SOME INTEGRAL INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

M. ZEKI SARIKAYA ${ }^{1, *}$, SAMET ERDEN ${ }^{2}$ AND HÜSEYIN BUDAK ${ }^{1}$

Abstract

In this paper, firstly we extend some generalization of the Hermite-Hadamard inequality and Bullen inequality to generalized convex functions. Then, we give some important integral inequalities related to these inequalities.

1. Introduction

Definition 1.1 (Convex function). The function $f:[a, b] \subset R \rightarrow R$, is said to be convex if the following inequality holds

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in[a, b]$ and $t \in[0,1]$. We say that f is concave if $(-f)$ is convex.
The classical Hermite-Hadamard inequality which was first published in [8] gives us an estimate of the mean value of a convex function $f: I \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

In [1], Bullen proved the following inequality which is known as Bullen's inequality for convex function.
Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$. The inequality

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right] .
$$

An account the history of this inequality can be found in [3]. Surveys on various generalizations and developments can be found in [12] and [2]. Recently in [5], the author established this inequality for twice differentiable functions. In the case where f is convex then there exists an estimation better than (1.1).

In [6], Farissi gave the refinement of the inequality (1.1) as follows:
Theorem 1.1. Assume that $f: I \rightarrow \mathbb{R}$ is a convex function on I. Then for all $\lambda \in[0,1]$, we have

$$
f\left(\frac{a+b}{2}\right) \leq l(\lambda) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq L(\lambda) \leq \frac{f(a)+f(b)}{2}
$$

where

$$
l(\lambda):=\lambda f\left(\frac{\lambda b+(2-\lambda) a}{2}\right)+(1-\lambda) f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right)
$$

and

$$
L(\lambda):=\frac{1}{2}(f(\lambda b+(1-\lambda) a)+\lambda f(a)+(1-\lambda) f(b)) .
$$

For more information recent developments to above inequalities, please refer to [2]- [7], [9]- [11], [14] and so on.

[^0]
2. Preliminaries

Recall the set R^{α} of real line numbers and use the Gao-Yang-Kang's idea to describe the definition of the local fractional derivative and local fractional integral, see $[15,16]$ and so on.

Recently, the theory of Yang's fractional sets [15] was introduced as follows.
For $0<\alpha \leq 1$, we have the following α-type set of element sets:
Z^{α} : The α-type set of integer is defined as the set $\left\{0^{\alpha}, \pm 1^{\alpha}, \pm 2^{\alpha}, \ldots, \pm n^{\alpha}, \ldots\right\}$.
Q^{α} : The α-type set of the rational numbers is defined as the set $\left\{m^{\alpha}=\left(\frac{p}{q}\right)^{\alpha}: p, q \in Z, q \neq 0\right\}$.
J^{α} : The α-type set of the irrational numbers is defined as the set $\left\{m^{\alpha} \neq\left(\frac{p}{q}\right)^{\alpha}: p, q \in Z, q \neq 0\right\}$.
R^{α} : The α-type set of the real line numbers is defined as the set $R^{\alpha}=Q^{\alpha} \cup J^{\alpha}$.
If a^{α}, b^{α} and c^{α} belongs the set R^{α} of real line numbers, then
(1) $a^{\alpha}+b^{\alpha}$ and $a^{\alpha} b^{\alpha}$ belongs the set R^{α};
(2) $a^{\alpha}+b^{\alpha}=b^{\alpha}+a^{\alpha}=(a+b)^{\alpha}=(b+a)^{\alpha}$;
(3) $a^{\alpha}+\left(b^{\alpha}+c^{\alpha}\right)=(a+b)^{\alpha}+c^{\alpha}$;
(4) $a^{\alpha} b^{\alpha}=b^{\alpha} a^{\alpha}=(a b)^{\alpha}=(b a)^{\alpha}$;
(5) $a^{\alpha}\left(b^{\alpha} c^{\alpha}\right)=\left(a^{\alpha} b^{\alpha}\right) c^{\alpha}$;
(6) $a^{\alpha}\left(b^{\alpha}+c^{\alpha}\right)=a^{\alpha} b^{\alpha}+a^{\alpha} c^{\alpha}$;
(7) $a^{\alpha}+0^{\alpha}=0^{\alpha}+a^{\alpha}=a^{\alpha}$ and $a^{\alpha} 1^{\alpha}=1^{\alpha} a^{\alpha}=a^{\alpha}$.

