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INEQUALITIES FOR THE MODIFIED k-BESSEL FUNCTION

SAIFUL RAHMAN MONDAL1 AND KOTTAKKARAN SOOPPY NISAR2,∗

Abstract. The article considers the generalized k-Bessel functions and represents it as Wright func-
tions. Then we study the monotonicity properties of the ratio of two different orders k- Bessel

functions, and the ratio of the k-Bessel and the k-Bessel functions. The log-convexity with respect

to the order of the k-Bessel also given. An investigation regarding the monotonicity of the ratio of
the k-Bessel and k-confluent hypergeometric functions are discussed.

1. Introduction

One of the generalization of the classical gamma function Γ studied in [4] is defined by the limit
formula

Γk(x) := lim
n→∞

n! kn(nk)
x
k−1

(x)n,k
, k > 0, (1.1)

where (x)n,k := x(x+k)(x+2k) . . . (x+(n−1)k) is called k-Pochhammer symbol. The above k−gamma
function also have an integral representation as

Γk(x) =

∫ ∞
0

tx−1e−
tk

k dt, <(x) > 0. (1.2)

Properties of the k-gamma functions have been studies by many researchers [6, 8–11]. Following
properties are required in sequel:

(i) Γk (x+ k) = xΓk (x)
(ii) Γk (x) = k

x
k−1Γ

(
x
k

)
(iii) Γk (k) = 1
(iv) Γk (x+ nk) = Γk(x)(x)n,k

Motivated with the above generalization of the k-gamma functions, Romero et. al. [1] introduced
the k−Bessel function of the first kind defined by the series

Jγ,λk,ν (x) :=

∞∑
n=0

(γ)n, k
Γk (λn+ υ + 1)

(−1)
n

(x/2)
n

(n!)
2 , (1.3)

where k ∈ R+; α, λ, γ, υ ∈ C; <(λ) > 0 and <(υ) > 0. They also established two recurrence relations

for Jγ,λk,ν .
In this article, we are considering the following function:

Iγ,λk,ν (x) :=

∞∑
n=0

(γ)n, k
Γk (λn+ υ + 1)

(x/2)
n

(n!)
2 , (1.4)

Since

lim
k,λ,γ→1

Iγ,λk,ν (x) =

∞∑
n=0

1

Γ (n+ υ + 1)

(x/2)
n

n!
=

(
2

x

) ν
2

Iν(
√

2x),
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the classical modified Bessel functions of first kind. In this sense, we can call Iγ,λk,ν as the modified

k-Bessel functions of first kind. In fact, we can express both Jγ,λk,ν and Iγ,λk,ν together in

W
γ,λ
k,ν,c(x) :=

∞∑
n=0

(γ)n, k
Γk(λn+ ν + 1)

(−c)n(x/2)n

(n!)
2 , c ∈ R. (1.5)

We can termed W
γ,λ
k,ν as the generalized k-Bessel function.

First we study the representation formulas for Wγ,λk,ν in term of the classical Wright functions. Then

we will study about the monotonicity and log-convexity properties of Iγ,λk,ν .

2. Representation formula for the generalized k-Bessel function

The generalized hypergeometric function pFq(a1, . . . , ap; c1, . . . , cq;x), is given by the power series

pFq(a1, . . . , ap; c1, . . . , cq; z) =

∞∑
k=0

(a1)k · · · (ap)k
(c1)k · · · (cq)k(1)k

zk, |z| < 1, (2.1)

where the ci can not be zero or a negative integer. Here p or q or both are allowed to be zero. The
series (2.1) is absolutely convergent for all finite z if p ≤ q and for |z| < 1 if p = q+ 1. When p > q+ 1,
then the series diverge for z 6= 0 and the series does not terminate.

The generalized Wright hypergeometric function pψq(z) is given by the series

pψq(z) = pψq

[
(ai, αi)1,p
(bj , βj)1,q

∣∣∣∣z] =

∞∑
k=0

∏p
i=1 Γ(ai + αik)∏q
j=1 Γ(bj + βjk)

zk

k!
, (2.2)

where ai, bj ∈ C, and real αi, βj ∈ R (i = 1, 2, . . . , p; j = 1, 2, . . . , q). The asymptotic behavior of this
function for large values of argument of z ∈ C were studied in [13,14] and under the condition

q∑
j=1

βj −
p∑
i=1

αi > −1 (2.3)

in literature [18,19]. The more properties of the Wright function are investigated in [14–16].
Now we will give the representation of the generalized k-Bessel functions in terms of the Wright and

generalized hypergeometric functions.

