FACTORS FOR ABSOLUTE WEIGHTED ARITHMETIC MEAN SUMMABILITY OF INFINITE SERIES

HÜSEYİN BOR*

ABSTRACT. In this paper, we proved a general theorem dealing with absolute weighted arithmetic mean summability factors of infinite series under weaker conditions. We have also obtained some known results.

1. INTRODUCTION

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by u_n^{α} the *n*th Cesàro mean of order α , with $\alpha > -1$, of the sequence (s_n) , that is (see [4])

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v, \tag{1.1}$$

where

$$A_{n}^{\alpha} = \frac{(\alpha+1)(\alpha+2)....(\alpha+n)}{n!} = O(n^{\alpha}), \quad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0.$$
 (1.2)

A series $\sum a_n$ is said to be summable $| C, \alpha |_k, k \ge 1$, if (see [5])

$$\sum_{n=1}^{\infty} n^{k-1} \mid u_n^{\alpha} - u_{n-1}^{\alpha} \mid^k < \infty.$$
(1.3)

If we take $\alpha=1$, then we obtain $|C,1|_k$ summability. Let (p_n) be a sequence of positive numbers such that $P_n = \sum_{v=0}^n p_v \to \infty$ as $n \to \infty$, $(P_{-i} = p_{-i} = 0, i \ge 1)$. The sequence-to-sequence transformation

$$w_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \tag{1.4}$$

defines the sequence (w_n) of the weighted arithmetic mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [6]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \ge 1$, if (see [1])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} \mid w_n - w_{n-1} \mid^k < \infty.$$
(1.5)

If we take $p_n = 1$ for all values of n, then we obtain $|C, 1|_k$ summability. Also if we take k = 1, then we obtain $|\bar{N}, p_n|$ summability (see [11]). For any sequence (λ_n) we write that $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

2. KNOWN RESULT

The following theorem is known dealing with $|\bar{N}, p_n|_k$ summability factors of infinite series.

 $\odot 2017$ Authors retain the copyrights of

²⁰¹⁰ Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99.

Key words and phrases. weighted arithmetic mean; absolute summability; summability factors; infinite series; Hölder inequality; Minkowski inequality.

their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

Theorem 2.1. [2] Let (X_n) be a positive non-decreasing sequence and suppose that there exists sequences (β_n) and (λ_n) such that

$$|\Delta\lambda_n| \le \beta_n, \tag{2.1}$$

$$\beta_n \to 0 \quad as \quad n \to \infty,$$
 (2.2)

$$\sum_{n=1}^{\infty} n \mid \Delta \beta_n \mid X_n < \infty, \tag{2.3}$$

$$|\lambda_n| X_n = O(1). \tag{2.4}$$

If

$$\sum_{n=1}^{m} \frac{|s_n|^k}{n} = O(X_m) \quad as \quad m \to \infty,$$
(2.5)

and (p_n) is a sequence such that

$$P_n = O(np_n), (2.6)$$

$$P_n \Delta p_n = O(p_n p_{n+1}), \tag{2.7}$$

then the series $\sum_{n=1}^{\infty} a_n \frac{P_n \lambda_n}{np_n}$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

Remark 2.1. It should be noted that, under the conditions on the sequence (λ_n) we have that (λ_n) is bounded and $\Delta \lambda_n = O(1/n)$ [2].

3. Main Result

The aim of this paper is to prove Theorem 2.1 under weaker conditions. Now, we shall prove the following theorem.

Theorem 3.1. Let (X_n) be a positive non-decreasing sequence. If the sequences (X_n) , (β_n) , (λ_n) , and (p_n) satisfy the conditions (2.1)-(2.4), (2.6)-(2.7), and

$$\sum_{n=1}^{m} \frac{|s_n|^k}{nX_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$
(3.1)

then the series $\sum_{n=1}^{\infty} a_n \frac{P_n \lambda_n}{n p_n}$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

Remark 3.1. It should be noted that condition (3.1) is the same as condition (2.5) when k=1. When k > 1, condition (3.1) is weaker than condition (2.5) but the converse is not true. As in [10], we can show that if (2.5) is satisfied, then we get

$$\sum_{n=1}^{m} \frac{|s_n|^k}{nX_n^{k-1}} = O(\frac{1}{X_1^{k-1}}) \sum_{n=1}^{m} \frac{|s_n|^k}{n} = O(X_m) \quad as \quad m \to \infty.$$

To show that the converse is false when k > 1, as in [3], the following example is sufficient. We can take $X_n = n^{\delta}$, $0 < \delta < 1$, and then construct a sequence (u_n) such that

$$u_n = \frac{|s_n|^k}{nX_n^{k-1}} = X_n - X_{n-1},$$

hence

$$\sum_{n=1}^{m} \frac{|s_n|^k}{nX_n^{k-1}} = X_m = m^{\delta},$$

and so

$$\sum_{n=1}^{m} \frac{|s_n|^k}{n} = \sum_{n=1}^{m} (X_n - X_{n-1}) X_n^{k-1} = \sum_{n=1}^{m} (n^{\delta} - (n-1)^{\delta}) n^{\delta(k-1)}$$

$$\geq \delta \sum_{n=1}^{m} n^{\delta-1} n^{\delta(k-1)} = \delta \sum_{n=1}^{m} n^{\delta k-1} \sim \frac{m^{\delta k}}{k} \quad as \quad m \to \infty.$$

It follows that

$$\frac{1}{X_m} \sum_{n=1}^m \frac{|s_n|^k}{n} \to \infty \quad as \quad m \to \infty$$

provided k > 1. This shows that (2.5) implies (3.1) but not conversely. We require the following lemmas for the proof of Theorem 3.1.