The definition of the local fractional derivative and local fractional integral can be given as follows.
Definition 2.1. [15] A non-differentiable function $f: R \rightarrow R^{\alpha}, x \rightarrow f(x)$ is called to be local fractional continuous at x_{0}, if for any $\varepsilon>0$, there exists $\delta>0$, such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon^{\alpha}
$$

holds for $\left|x-x_{0}\right|<\delta$, where $\varepsilon, \delta \in R$. If $f(x)$ is local continuous on the interval (a, b), we denote $f(x) \in C_{\alpha}(a, b)$.
Definition 2.2. [15] The local fractional derivative of $f(x)$ of order α at $x=x_{0}$ is defined by

$$
f^{(\alpha)}\left(x_{0}\right)=\left.\frac{d^{\alpha} f(x)}{d x^{\alpha}}\right|_{x=x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right)}{\left(x-x_{0}\right)^{\alpha}}
$$

where $\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right) \cong \Gamma(\alpha+1)\left(f(x)-f\left(x_{0}\right)\right)$.
If there exists $f^{(k+1) \alpha}(x)=\overbrace{D_{x}^{\alpha} \ldots D_{x}^{\alpha}}^{k+1} f(x)$ for any $x \in I \subseteq R$, then we denoted $f \in D_{(k+1) \alpha}(I)$, where $k=0,1,2, \ldots$

Definition 2.3. [15] Let $f(x) \in C_{\alpha}[a, b]$. Then the local fractional integral is defined by,

$$
{ }_{a} I_{b}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha+1)} \int_{a}^{b} f(t)(d t)^{\alpha}=\frac{1}{\Gamma(\alpha+1)} \lim _{\Delta t \rightarrow 0} \sum_{j=0}^{N-1} f\left(t_{j}\right)\left(\Delta t_{j}\right)^{\alpha}
$$

with $\Delta t_{j}=t_{j+1}-t_{j}$ and $\Delta t=\max \left\{\Delta t_{1}, \Delta t_{2}, \ldots, \Delta t_{N-1}\right\}$, where $\left[t_{j}, t_{j+1}\right], j=0, \ldots, N-1$ and $a=t_{0}<t_{1}<\ldots<t_{N-1}<t_{N}=b$ is partition of interval $[a, b]$.

Here, it follows that ${ }_{a} I_{b}^{\alpha} f(x)=0$ if $a=b$ and ${ }_{a} I_{b}^{\alpha} f(x)=-{ }_{b} I_{a}^{\alpha} f(x)$ if $a<b$. If for any $x \in[a, b]$, there exists ${ }_{a} I_{x}^{\alpha} f(x)$, then we denoted by $f(x) \in I_{x}^{\alpha}[a, b]$.
Definition 2.4 (Generalized convex function). [15] Let $f: I \subseteq R \rightarrow R^{\alpha}$. For any $x_{1}, x_{2} \in I$ and $\lambda \in[0,1]$, if the following inequality

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda^{\alpha} f\left(x_{1}\right)+(1-\lambda)^{\alpha} f\left(x_{2}\right)
$$

holds, then f is called a generalized convex function on I.
Here are two basic examples of generalized convex functions:
(1) $f(x)=x^{\alpha p}, x \geq 0, p>1$;
(2) $f(x)=E_{\alpha}\left(x^{\alpha}\right), x \in R$ where $E_{\alpha}\left(x^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{x^{\alpha k}}{\Gamma(1+k \alpha)}$ is the Mittag-Lrffer function.

