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GEOMETRIC CHARACTERIZATIONS OF THE DIFFERENTIAL SHIFT PLUS

ALEXANDER INTEGRAL OPERATOR

RABHA W. IBRAHIM∗

Abstract. In this effort, we deal with a new integral operator in the open unit disk. This operator is

formulated by the complex Alexander operator and its derivative. Furthermore, we introduce a new

subspace of the Hardy space containing the normalized analytic functions. We shall prove that the
new integral operator is closed in the subspace of normalized functions. Geometric characterizations

are established in the sequel based on the maximality of Jack Lemma.

1. Introduction

The study of operators concerns with the many intersecting classes of functions on function spaces,
imposed by functional operators (integral and differential). These operators can be formulated by the
kinds of the operators directly or the usage of some process. The importance in this direction is to
study the boundedness and the compactness of these operators. These formulations brought two sets
of operators: linear operators and nonlinear operators. The information itself delivers the topological
or geometrical characterizations of the spaces of functions. The data for this class of operators shows
a dynamic role in mathematics, computer science and physics. To establish an operator utilizing the
functional theory, and then study its characterizations, is one of the important goals of present studies
in the geometric function theory and its connected areas. The aim of the current work is to impose a
new operator in the open unit disk based on the complex Alexander operator.

In [1] (for recent work [2]), Alexander introduced a first order integral operator

A[f ](z) =

∫ z

0

f(ξ)

ξ
dξ, f ∈ A(U),

where A(U) is the set of all normalized analytic functions in the open unit disk U := {z ∈ C : |z| < 1.}
Note that the Alexander integral operator is the inverse of the Alexander differential operator given
by the formula

DA[f ](z) = zf ′(z), z ∈ U.

Based on this operator, we shall propose a modified integral operator in the open unit disk. This
modification leads to define some new classes of analytic functions, specialized by the normalized class
of analytic functions in the open unit disk. Our study is realized by the geometric characterizations
and boundedness of the new operator.

2. Processing

Let U := {z : |z| < 1} be the open unit disk of the complex plane and H(U) be the space of
holomorphic functions on the open unit disk. A holomorphic function

f(z) =

∞∑
n=0

anz
n, z ∈ U
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on the open unit disk belongs to the Hardy space H2(U), if its sequence of power series coefficients is
square-summable:

H2(U) = {f ∈ H(U) :

∞∑
n=0

|an|2 <∞}.

Consequently, it can be defined a norm on H2(U) as follows [3]

‖f‖2H2(U) =

∞∑
n=0

|an|2.

Since L2(U) is Banach space, then H2(U) is also a Banach space on U . In the sequel, we consider
a subset of analytic function, which are normalized as follows: f(0) = 0 and f ′(0) = 1. Thus, f is
defined as follows:

f(z) = z +

∞∑
n=2

anz
n, z ∈ U.

We denote this class by A(U). It is clear that A(U) ⊂ H(U) satisfying the above norm. The space
H∞ is known as the vector space of bounded holomorphic functions on U , satisfying the norm

‖f‖H∞ = sup
|z|<1

|f(z)|, f ∈ H(U).

It is clear that

H2(U) ⊂ H∞, f ∈ H(U).

We proceed to introduce a new operator. Define the following operator DA : A(U)→ A(U) as follows:

DA[f ](z) := zf ′(z), z ∈ U, f ∈ A(U).

This operator is called the differentiation shift operator. Now for f ∈ A(U), we define the differentiation
shift plus complex Alexander operator as follows:

(A) [f ](z) : =
1

2

(
zf ′(z) +

∫ z

0

f(ξ)

ξ
d ξ
)
, z, ξ ∈ U

= z +

∞∑
n=2

αnz
n, f ∈ A(U).

(2.1)

Obviously, (A) [f ] ∈ A(U). Moreover, since DA[f ] is a linear isometry operator and the complex
Alexander operator is contraction, then the operator (2.1) is bounded in the Hardy space H2(U). Let
S2(U) be the space defined by

S2(U) :=
{
f ∈ H(U) : f ′ ∈ H2(U)

}
end with the norm

‖f‖2S2(U) = ‖f‖2H2(U) + ‖f ′‖2H2(U).

This space is subspace from H∞, Banach algebra, and every polynomial is dense in it ( see [3],
Proposition 1). A direct application, we have the following proposition

Proposition 2.1. Let f ∈ S2(U), then

(A) : S2(U)→ S2(U).