Lemma 3.1. [7] Under the conditions on (X_n) , (β_n) and (λ_n) as as expressed in the statement of the theorem, we have the following;

$$nX_n\beta_n = O(1), (3.2)$$

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty. \tag{3.3}$$

Lemma 3.2. [9] If the conditions (2.6) and (2.7) are satisfied, then $\Delta\left(\frac{P_n}{np_n}\right) = O\left(\frac{1}{n}\right)$.

4. Proof of Theorem 3.1

Proof. Let (T_n) be the sequence of (\overline{N}, p_n) mean of the series $\sum_{n=1}^{\infty} \frac{a_n P_n \lambda_n}{n p_n}$. Then, by definition, we have

$$T_n = \frac{1}{P_n} \sum_{v=1}^n p_v \sum_{r=1}^v \frac{a_r P_r \lambda_r}{r p_r} = \frac{1}{P_n} \sum_{v=1}^n (P_n - P_{v-1}) \frac{a_v P_v \lambda_v}{v p_v}$$

Then we get that

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n \frac{P_{v-1} P_v a_v \lambda_v}{v p_v}, \quad n \ge 1, \quad (P_{-1} = 0).$$

By using Abel's transformation, we have that

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} s_v \Delta \left(\frac{P_{v-1} P_v \lambda_v}{v p_v} \right) + \frac{\lambda_n s_n}{n}$$

= $\frac{s_n \lambda_n}{n} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} s_v \frac{P_{v+1} P_v \Delta \lambda_v}{(v+1) p_{v+1}} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v s_v \lambda_v \Delta \left(\frac{P_v}{v p_v} \right) - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} s_v P_v \lambda_v \frac{1}{v}$

$$= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}.$$

To complete the proof of the Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} \mid T_{n,r} \mid^k < \infty, \text{ for } r = 1, 2, 3, 4.$$
(4.1)

Applying Abel's transformation, we have that

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,1}|^k = \sum_{n=1}^{m} \left(\frac{P_n}{np_n}\right)^{k-1} |\lambda_n|^{k-1} |\lambda_n| \frac{|s_n|^k}{n} = O(1) \sum_{n=1}^{m} \frac{|s_n|^k}{n} \left(\frac{1}{X_n}\right)^{k-1} |\lambda_n|$$
$$= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} \frac{|s_v|^k}{vX_v^{k-1}} + O(1) |\lambda_m| \sum_{n=1}^{m} \frac{|s_n|^k}{nX_n^{k-1}} = O(1) \sum_{n=1}^{m-1} |\Delta\lambda_n| X_n + O(1) |\lambda_m| X_m$$
$$= O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1), \quad as \quad m \to \infty,$$

by the hypotheses of Theorem 3.1 and Lemma 3.1. Now, by using (2.6) and applying Hölder's inequality, we obtain that

$$\begin{split} &\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \mid T_{n,2} \mid^k = O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \mid \sum_{v=1}^{n-1} P_v s_v \Delta \lambda_v \mid^k = O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \left\{ \sum_{v=1}^{n-1} \frac{P_v}{p_v} \mid s_v \mid p_v \mid \Delta \lambda_v \mid \right\}^k \\ &= O(1) \sum_{n=2}^m \left(\frac{P_n}{P_n P_{n-1}}\right) \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v}\right)^k \mid s_v \mid^k p_v \beta_v^k \times \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right)^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^k \mid s_v \mid^k p_v \beta_v^k \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{k-1} \beta_v^k \sum_{v=1}^{k-1} \frac{p_n}{p_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{1}{X_v}\right)^{k-1} \beta_v \mid s_v \mid^k = O(1) \sum_{v=1}^m v \beta_v \frac{|s_v|^k}{v X_v^{k-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{1}{X_v}\right)^{k-1} \beta_v \mid s_v \mid^k = O(1) \sum_{v=1}^m v \beta_v \frac{|s_v|^k}{v X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} \Delta (v\beta_v) \sum_{r=1}^v \frac{|s_r|^k}{r X_r^{k-1}} + O(1) m \beta_m \sum_{v=1}^m \frac{|s_v|^k}{v X_v^{k-1}} = O(1) \sum_{v=1}^{m-1} \mid \Delta (v\beta_v) \mid X_v + O(1) m \beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v \mid \Delta \beta_v \mid X_v + O(1) \sum_{v=1}^{m-1} X_v \beta_v + O(1) m \beta_m X_m = O(1), \end{split}$$

