0}^{\infty} \frac{1}{(n k+t)^{2}}, \quad k>0 \quad \text { and } \quad t>0 \tag{3.2}
\end{equation*}
$$

Clearly, Ψ_{k} is increasing on $(0, \infty)$ and hence $f^{\prime}(t)>0$ for all $t \geq 0$ if $\mu \geq \nu>-1$. This, in particular, implies that the sequence $\left\{d_{n}\right\}_{n \geq 0}=\left\{a_{n}(\nu) / a_{n}(\mu)\right\}_{n \geq 0}$ is increasing and hence the conclusion follows from Lemma 3.1.
(2). This result also follows from Lemma 3.1 if the sequence $\left\{d_{n}\right\}_{n \geq 0}=\left\{a_{n}^{k}(\nu) / a_{n}^{m}(\mu)\right\}_{n \geq 0}$ is increasing for $k \geq m>0$. Here,

$$
a_{n}^{k}(\nu)=\frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+\nu+1)(n!)^{2}} \quad \text { and } \quad a_{n}^{m}(\nu)=\frac{(\gamma)_{n, m}}{\Gamma_{m}(\lambda n+\nu+1)(n!)^{2}}
$$

which together with the identity $\Gamma_{k}(x+n k)=\Gamma_{k}(x)(x)_{n, k}$ gives

$$
\begin{aligned}
d_{n} & =\frac{(\gamma)_{n, k}}{(\gamma)_{n, m}} \frac{\Gamma_{m}(\lambda n+\nu+1)}{\Gamma_{k}(\lambda n+\nu+1)} \\
& =\frac{\Gamma_{k}(\gamma+n k) \Gamma_{m}(\lambda n+\nu+1)}{\Gamma_{k}(\gamma+n m) \Gamma_{k}(\lambda n+\nu+1)}
\end{aligned}
$$

Now to show that $\left\{d_{n}\right\}$ is increase, consider the function

$$
f(y):=\frac{\Gamma_{k}(\gamma+y k) \Gamma_{m}(\lambda y+\nu+1)}{\Gamma_{k}(\gamma+y m) \Gamma_{k}(\lambda y+\nu+1)}
$$

The logarithmic differentiation of f yields

$$
\begin{equation*}
\frac{f^{\prime}(y)}{f(y)}=k \Psi_{k}(\gamma+y k)+\lambda \Psi_{m}(\lambda y+\nu+1)-m \Psi_{m}(\gamma+y m)-\lambda \Psi_{k}(\lambda y+\nu+1) \tag{3.3}
\end{equation*}
$$

If $\gamma \geq \nu+1$ and $k \geq \lambda \geq m$, then (3.3) can be rewrite as

$$
\begin{equation*}
\frac{f^{\prime}(y)}{f(y)} \geq \lambda\left(\Psi_{k}(\nu+1+y k)-\Psi_{k}(\lambda y+\nu+1)\right)+m\left(\Psi_{m}(\lambda y+\nu+1)-\Psi_{m}(\nu+1+y m)\right) \geq 0 \tag{3.4}
\end{equation*}
$$

This conclude that f, and consequently the sequence $\left\{d_{n}\right\}_{n \geq 0}$, is increasing. Finally the result follows from the Lemma 3.1.
(3). It is known that sum of the log-convex functions is log-convex. Thus, to prove the result it is enough to show that

$$
\nu \mapsto a_{n}^{k}(\nu):=\frac{(\gamma)_{n, k} \Gamma_{k}(\nu+1)}{\Gamma_{k}(\lambda n+\nu+1)(n!)^{2}}
$$

is log-convex.
A logarithmic differentiation of $a_{n}(\nu)$ with respect to ν yields

$$
\frac{\partial}{\partial \nu} \log \left(a_{n}^{k}(\nu)\right)=\Psi_{k}(\nu+1)-\Psi_{k}(\lambda n+\nu+1)
$$

This along with (3.2) gives

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \nu^{2}} \log \left(a_{n}^{k}(\nu)\right) & =\Psi_{k}^{\prime}(\nu+1)-\Psi_{k}^{\prime}(\lambda n+\nu+1) \\
& =\sum_{r=0}^{\infty} \frac{1}{(r k+\nu+1)^{2}}-\sum_{r=0}^{\infty} \frac{1}{(r k+\lambda n+\nu+1)^{2}} \\
& =\sum_{r=0}^{\infty} \frac{\lambda n(2 r k+\lambda n+2 \nu+2)}{(r k+\nu+1)^{2}(r k+\lambda n+\nu+1)^{2}}>0
\end{aligned}
$$

for all $n \geq 0, k>0$ and $\nu>-1$. Thus, $\nu \mapsto a_{n}^{k}(\nu)$ is log-convex and hence the conclusion.
(4). Denote $\Phi_{k}(a, c ; x)=\sum_{n=0}^{\infty} c_{n, k}(a, c) x^{n}$ and $I_{k, \nu}^{\gamma, \lambda}(x)=\sum_{n=0}^{\infty} a_{n}(\nu) x^{n}$, where

$$
a_{n}(\nu)=\frac{(\gamma)_{n, k}}{\Gamma_{k}(\lambda n+\nu+1)(n!)^{2} 2^{n}} \quad \text { and } \quad d_{n, k}(a, c)=\frac{(a)_{n, k}}{(c)_{n, k} n!}
$$