Moreover, let S2
0(U) :=

{
f ∈ S2(U) : f(0) = 0

}
, then

S2
0(U) ⊂ S2(U).
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It has been shown that the range of the Alexander operator is equal to S2
0(U). In this effort, we

define a subspace S2
1(U) as follows:

S2
1(U) :=

{
f ∈ S2(U) : f(0) = 0, f ′(0) = 1

}
.

Then we have the following relation:

S2
1(U) ⊂ S2

0(U) ⊂ S2(U).

Proposition 2.2. Let (A) ∈ H2(U). Then rang(A) ⊂ S2
1(U).

Proof. Let g(z) ∈ rang(A), then there exists a normalized function f(z) ∈ H2(U) such that

g(z) = (A) [f ](z) =
1

2

(
zf ′(z) +

∫ z

0

f(ξ)

ξ
d ξ
)
, z, ξ ∈ U.

Then we obtain g′ ∈ H2(U) with the properties

g(0) = 0, g′(0) = 1.

Hence g ∈ S2
1(U).

Proposition 2.3. Let f, g ∈ A(U). Then

‖f ∗ g‖2S2
1(U) ≤ ‖f‖

2
S2
1(U)‖g‖

2
S2
1(U), z ∈ U,

where ∗ is represented the convolution product

(f ∗ g)(z) = (z +

∞∑
n=2

anz
n) ∗ (z +

∞∑
n=2

bnz
n) = z +

∞∑
n=2

an bnz
n.

Proof. It is clear that (f ∗ g)(0) = 0 and (f ∗ g)′(0) = 1; thus (f ∗ g) ∈ S2
1(U). Moreover, in view of

the Young’s inequality for convolutions, we have

‖f ∗ g‖2S2
1(U) = ‖f ∗ g‖2H2(U) + ‖(f ∗ g)′‖2H2(U)

≤ 2

∞∑
n=0

|anbn|2

≤ 2

∞∑
n=0

|an|2|bn|2

≤
∞∑
n=0

|an|2 +

∞∑
n=0

|bn|2

= ‖f‖2S2
1(U)‖g‖

2
S2
1(U).

Proposition 2.4. Let (A) [f ] ∈ H2(U), f ∈ A(U). Then

rangL(f)(z) := rang
(

2 (A) [f ]) ∗ f(z)

2

)
⊂ S2

1(U).

Proof. Let

L(f)(z) := (2 (A) [f ]) ∗ (
f(z)

2
)

then there exists a normalized function f(z) ∈ H2(U) such that

L(f)(z) = z +

∞∑
n=2

`nz
n ∈ A(U), f ∈ A(U)

Since f ∈ H2(U) then L(f)′ ∈ H2(U) with the properties

L(f)(0) = 0, L(f)′(0) = 1.
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The function f ∈ A(U) is called starlike of order α ∈ [0, 1) if and only if

<
(zf ′(z)
f(z)

)
> α, z ∈ U ;

this class is denoted by S∗(α). And f ∈ A(U) is called convex of order α ∈ [0, 1) if and only if

<
(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U ;

this class is denoted by K(α). Finally, The function f ∈ A(U) is called bounded turning of order α if
and only if <

(
f ′(z)

)
> α; this class is symbolled by B(α). Note that

f ∈ S∗ ⇔ A[f ] ∈ K.

We need the following result in the sequel (see [4])

Lemma 2.1. Let h(z) be analytic in U with h(0) = 0. Then if |h(z)| approaches its maximality at a
point z0 ∈ U when |z| = r, then z0h

′(z0) = ε h(z0), where ε ≥ 1 is a real number.

In addition, we request the subordination idea, which is formulated as follows: Suppose that f(ζ)
and g(ζ) are analytic in the open unit disk U. Then f(ζ) is called subordinate to g(ζ) if for analytic
function φ(ζ) in U achieving φ(0) = 0, |φ(ζ)| < 1, (ζ ∈ U) and f(ζ) = g(φ(ζ)). This subordination is
symbolled by

f(ζ) ≺ g(ζ), ζ ∈ U.

3. Findings

In this section, we introduce sufficient conditions to study the geometric properties of the operator
(2.1).

Theorem 3.1. Let f ∈ H2(U). Then (A) [f ] is bounded on S2
1(U).

Proof. Consider the integral operator (1) as follows:

(A) [f ] =
1

2

(
zf ′(z) +

∫ z

0

f(ξ)

ξ
d ξ
)
, z, ξ ∈ U,

we have

‖(A) [f ]‖S2
1(U) =‖(A) [f ]‖H2(U) + ‖(A) [f ]′‖H2(U)

≤ ‖f‖H2(U) + ‖f‖H2(U) + 2 max
|z|<1

|f(z)|

≤ 4‖f‖H2(U).