Theorem 2.1. [13] Let $f \in D_{\alpha}(I)$, then the following conditions are equivalent
a) f is a generalized convex function on I
b) $f^{(\alpha)}$ is an increasing function on I
c) for any $x_{1}, x_{2} \in I$,

$$
f\left(x_{2}\right)-f\left(x_{1}\right) \geq \frac{f^{(\alpha)}\left(x_{1}\right)}{\Gamma(1+\alpha)}\left(x_{2}-x_{1}\right)^{\alpha}
$$

Corollary 2.1. [13] Let $f \in D_{2 \alpha}(a, b)$. Then f is a generalized convex function (or a generalized concave function) if and only if

$$
f^{(2 \alpha)}(x) \geq 0\left(\text { or } f^{(2 \alpha)}(x) \leq 0\right)
$$

for all $x \in(a, b)$.
Lemma 2.1. [15]
(1) (Local fractional integration is anti-differentiation) Suppose that $f(x)=g^{(\alpha)}(x) \in C_{\alpha}[a, b]$, then we have

$$
{ }_{a} I_{b}^{\alpha} f(x)=g(b)-g(a)
$$

(2) (Local fractional integration by parts) Suppose that $f(x), g(x) \in D_{\alpha}[a, b]$ and $f^{(\alpha)}(x), g^{(\alpha)}(x) \in$ $C_{\alpha}[a, b]$, then we have

$$
{ }_{a} I_{b}^{\alpha} f(x) g^{(\alpha)}(x)=\left.f(x) g(x)\right|_{a} ^{b}-{ }_{a} I_{b}^{\alpha} f^{(\alpha)}(x) g(x)
$$

Lemma 2.2. [15] We have

$$
\begin{aligned}
& \text { i) } \frac{d^{\alpha} x^{k \alpha}}{d x^{\alpha}}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k-1) \alpha)} x^{(k-1) \alpha} \\
& \text { ii) } \frac{1}{\Gamma(\alpha+1)} \int_{a}^{b} x^{k \alpha}(d x)^{\alpha}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k+1) \alpha)}\left(b^{(k+1) \alpha}-a^{(k+1) \alpha}\right), k \in R
\end{aligned}
$$

Lemma 2.3 (Generalized Hölder's inequality). [15] Let $f, g \in C_{\alpha}[a, b], p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\frac{1}{\Gamma(\alpha+1)} \int_{a}^{b}|f(x) g(x)|(d x)^{\alpha} \leq\left(\frac{1}{\Gamma(\alpha+1)} \int_{a}^{b}|f(x)|^{p}(d x)^{\alpha}\right)^{\frac{1}{p}}\left(\frac{1}{\Gamma(\alpha+1)} \int_{a}^{b}|g(x)|^{q}(d x)^{\alpha}\right)^{\frac{1}{q}}
$$

In [13], Mo et al. proved the following generalized Hermite-Hadamard inequality for generalized convex function:

Theorem 2.2 (Generalized Hermite-Hadamard inequality). Let $f(x) \in I_{x}^{(\alpha)}[a, b]$ be a generalized convex function on $[a, b]$ with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \leq \frac{f(a)+f(b)}{2^{\alpha}} . \tag{2.1}
\end{equation*}
$$

The aim of this paper is to extend the generalized Hermite-Hadamard inequalities and generalized Bullen inequalities to generalized convex functions.