with $v>-1$ and $a, c, \lambda, \gamma, k>0$. To apply Lemma 3.1 , consider the sequence $\left\{w_{n}\right\}_{n \geq 0}$ defined by

$$
\begin{aligned}
w_{n}=\frac{a_{n}(\nu)}{d_{n, k}(a, c)} & =\frac{\Gamma_{k}(\gamma+n k)}{2^{n} \Gamma_{k}(\gamma) \Gamma_{k}(\lambda n+\alpha+1)(n!)^{2}} \cdot \frac{\Gamma_{k}(a) \Gamma_{k}(c+n k) n!}{\Gamma_{k}(a+n k) \Gamma_{k}(c)} \\
& =\frac{\Gamma_{k}(a)}{\Gamma_{k}(\gamma) \Gamma_{k}(c)} \rho_{k}(n)
\end{aligned}
$$

where

$$
\rho_{k}(x)=\frac{\Gamma_{k}(\gamma+x k) \Gamma_{k}(c+x k)}{\Gamma_{k}(\lambda x+\nu+1) \Gamma_{k}(a+x k) 2^{x} \Gamma(x+1)}
$$

In view of the increasing properties of Ψ_{k} on $(0, \infty)$, and

$$
\frac{\rho^{\prime}(x)}{\rho(x)}=k \psi_{k}(\gamma+x k)+k \psi_{k}(c+x k)-\lambda \psi_{k}(\lambda x+\alpha+1)-k \psi_{k}(a+x k)
$$

it follows that for $a \geq c>0, \lambda \geq k$ and $\nu+1 \geq \gamma$, the function ρ is decreasing on $(0, \infty)$ and thus the sequence $\left\{w_{n}\right\}_{n \geq 0}$ also decreasing. Finally the conclusion for (a) follows from the Lemma 3.1.

In the case (b) and (c), the sequence $\left\{w_{n}\right\}$ reduces to

$$
w_{n}=\frac{a_{n}(\nu)}{d_{n, k}(\gamma, \lambda)}=\frac{\rho_{k}(n)}{\Gamma_{k}(\lambda)}
$$

where

$$
\rho_{k}(x)=\frac{\Gamma_{k}(\lambda+x k)}{\Gamma_{k}(\nu+1+\lambda x) \Gamma(x+1)} .
$$

Now as in the proof of part (a)

$$
\frac{\rho_{k}^{\prime}(x)}{\rho_{k}(x)}=k \Psi_{k}(\lambda+x k)-\lambda \Psi_{k}(\nu+1+x k)-\Psi(x+1)>0
$$

if $\nu+1+\lambda x \geq \lambda+x k$. Now for $x \in(0,1)$, this inequality holds if $0<k \leq \lambda \leq \nu+1$, while for $x \geq 1$, it is required that $k \leq \min \{\lambda, \nu+1\}$.

References

[1] L.G. Romero, G.A.Dorrego and R.A. Cerutti, The k-Bessel function of first kind, Int. Math. Forum, 38(7)(2012), 1859-1854.
[2] GN. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library Edition, Cambridge University Press, Cambridge (1995). Reprinted (1996)
[3] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher transcendental functions, I, II, McGraw-Hill Book Company, Inc., New York, 1953. New York, Toronto, London, 1953.
[4] R. Diaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat. 15(2) (2007), 179-192.
[5] K. Nantomah, E. Prempeh, Some Inequalities for the k-Digamma Function, Math. Aeterna, 4(5) (2014), 521-525.
[6] S. Mubeen, M. Naz and G. Rahman, A note on k-hypergemetric differential equations, J. Inequal. Spec. Funct. 4(3) (2013), 8-43.
[7] M. Biernacki and J. Krzyż, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sk lodowska. Sect. A. 9 (1957), 135-147.
[8] C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci. 5(13-16) (2010), 653-660.
[9] C. G. Kokologiannaki and V. Krasniqi, Some properties of the k-gamma function, Matematiche (Catania), 68(1) (2013), 13-22.
[10] V. Krasniqi, A limit for the k-gamma and k-beta function, Int. Math. Forum, 5(33-36) (2010), 1613-1617.
[11] M. Mansour, Determining the k-generalized gamma function $\Gamma_{k}(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4(21-24) (2009), 1037-1042.
[12] G. E. Andrews, R. Askey and R. Roy, Special functions, Cambridge Univ. Press, Cambridge, 1999.
[13] C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc., 27(4) (1928), 389-400.
[14] A. A. Kilbas, M. Saigo and J. J. Trujillo, On the generalized Wright function, Fract. Calc. Appl. Anal. 5(4) (2002), 437-460.
[15] A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integral Transforms Spec. Funct. 19 (11-12) (2008), 869-883.
[16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.
[17] E. D. Rainville, Special functions, Macmillan, New York, 1960.
[18] E. M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London, Ser. A. 238 (1940), 423-451.
[19] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. (2) 46(1940), 389-408.
${ }^{1}$ Department of Mathematics and Statistics, College of Science, King Faisal University, Hofuf, Kingdom of Saudi Arabia

2 Department of Mathematics, College of Arts \& Science-Wadi Al-dawaser, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
*Corresponding author: n.sooppy@psau.edu.sa, ksnisar1@gmail.com

