FACTORS FOR ABSOLUTE WEIGHTED ARITHMETIC MEAN SUMMABILITY OF INFINITE SERIES

HÜSEYİN BOR*

Abstract

In this paper, we proved a general theorem dealing with absolute weighted arithmetic mean summability factors of infinite series under weaker conditions. We have also obtained some known results.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence (s_{n}), that is (see [4])

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v}, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots .(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 . \tag{1.2}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

If we take $\alpha=1$, then we obtain $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that $P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad$ as $n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right)$. The sequence-to-sequence transformation

$$
\begin{equation*}
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left(w_{n}\right)$ of the weighted arithmetic mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [6]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty . \tag{1.5}
\end{equation*}
$$

If we take $p_{n}=1$ for all values of n , then we obtain $|C, 1|_{k}$ summability. Also if we take $k=1$, then we obtain $\left|\bar{N}, p_{n}\right|$ summability (see [11]). For any sequence $\left(\lambda_{n}\right)$ we write that $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

2. Known Result

The following theorem is known dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

[^0]Theorem 2.1. [2] Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and suppose that there exists sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{2.1}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{2.2}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{2.3}\\
\quad\left|\lambda_{n}\right| X_{n}=O(1) . \tag{2.4}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{2.6}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) \tag{2.7}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Remark 2.1. It should be noted that, under the conditions on the sequence $\left(\lambda_{n}\right)$ we have that $\left(\lambda_{n}\right)$ is bounded and $\Delta \lambda_{n}=O(1 / n)$ [2].

3. Main Result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now, we shall prove the following theorem.

Theorem 3.1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the sequences $\left(X_{n}\right),\left(\beta_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the conditions (2.1)-(2.4), (2.6)-(2.7), and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3.1}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Remark 3.1. It should be noted that condition (3.1) is the same as condition (2.5) when $k=1$. When $k>1$, condition (3.1) is weaker than condition (2.5) but the converse is not true. As in [10], we can show that if (2.5) is satisfied, then we get

$$
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
$$

To show that the converse is false when $k>1$, as in [3], the following example is sufficient. We can take $X_{n}=n^{\delta}, 0<\delta<1$, and then construct a sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=X_{n}-X_{n-1}
$$

hence

$$
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=X_{m}=m^{\delta}
$$

and so

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n} & =\sum_{n=1}^{m}\left(X_{n}-X_{n-1}\right) X_{n}^{k-1}=\sum_{n=1}^{m}\left(n^{\delta}-(n-1)^{\delta}\right) n^{\delta(k-1)} \\
& \geq \delta \sum_{n=1}^{m} n^{\delta-1} n^{\delta(k-1)}=\delta \sum_{n=1}^{m} n^{\delta k-1} \sim \frac{m^{\delta k}}{k} \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

It follows that

$$
\frac{1}{X_{m}} \sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n} \rightarrow \infty \quad \text { as } \quad m \rightarrow \infty
$$

provided $k>1$. This shows that (2.5) implies (3.1) but not conversely. We require the following lemmas for the proof of Theorem 3.1.

Lemma 3.1. [7] Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as as expressed in the statement of the theorem, we have the following;

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1) \tag{3.2}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{3.3}
\end{align*}
$$

Lemma 3.2. [9] If the conditions (2.6) and (2.7) are satisfied, then $\Delta\left(\frac{P_{n}}{n p_{n}}\right)=O\left(\frac{1}{n}\right)$.

4. Proof of Theorem 3.1

Proof. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}}
$$

Then we get that

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}, \quad n \geq 1, \quad\left(P_{-1}=0\right)
$$

By using Abel's transformation, we have that

$$
\begin{aligned}
& T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v p_{v}}\right)+\frac{\lambda_{n} s_{n}}{n} \\
& =\frac{s_{n} \lambda_{n}}{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \frac{P_{v+1} P_{v} \Delta \lambda_{v}}{(v+1) p_{v+1}}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} P_{v} \lambda_{v} \frac{1}{v} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}
\end{aligned}
$$

To complete the proof of the Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \text { for } r=1,2,3,4 \tag{4.1}
\end{equation*}
$$

Applying Abel's transformation, we have that

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k}=\sum_{n=1}^{m}\left(\frac{P_{n}}{n p_{n}}\right)^{k-1}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \frac{\left|s_{n}\right|^{k}}{n}=O(1) \sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n}\left(\frac{1}{X_{n}}\right)^{k-1}\left|\lambda_{n}\right| \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n X_{n}{ }^{k-1}}=O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of Theorem 3.1 and Lemma 3.1. Now, by using (2.6) and applying Hölder's inequality, we obtain that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k}=O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|s_{v}\right| p_{v}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v} \beta_{v}{ }^{k} \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v} \beta_{v}{ }^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} \beta_{v}{ }^{k-1} \beta_{v}\left|s_{v}\right|^{k}=O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)^{k-1} \beta_{v}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1} \beta_{v}\left|s_{v}\right|^{k}=O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left|s_{r}\right|^{k}}{r X_{r}{ }^{k-1}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}}=O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m}} \\
& =O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) m \beta_{m} X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by the hypotheses of the Theorem 3.1 and Lemma 3.1. Again, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k}=\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|s_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k}=O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right) p_{v}\left|s_{v}\right|\left|\lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \frac{1}{P_{v}} \cdot \frac{v}{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| \frac{\left|s_{v}\right|^{k}}{v}=O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v}\right| \frac{\left|s_{v}\right|^{k}}{v}=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) X_{m}\left|\lambda_{m}\right|=O(1), \quad a s \quad m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of the Theorem 3.1, Lemma 3.1 and Lemma 3.2. Finally, using Hölder's inequality, as in $T_{n, 3}$, we have get

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 4}\right|^{k}=\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v} \lambda_{v}\right|^{k} \\
& =\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v p_{v}} p_{v} \lambda_{v}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(\frac{P_{v}}{v p_{v}}\right)^{k} p_{v}\left|\lambda_{v}\right|^{k} \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \frac{1}{P_{v}} \cdot \frac{v}{v}=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right| \frac{\left|s_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{1}{X_{v}}\right)^{k-1}\left|\lambda_{v}\right| \frac{\left|s_{v}\right|^{k}}{v}=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \frac{\left|s_{v}\right|^{k}}{v X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) X_{m}\left|\lambda_{m}\right|=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of Theorem 3.1.

5. Conclusions

It should be noted that if we take $p_{n}=1$ for all n , then we obtain a known result of Mishra and Srivastava dealing with $|C, 1|_{k}$ summability factors of infinite series (see [8]). Also, if we set $k=1$, then we have a known result of Mishra and Srivastava concerning the $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series (see [9]).

References

[1] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985), 147-149.
[2] H. Bor, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Indian J. Pure Appl. Math. 18 (1987), 330-336.
[3] H. Bor, Quasi-monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp .
[4] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890), 114-120.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[6] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, (1949).
[7] K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. 14 (1983), 40-43.
[8] K. N. Mishra and R. S. L. Srivastava, On the absolute Cesàro summability factors of infinite series, Portugal. Math. 42 (1983/84), 53-61.
[9] K. N. Mishra and R. S. L. Srivastava, On $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, Indian J. Pure Appl. Math. 15 (1984), 651-656.
[10] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010), 2645-2648.
[11] G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tôhoku Math. J. (2), 1 (1949), 57-65.
P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey
*Corresponding author: hbor33@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.
 Key words and phrases. weighted arithmetic mean; absolute summability; summability factors; infinite series; Hölder inequality; Minkowski inequality.