Thus the operator (1) acts from H2(U) onto S2
1(U); which is bounded.

Remark 3.1 In 1960, Biernacki showed that f ∈ S ⇒ A[f ] ∈ S, but this brings out to be wrong
(see [5], Theorem 8.11). This leads that the Alexander integral operator A[f ] does not cover the class
S.

Theorem 3.2. Consider the operator (2.1). If

<
(z(A) [f ]′′(z)

(A) [f ]′(z)

)
< 0, z ∈ U, f ∈ A(U),

then

(A) [f ] ∈ S∗.
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Proof. Let µ be a real positive constant satisfying

z(A) [f ]′(z)

(A) [f ](z)
=

1 + µω(z)

1− µω(z)
, ω(z) 6= 1

µ
, µ > 0,

where ω(z), z ∈ U is a function in the open unit disk. Obviously ω(z) is analytic in U such that
ω(0) = 0. We aim to show that |ω(z)| < 1 in U. Differentiating both side logarithmically, we obtain

1 +
z(A) [f ]′′(z)

(A) [f ]′(z)
=

2µzω′(z)

1− µ2ω2(z)
+

1 + µω(z)

1− µω(z)
.

Thus, by the assumption we have

<
(

1 +
z(A) [f ]′′(z)

(A) [f ]′(z)

)
= <

( 2µzω′(z)

1− µ2ω2(z)
+

1 + µω(z)

1− µω(z)

)
< 1, z ∈ U, f ∈ A(U).

If there exists a point z0 ∈ U such that

max
|z|≤|z0|

|ω(z)| = |ω(z0)| = 1,

then Lemma 2.1 implies that ω(z0) = eiθ and

z0ω
′(z0) = εω(z0), ε ≥ 1.

Thus, we obtain

1 +
z0(A) [f ]′′(z0)

(A) [f ]′(z0)
=

2µz0ω
′(z0)

1− µ2ω2(z0)
+

1 + µω(z0)

1− µω(z0)

=
2µεeiθ

1− µ2e2iθ
+

1 + µeiθ

1− µeiθ

Since

<
( 1

1− µ eiθ
)

=
1

1 + µ
,

therefore, we conclude that

<
(

1 +
z0(A) [f ]′′(z0)

(A) [f ]′(z0)

)
= <

( 2µz0ω
′(z0)

1− µ2ω2(z0)
+

1 + µω(z0)

1− µω(z0)

)
= <

( 2µεeiθ

1− µ2e2iθ
+

1 + µeiθ

1− µeiθ
)

=
2µε

1 + µ2
+ 1

≥ (1 + µ)2

1 + µ2

> 1.

Hence,

<
(z0(A) [f ]′′(z0)

(A) [f ]′(z0)

)
> 0,

which contradicts the assumption of the theorem. This leads that there is no z0 ∈ U such that
|ω(z0)| = 1 for all z ∈ U i.e

z(A) [f ]′(z)

(A) [f ](z)
≺ 1 + µz

1− µz
, z ∈ U, f ∈ A(U).

This completes the proof.

Theorem 3.3. Consider the integral operator (2.1). If for 1 < ℘ < 2, such that

<{z(A) [f ]′′(z)

(A) [f ]′(z)
} > ℘

2
, , z ∈ U, f ∈ A(U),

then (A) [f ](z) ∈ B.
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Proof. Define a function ψ(z), z ∈ U as follows:

(A) [f ]′(z) = (1− ψ(z))℘, z ∈ U,

where, ψ(z) is analytic with ψ(0) = 0. We need only to show that |ψ(z)| < 1. From the definition of
ψ, we have

z(A) [f ]′′(z)

(A) [f ]′(z)
= ℘
−zψ′(z)
1− ψ(z)

.

Hence, we obtain

<{z(A) [f ]′′(z)

(A) [f ]′(z)
} = ℘<{−zψ

′(z)

1− ψ(z)
}

>
℘

2
, ℘ ∈ (1, 2).

In view of Lemma 2.1, there exists a complex number z0 ∈ U such that ψ(z0) = eiθ and

z0ψ
′(z0) = εψ(z0) = εeiθ, ε ≥ 1.

Since

<
( 1

1− ψ(z0)

)
= <

( 1

1− eiθ
)

=
1

2

then, we attain

<{z(A) [f ]′′(z0)

(A) [f ]′(z0)
} = ℘<{ −εψ(z0)

1− ψ(z0)
}

= ℘<{ −εe
iθ

1− eiθ
}

≤ ℘

2
, ε = 1,

which contradicts the assumption of the theorem. Hence, there is no z0 ∈ U with |ψ(z0)| = 1, which
yields that |ψ(z)| < 1. Moreover, we have

(A) [f ]′(z) ≺ (1− z)℘,

which means that <[(A) [f ]′(z)] > 0, equivalently, (A) [f ]′(z) ∈ B. This completes the proof.