Proposition 2.1. Let, k ∈ R and λ, γ, ν ∈ C such that <(λ) > 0,<(ν) > 0. Then

W
γ,λ
k,ν,c(x) =

1

k
ν+k+1
k Γ

(
γ
k

) 1ψ2

[ (
γ
k , 1
)(

ν+1
k , γk

)
(1, 1)

∣∣∣∣− cx

2k
λ
k−1

]
Proof. Using the relations Γk (x) = k

x
k−1Γ

(
x
k

)
and Γk (x+ nk) = Γk(x)(x)n,k, the generalized k-Bessel

functions defined in (1.5) can be rewrite as

W
γ,λ
k,ν,c(x) =

∞∑
n=0

Γk(γ + nk)

Γk(λn+ ν + 1)Γk(γ)

(−c)n

(n!)2

(x
2

)n
(2.4)

=
1

k
ν+k+1
k Γ

(
γ
k

) ∞∑
n=0

Γ
(
γ
k + n

)
Γ
(
λ
kn+ ν+1

k

)
Γ
(
γ
k

) (−c)n

Γ(n+ 1)Γ(n+ 1)

(
x

2k
λ
k−1

)n
(2.5)

=
1

k
ν+k+1
k Γ

(
γ
k

) 1ψ2

[ (
γ
k , 1
)(

ν+1
k , γk

)
(1, 1)

∣∣∣∣− cx

2k
λ
k−1

]
(2.6)

Hence the result follows. �

3. Monotonicity and log-convexity properties

This section discuss the monotonicity and log-convexity properties for the modified k-Bessel func-

tions W
γ,λ
k,ν,−1(x) = I

γ,λ
k,ν (x).

Following lemma due to Biernacki and Krzyż [7] will be required.
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Lemma 3.1. [7] Consider the power series f(x) =
∑∞
k=0 akx

k and g(x) =
∑∞
k=0 bkx

k, where ak ∈ R
and bk > 0 for all k. Further suppose that both series converge on |x| < r. If the sequence {ak/bk}k≥0
is increasing (or decreasing), then the function x 7→ f(x)/g(x) is also increasing (or decreasing) on
(0, r).

The above lemma still holds when both f and g are even, or both are odd functions.

Theorem 3.1. The following results holds true for the modified k-Bessel functions.

(1) For µ ≥ ν > −1, the function x 7→ I
γ,λ
k,µ(x)/Iγ,λk,ν (x) is increasing on (0,∞) for some fixed

k > 0.
(2) If k ≥ λ ≥ m > 0, the function x 7→ I

γ,λ
k,ν (x)/Iγ,λm,ν(x) is increasing on (0,∞) for some fixed

ν > −1 and γ ≥ ν + 1.

(3) The function ν 7→ Iγ,λk,ν (x) is log-convex on (0,∞) for some fixed k, γ > 0 and x > 0. Here,

Iγ,λk,ν (x) := Γk(ν + 1)Iγ,λk,ν (x).

(4) Suppose that λ ≥ k > 0 and ν > −1. Then

(a) The function x 7→ I
γ,λ
k,ν (x)/Φk (a, c;x) is decreasing on (0,∞) for a ≥ c > 0 and 0 < γ ≤

ν + 1. Here, Φk (a; c;x) is the k-confluent hypergeometric functions.

(b) The function x 7→ I
γ,λ
k,ν (x)/Φk (γ;λ;x/2) is decreasing on (0, 1) for γ > 0 and 0 < k ≤

λ ≤ ν + 1.
(c) The function x 7→ I

γ,λ
k,ν (x)/Φk (γ;λ;x/2) is decreasing on [1,∞) for γ > 0 and 0 < k ≤

min{λ, ν + 1}.

Proof. (1) Form (1.4) it follows that

I
γ,λ
k,ν (x) =

∞∑
n=0

an(ν)xn and I
γ,λ
k,ν (x) =

∞∑
n=0

an(µ)xn,

where

an(ν) =
(γ)n,k

Γk(λn+ ν + 1)(n!)22n
and an(µ) =

(γ)n,k
Γk(λn+ µ+ 1)(n!)22n

Consider the function

f(t) :=
Γk(λt+ µ+ 1)

Γk(λt+ ν + 1)
.

Then the logarithmic differentiation yields

f ′(t)

f(t)
= λ(Ψk(λt+ µ+ 1)−Ψk(λt+ ν + 1)).

Here, Ψk = Γ′k/Γk is the k-digamma functions studied in [5] and defined by

Ψk(t) =
log(k)− γ1

k
− 1

t
+

∞∑
n=1

t

nk(nk + t)
(3.1)

where γ1 is the Euler-Mascheronis constant.
A calculation yields

Ψ′k(t) =

∞∑
n=0

1

(nk + t)2
, k > 0 and t > 0. (3.2)

Clearly, Ψk is increasing on (0,∞) and hence f ′(t) > 0 for all t ≥ 0 if µ ≥ ν > −1. This, in particular,
implies that the sequence {dn}n≥0 = {an(ν)/an(µ)}n≥0 is increasing and hence the conclusion follows
from Lemma 3.1.