3. Main Results

Theorem 3.1 (Generalized Hermite-Hadamard-type inequality). Let $f(x) \in I_{x}^{(\alpha)}[a, b]$ be a generalized convex function on $[a, b]$ with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq h(\lambda) \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \leq H(\lambda) \leq \frac{f(a)+f(b)}{2^{\alpha}} \tag{3.1}
\end{equation*}
$$

where

$$
h(\lambda):=\lambda^{\alpha} f\left(\frac{\lambda b+(2-\lambda) a}{2}\right)+(1-\lambda)^{\alpha} f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right)
$$

and

$$
H(\lambda):=\frac{1}{2^{\alpha}}\left[f(\lambda b+(1-\lambda) a)+\lambda^{\alpha} f(a)+(1-\lambda)^{\alpha} f(b)\right]
$$

Proof. Let f be a generalized convex. Then, applying (2.1) on the subinterval $[a, \lambda b+(1-\lambda) a]$, with $\lambda \neq 0$, we have

$$
\begin{align*}
& f\left(\frac{\lambda b+(2-\lambda) a}{2}\right) \tag{3.2}\\
\leq & \frac{1}{\lambda^{\alpha}(b-a)^{\alpha}} \int_{a}^{\lambda b+(1-\lambda) a} f(t)(d t)^{\alpha} \\
\leq & \frac{f(a)+f(\lambda b+(1-\lambda) a)}{2^{\alpha}} .
\end{align*}
$$

Applying (2.1) again on $[\lambda b+(1-\lambda) a, b]$, with $\lambda \neq 1$, we get

$$
\begin{align*}
& f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right) \tag{3.3}\\
\leq & \frac{1}{(1-\lambda)^{\alpha}(b-a)^{\alpha}} \int_{\lambda b+(1-\lambda) a}^{b} f(t)(d t)^{\alpha} \\
\leq & \frac{f(\lambda b+(1-\lambda) a)+f(b)}{2^{\alpha}}
\end{align*}
$$

Multiplying (3.2) by λ^{α}, (3.3) by $(1-\lambda)^{\alpha}$, and adding the resulting inequalities, we get:

$$
\begin{equation*}
h(\lambda) \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \leq H(\lambda) \tag{3.4}
\end{equation*}
$$

where $h(\lambda)$ and $H(\lambda)$ are defined as in Theorem 3.1.
Using the fact that f is a generalized convex function, we obtain

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \tag{3.5}\\
= & f\left(\lambda \frac{\lambda b+(2-\lambda) a}{2}+(1-\lambda) \frac{(1+\lambda) b+(1-\lambda) a}{2}\right) \\
\leq & \lambda^{\alpha} f\left(\frac{\lambda v+(2-\lambda) a}{2}\right)+(1-\lambda)^{\alpha} f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right) \\
\leq & \frac{\lambda^{\alpha}}{2^{\alpha}}[f(\lambda b+(1-\lambda) a)+f(a)]+\frac{(1-\lambda)^{\alpha}}{2^{\alpha}}[f(b)+f(\lambda b+(1-\lambda) a)] \\
= & \frac{1}{2^{\alpha}}\left[f(\lambda b+(1-\lambda) a)+\lambda^{\alpha} f(a)+(1-\lambda)^{\alpha} f(b)\right] \\
\leq & \frac{f(a)+f(b)}{2^{\alpha}}
\end{align*}
$$

Then by (3.4) and (3.5), we get (3.1).
Theorem 3.2. Let $g(x) \in D_{2 \alpha}[a, b]$ such that there exist constants $m, M \in R^{\alpha}$ so that $m \leq g^{(2 \alpha)}(x) \leq$ M for $x \in[a, b]$. Then

$$
\begin{align*}
& \frac{m\left(b^{\alpha}+a^{\alpha} b^{\alpha}+a^{\alpha}\right)}{\Gamma(1+3 \alpha)}-\frac{m}{\Gamma(1+2 \alpha)}\left(\frac{a^{2 \alpha}+b^{2 \alpha}}{2^{\alpha}}\right) \tag{3.6}\\
\leq & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} g(x)-g\left(\frac{a+b}{2}\right) \\
\leq & \frac{M}{\Gamma(1+2 \alpha)}\left(\frac{a^{2 \alpha}+b^{2 \alpha}}{2^{\alpha}}\right)-\frac{M\left(b^{\alpha}+a^{\alpha} b^{\alpha}+a^{\alpha}\right)}{\Gamma(1+3 \alpha)} .
\end{align*}
$$