Theorem 3.4. Consider the integral operator (2.1). If for ℘ > 1/2, such that

<{z(A) [f ]′(z)

(A) [f ](z)
} > 2℘− 1

2℘
,

then
(A) [f ](z)

z
≺ (1− z)1/℘.

Proof. Define a function w(z), z ∈ U as follows:

(A) [f ](z)

z
= (1− w(z))1/℘, z ∈ U,

where, w(z) is analytic with w(0) = 0. We need only to show that |w(z)| < 1. From the definition of
w, we have

z(A) [f ]′(z)

(A) [f ](z)
= 1− zw′(z)

℘(1− w(z))
.

Hence, we obtain

<
{z(A) [f ]′(z)

(A) [f ](z)

}
= <

{
1− zw′(z)

℘(1− w(z))

}
>

2℘− 1

2℘
, ℘ > 1/2.
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In view of Lemma 2.1, there exists a complex number z0 ∈ U such that w(z0) = eiθ and

z0w
′(z0) = εw(z0) = εeiθ, ε ≥ 1.

Therefore, we arrive at

<
{z0(A) [f ]′(z0)

(A) [f ](z)

}
= <

{
1− z0w

′(z0)

℘(1− w(z0))

}
= <

{
1− εw(z0)

℘(1− w(z0))

}
= 1−<

{ εeiθ

℘(1 + eiθ)

}
=

2℘− 1

2℘
,

and this is a contradiction with the assumption of the theorem. Hence, there is no z0 ∈ U with
|w(z0)| = 1, which yields that |w(z)| < 1. This completes the proof.

Theorem 3.5. Let f ∈ A(U) satisfied ∣∣∣zf ′′(z)
f ′(z)

− zf ′(z)

f(z)

∣∣∣ < 1.

Then (A) [f ] ∈ B.

Proof. Let f ∈ A(U). Dividing (2.1) by f(z), z ∈ U \ {0} and differentiating logarithmic, we have

z(A) [f ]′(z)

(A) [f ](z)
= 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+
zDA [f ](z)

A [f ](z)
.

Now let ϑ(z) = A [f ](z)⇒ ϑ′(z) = DA [f ](z). Thus, we obtain

zDA [f ](z)

A [f ](z)
=
zϑ′(z)

ϑ(z)
.

In view of Lemma 2.1, there exists a complex number z0 ∈ U such that ϑ(z0) = eiθ and

z0ϑ
′(z0) = εϑ(z0) = εeiθ, ε ≥ 1.

Therefore, we conclude that∣∣∣z(A) [f ]′(z)

(A) [f ](z)
− 1
∣∣∣ =

∣∣∣zf ′′(z)
f ′(z)

− zf ′(z)

f(z)
+
zDA [f ](z)

A [f ](z)

∣∣∣
≤
∣∣∣zf ′′(z)
f ′(z)

− zf ′(z)

f(z)

∣∣∣+
∣∣∣zϑ′(z)
ϑ(z)

∣∣∣
≤
∣∣∣zf ′′(z)
f ′(z)

− zf ′(z)

f(z)

∣∣∣+
∣∣∣εeiθ
eiθ

∣∣∣
=
∣∣∣zf ′′(z)
f ′(z)

− zf ′(z)

f(z)

∣∣∣+ ε

< 1 + ε =: ρ.

Then in virtue of Theorem 5.5g P299 in [2], we obtain∣∣∣(A) [f ]′(z)− 1
∣∣∣ < 1⇒ (A) [f ] ∈ B.
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4. Conclusion and discussion

Here, we provided a complex integral in the open unit disk based on the Alexander operator ((A) [f ]).
The new operator is achieved the differential, shift plus operator (DA[f ](z) = zf ′(z), f ∈ A(U).
Boundedness of the new integral operator is suggested in new extended space (S2

1(U)). In addition,
some geometric characterizations; such as univalent, starlike and bounded turning are studied. Our
main tool is based on the Jack Lemma. It has proven that if (A) : A(U) → A(U). For future work,
one can use the new operator to define new classes of analytic functions. Furthermore, for further
investigations, one can study the subordination and superordination idea by employing the above
integral. Additionally, it can be studied the connection between closed ideals of a Banach algebra
together with closed invariant subspaces of the operator DA[f ].
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