(2). This result also follows from Lemma 3.1 if the sequence {dn}n≥0 = {akn(ν)/amn (µ)}n≥0 is
increasing for k ≥ m > 0. Here,

akn (ν) =
(γ)n,k

Γk (λn+ ν + 1) (n!)
2 and amn (ν) =

(γ)n,m

Γm (λn+ ν + 1) (n!)
2 ,
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which together with the identity Γk (x+ nk) = Γk(x)(x)n,k gives

dn =
(γ)n,k
(γ)n,m

Γm (λn+ ν + 1)

Γk (λn+ ν + 1)

=
Γk (γ + nk) Γm (λn+ ν + 1)

Γk (γ + nm) Γk (λn+ ν + 1)
.

Now to show that {dn} is increase, consider the function

f(y) :=
Γk (γ + yk) Γm (λy + ν + 1)

Γk (γ + ym) Γk (λy + ν + 1)

The logarithmic differentiation of f yields

f ′(y)

f(y)
= kΨk(γ + yk) + λΨm (λy + ν + 1)−mΨm(γ + ym)− λΨk (λy + ν + 1) (3.3)

If γ ≥ ν + 1 and k ≥ λ ≥ m, then (3.3) can be rewrite as

f ′(y)

f(y)
≥ λ

(
Ψk(ν + 1 + yk)−Ψk (λy + ν + 1)

)
+m

(
Ψm (λy + ν + 1)−Ψm(ν + 1 + ym)

)
≥ 0. (3.4)

This conclude that f , and consequently the sequence {dn}n≥0, is increasing. Finally the result follows
from the Lemma 3.1.

(3). It is known that sum of the log-convex functions is log-convex. Thus, to prove the result it is
enough to show that

ν 7→ akn (ν) :=
(γ)n,k Γk (ν + 1)

Γk (λn+ ν + 1) (n!)
2

is log-convex.
A logarithmic differentiation of an(ν) with respect to ν yields

∂

∂ν
log
(
akn (ν)

)
= Ψk (ν + 1)−Ψk (λn+ ν + 1) .

This along with (3.2) gives

∂2

∂ν2
log
(
akn (ν)

)
= Ψ′k (ν + 1)−Ψ′k (λn+ ν + 1)

=

∞∑
r=0

1

(rk + ν + 1)2
−
∞∑
r=0

1

(rk + λn+ ν + 1)2

=
∞∑
r=0

λn(2rk + λn+ 2ν + 2)

(rk + ν + 1)2(rk + λn+ ν + 1)2
> 0,

for all n ≥ 0, k > 0 and ν > −1. Thus, ν 7→ akn (ν) is log-convex and hence the conclusion.

(4). Denote Φk (a, c;x) =
∑∞
n=0 cn,k(a, c)xn and I

γ,λ
k,ν (x) =

∑∞
n=0 an(ν)xn, where

an(ν) =
(γ)n,k

Γk(λn+ ν + 1)(n!)22n
and dn,k (a, c) =

(a)n,k
(c)n,k n!

with v > −1 and a, c, λ, γ, k > 0. To apply Lemma 3.1, consider the sequence {wn}n≥0 defined by

wn =
an (ν)

dn,k (a, c)
=

Γk (γ + nk)

2nΓk (γ) Γk (λn+ α+ 1) (n!)
2 .

Γk (a) Γk (c+ nk)n!

Γk (a+ nk) Γk (c)

=
Γk (a)

Γk (γ) Γk (c)
ρk (n)

where

ρk (x) =
Γk (γ + xk) Γk (c+ xk)

Γk (λx+ ν + 1) Γk (a+ xk) 2xΓ(x+ 1)
.
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In view of the increasing properties of Ψk on (0,∞), and

ρ′ (x)

ρ (x)
= kψk (γ + xk) + kψk (c+ xk)− λψk (λx+ α+ 1)− kψk (a+ xk) ,

it follows that for a ≥ c > 0, λ ≥ k and ν + 1 ≥ γ, the function ρ is decreasing on (0,∞) and thus the
sequence {wn}n≥0 also decreasing. Finally the conclusion for (a) follows from the Lemma 3.1.

In the case (b) and (c), the sequence {wn} reduces to

wn =
an (ν)

dn,k (γ, λ)
=

ρk (n)

Γk (λ)

where

ρk (x) =
Γk (λ+ xk)

Γk(ν + 1 + λx)Γ(x+ 1)
.

Now as in the proof of part (a)

ρ′k (x)

ρk (x)
= kΨk(λ+ xk)− λΨk(ν + 1 + xk)−Ψ(x+ 1) > 0,

if ν + 1 + λx ≥ λ+ xk. Now for x ∈ (0, 1), this inequality holds if 0 < k ≤ λ ≤ ν + 1, while for x ≥ 1,
it is required that k ≤ min{λ, ν + 1}. �
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