and

$$
\begin{align*}
& \frac{m}{\Gamma(1+2 \alpha)}\left(\frac{a^{2 \alpha}+b^{2 \alpha}}{2^{\alpha}}\right)-\frac{m\left(b^{\alpha}+a^{\alpha} b^{\alpha}+a^{\alpha}\right)}{\Gamma(1+3 \alpha)} \tag{3.7}\\
\leq & \frac{g(a)+g(b)}{2^{\alpha}}-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} g(x) \\
\leq & \frac{M\left(b^{\alpha}+a^{\alpha} b^{\alpha}+a^{\alpha}\right)}{\Gamma(1+3 \alpha)}-\frac{M}{\Gamma(1+2 \alpha)}\left(\frac{a^{2 \alpha}+b^{2 \alpha}}{2^{\alpha}}\right) .
\end{align*}
$$

Proof. Let $f(x)=g(x)-\frac{m}{\Gamma(1+2 \alpha)} x^{2 \alpha}$, then $f^{(2 \alpha)}(x)=g^{(2 \alpha)}(x)-m \geq 0$, which shows that f is generalized convex on (a, b). Appliying ineqaulity (2.1) for f, then we have

$$
\begin{aligned}
& g\left(\frac{a+b}{2}\right)-\frac{m}{\Gamma(1+2 \alpha)}\left(\frac{a+b}{2}\right)^{2 \alpha} \\
= & f\left(\frac{a+b}{2}\right) \\
\leq & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
= & \frac{1}{(b-a)^{\alpha}} \int_{a}^{b}\left[g(x)-\frac{m}{\Gamma(1+2 \alpha)} x^{2 \alpha}\right](d x)^{\alpha} \\
= & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} g(x)-\frac{1}{(b-a)^{\alpha}} \frac{m}{\Gamma(1+2 \alpha)} \frac{\Gamma(1+2 \alpha)}{\Gamma(1+3 \alpha)}\left(b^{3 \alpha}-a^{3 \alpha}\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \frac{m\left(b^{\alpha}+a^{\alpha} b^{\alpha}+a^{\alpha}\right)}{\Gamma(1+3 \alpha)}-\frac{m}{\Gamma(1+2 \alpha)}\left(\frac{a+b}{2}\right)^{2 \alpha} \\
\leq & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} g(x)-g\left(\frac{a+b}{2}\right)
\end{aligned}
$$

which proves the first inequality in (3.6). To prove the second part of (3.6), we apply the same argument for the generalized convex mapping $f(x)=\frac{M}{\Gamma(1+2 \alpha)} x^{2 \alpha}-g(x) ; x \in[a, b]$.

By applying the second part of the generalized Hermite-Hadamard inequality (2.1) for the mapping $f(x)=g(x)-\frac{m}{\Gamma(1+2 \alpha)} x^{2 \alpha}$ as follows

$$
\begin{aligned}
& \frac{g(a)+g(b)}{2^{\alpha}}-\frac{m}{\Gamma(1+2 \alpha)}\left(\frac{a^{2 \alpha}+b^{2 \alpha}}{2^{\alpha}}\right) \\
= & \frac{f(a)+f(b)}{2^{\alpha}} \\
\geq & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
= & \frac{1}{(b-a)^{\alpha}} \int_{a}^{b}\left[g(x)-\frac{m}{\Gamma(1+2 \alpha)} x^{2 \alpha}\right](d x)^{\alpha} \\
= & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} g(x)-\frac{1}{(b-a)^{\alpha}} \frac{m}{\Gamma(1+2 \alpha)} \frac{\Gamma(1+2 \alpha)}{\Gamma(1+3 \alpha)}\left(b^{3 \alpha}-a^{3 \alpha}\right) .
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& \frac{m}{\Gamma(1+2 \alpha)}\left(\frac{a^{2 \alpha}+b^{2 \alpha}}{2^{\alpha}}\right)-\frac{m\left(b^{\alpha}+a^{\alpha} b^{\alpha}+a^{\alpha}\right)}{\Gamma(1+3 \alpha)} \\
\leq & \frac{g(a)+g(b)}{2^{\alpha}}-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} g(x)
\end{aligned}
$$

which proves the rest part of (3.7). The second part is established in a similar manner; and we omit the details which completes the proof.