as $m \to \infty$, by the hypotheses of the Theorem 3.1 and Lemma 3.1. Again, as in $T_{n,1}$, we have that

$$\begin{split} &\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \mid T_{n,3} \mid^k = \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \mid \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v s_v \lambda_v \Delta \left(\frac{P_v}{v p_v}\right) \mid^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \left\{ \sum_{v=1}^{n-1} P_v \mid s_v \mid \mid \lambda_v \mid \frac{1}{v} \right\}^k = O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \left\{ \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v}\right) p_v \mid s_v \mid \mid \lambda_v \mid \frac{1}{v} \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{v p_v}\right)^k p_v \mid s_v \mid^k |\lambda_v|^k \times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{v p_v}\right)^k \mid s_v \mid^k p_v \mid \lambda_v \mid^k \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} = O(1) \sum_{v=1}^m \left(\frac{P_v}{v p_v}\right)^k p_v \mid s_v \mid^k |\lambda_v \mid \frac{1}{v} \sum_{v=1}^{w-1} \frac{P_v}{v N_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{v p_v}\right)^{k-1} \mid \lambda_v \mid^{k-1} |\lambda_v| \frac{|s_v|^k}{v} = O(1) \sum_{v=1}^m \left(\frac{1}{X_v}\right)^{k-1} \mid \lambda_v \mid \frac{|s_v|^k}{v} = O(1) \sum_{v=1}^m |\lambda_v| \frac{|s_v|^k}{v X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} X_v \beta_v + O(1) X_m \mid \lambda_m \mid = O(1), \quad as \quad m \to \infty, \end{split}$$

by the hypotheses of the Theorem 3.1, Lemma 3.1 and Lemma 3.2. Finally, using Hölder's inequality, as in $T_{n,3}$, we have get

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,4}|^k = \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} |\sum_{v=1}^{n-1} s_v \frac{P_v}{v} \lambda_v|^k$$
$$= \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} |\sum_{v=1}^{n-1} s_v \frac{P_v}{v p_v} p_v \lambda_v|^k \le \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} |s_v|^k \left(\frac{P_v}{v p_v}\right)^k p_v|\lambda_v|^k \times \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right)^{k-1}$$

ABSOLUTE WEIGHTED ARITHMETIC MEAN SUMMABILITY

$$= O(1) \sum_{v=1}^{m} \left(\frac{P_{v}}{vp_{v}}\right)^{k} |s_{v}|^{k} p_{v}| \lambda_{v}|^{k} \frac{1}{P_{v}} \cdot \frac{v}{v} = O(1) \sum_{v=1}^{m} \left(\frac{P_{v}}{vp_{v}}\right)^{k-1} |\lambda_{v}|^{k-1} |\lambda_{v}| \frac{|s_{v}|^{k}}{v}$$
$$= O(1) \sum_{v=1}^{m} \left(\frac{1}{X_{v}}\right)^{k-1} |\lambda_{v}| \frac{|s_{v}|^{k}}{v} = O(1) \sum_{v=1}^{m} |\lambda_{v}| \frac{|s_{v}|^{k}}{vX_{v}^{k-1}}$$
$$= O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v} + O(1) X_{m} |\lambda_{m}| = O(1), \quad as \quad m \to \infty.$$

This completes the proof of Theorem 3.1.

5. Conclusions

It should be noted that if we take $p_n = 1$ for all n, then we obtain a known result of Mishra and Srivastava dealing with $|C, 1|_k$ summability factors of infinite series (see [8]). Also, if we set k = 1, then we have a known result of Mishra and Srivastava concerning the $|\bar{N}, p_n|$ summability factors of infinite series (see [9]).

References

- [1] H. Bor, On two summability methods, Math. Proc. Camb. Philos Soc. 97 (1985), 147-149.
- [2] H. Bor, A note on $|\bar{N}, p_n|_k$ summability factors of infinite series, Indian J. Pure Appl. Math. 18 (1987), 330-336.
- [3] H. Bor, Quasi-monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp.
- [4] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890), 114-120.
- [5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
- [6] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, (1949).
- [7] K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. 14 (1983), 40-43.
- [8] K. N. Mishra and R. S. L. Srivastava, On the absolute Cesàro summability factors of infinite series, Portugal. Math. 42 (1983/84), 53-61.
- [9] K. N. Mishra and R. S. L. Srivastava, On | N, p_n | summability factors of infinite series, Indian J. Pure Appl. Math. 15 (1984), 651-656.
- [10] W. T. Sulaiman, A note on $|A|_k$ summability factors of infinite series, Appl. Math. Comput. 216 (2010), 2645-2648.
- [11] G. Sunouchi, Notes on Fourier analysis. XVIII. Absolute summability of series with constant terms, Tôhoku Math. J. (2), 1 (1949), 57-65.

P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

*Corresponding Author: hbor33@gmail.com