We prove the following inequality which is generalized Bullen inequality for generalized convex function.

Theorem 3.3 (Generalized Bullen inequality). Let $f(x) \in I_{x}^{(\alpha)}[a, b]$ be a generalized convex function on $[a, b]$ with $a<b$. Then we have the inequality

$$
\begin{equation*}
\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \leq \frac{1}{2^{\alpha}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right] \tag{3.8}
\end{equation*}
$$

Proof. Using the Theorem 2.2, we find that

$$
\begin{aligned}
& \frac{2^{\alpha} \Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x)(d x)^{\alpha} \\
= & \frac{2^{\alpha} \Gamma(1+\alpha)}{(b-a)^{\alpha}}\left[\frac{1}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}} f(x)(d x)^{\alpha}+\frac{1}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b} f(x)(d x)^{\alpha}\right] \\
\leq & \frac{f\left(\frac{a+b}{2}\right)+f(a)}{2^{\alpha}}+\frac{f(b)+f\left(\frac{a+b}{2}\right)}{2^{\alpha}} \\
= & f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}} .
\end{aligned}
$$

Hence, the proof is completed.

Theorem 3.4. Let $I \subseteq \mathbb{R}$ be an interval, $f: I^{0} \subseteq \mathbb{R} \rightarrow \mathbb{R}^{\alpha}$ (I^{0} is the interior of $\left.I\right)$ such that $f \in D_{2 \alpha}\left(I^{0}\right)$ and $f^{(\alpha)} \in C_{\alpha}[a, b]$ for $a, b \in I^{0}$ with $a<b$. Then, for all $x \in[a, b]$, we have the following identity

$$
\begin{align*}
& \frac{1}{2^{\alpha}(b-a)^{\alpha}(\Gamma(1+\alpha))^{2}} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{\alpha} p(x) f^{(2 \alpha)}(x)(d x)^{\alpha} \tag{3.9}\\
= & \frac{1}{2^{\alpha}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x)
\end{align*}
$$

where

$$
p(x)= \begin{cases}(a-x)^{\alpha}, & {\left[a, \frac{a+b}{2}\right)} \\ (b-x)^{\alpha}, & {\left[\frac{a+b}{2}, b\right]}\end{cases}
$$

Proof. Using the local fractional integration by parts, we have

$$
\begin{aligned}
& \frac{1}{\Gamma(1+\alpha)} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{\alpha} p(x) f^{(2 \alpha)}(x)(d x)^{\alpha} \\
= & \frac{1}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}}\left(x-\frac{a+b}{2}\right)^{\alpha}(a-x)^{\alpha} f^{(2 \alpha)}(x)(d x)^{\alpha} \\
& +\frac{1}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b}\left(x-\frac{a+b}{2}\right)^{\alpha}(b-x)^{\alpha} f^{(2 \alpha)}(x)(d x)^{\alpha} \\
= & \left.\left(x-\frac{a+b}{2}\right)^{\alpha}(a-x)^{\alpha} f^{(\alpha)}(x)\right|_{a} ^{\frac{a+b}{2}} \\
& -\frac{\Gamma(1+\alpha)}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}}\left(\frac{3 a+b}{2}-2 x\right)^{\alpha} f^{(\alpha)}(x)(d x)^{\alpha} \\
& +\left.\left(x-\frac{a+b}{2}\right)^{\alpha}(b-x)^{\alpha} f^{(\alpha)}(x)\right|_{\frac{a+b}{2}} ^{b} \\
& -\frac{\Gamma(1+\alpha)}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b}\left(\frac{a+3 b}{2}-2 x\right)^{\alpha} f^{(\alpha)}(x)(d x)^{\alpha} .
\end{aligned}
$$

Using the local fractional integration by parts again, we find that

$$
\begin{aligned}
& \frac{1}{\Gamma(1+\alpha)} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{\alpha} p(x) f^{(2 \alpha)}(x)(d x)^{\alpha} \\
= & \Gamma(1+\alpha)(b-a)^{\alpha} f\left(\frac{a+b}{2}\right)+\Gamma(1+\alpha)(b-a)^{\alpha} \frac{f(a)+f(b)}{2^{\alpha}} \\
& -\frac{2^{\alpha}(\Gamma(1+\alpha))^{2}}{\Gamma(1+\alpha)} \int_{a}^{b} f(x)(d x)^{\alpha} .
\end{aligned}
$$

If we devide the resulting equality with $2^{\alpha} \Gamma(1+\alpha)(b-a)^{\alpha}$, then we complete the proof.
Theorem 3.5. Suppose that the assumptions of Theorem 3.4 are satisfied, then we have the following inequality

$$
\begin{aligned}
& \left|\frac{1}{2^{\alpha}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x)\right| \\
\leq & \frac{(b-a)^{\left(1+\frac{1}{p}\right) \alpha}}{8^{\alpha} \Gamma(1+\alpha)}(B(p+1, p+1))^{\frac{1}{p}}\left\|f^{(2 \alpha)}(x)\right\|_{q}
\end{aligned}
$$

where, $p, q>1, \frac{1}{p}+\frac{1}{q}=1,\left\|f^{(2 \alpha)}\right\|_{q}$ is defined by

$$
\left\|f^{(2 \alpha)}\right\|_{q}=\left(\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b}\left|f^{(2 \alpha)}(x)\right|^{q}(d x)^{\alpha}\right)^{\frac{1}{q}}
$$

and $B(x, y)$ is defined by

$$
B(x, y)=\frac{1}{\Gamma(1+\alpha)} \int_{0}^{1} t^{(x-1) \alpha}(1-t)^{(y-1) \alpha}(d t)^{\alpha}
$$

Proof. Taking madulus in (3.9) and using generalized Hölder inequality, we have

$$
\begin{align*}
& \left|\frac{1}{2^{\alpha}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x)\right| \tag{3.10}\\
\leq & \left.\frac{1}{2^{\alpha}(b-a)^{\alpha}(\Gamma(1+\alpha))^{2}} \int_{a}^{b}\left|x-\frac{a+b}{2}\right|^{\alpha}|p(x)| f^{(2 \alpha)}(x) \right\rvert\,(d x)^{\alpha} \\
\leq & \frac{1}{2^{\alpha}(b-a)^{\alpha} \Gamma(1+\alpha)}\left(\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b}\left|f^{(2 \alpha)}(x)\right|^{q}(d x)^{\alpha}\right)^{\frac{1}{q}} \\
& \times\left(\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b}\left|x-\frac{a+b}{2}\right|^{p \alpha}|p(x)|^{p}(d x)^{\alpha}\right)^{\frac{1}{p}} \\
= & \frac{\left\|f^{(2 \alpha)}\right\|_{q}}{2^{\alpha}(b-a)^{\alpha} \Gamma(1+\alpha)}\left(\frac{1}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-x\right)^{p \alpha}(x-a)^{p \alpha}(d x)^{\alpha}\right. \\
& \left.+\frac{1}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b}\left(x-\frac{a+b}{2}\right)^{p \alpha}(b-x)^{p \alpha}(d x)^{\alpha}\right)^{\frac{1}{p}} \\
= & \frac{\left\|f^{(2 \alpha)}\right\|_{q}}{2^{\alpha}(b-a)^{\alpha} \Gamma(1+\alpha)}\left(K_{1}+K_{2}\right)^{\frac{1}{p}} .
\end{align*}
$$

For calculating integral K_{1}, using changing variable with $x=(1-t) a+t \frac{a+b}{2}$, we obtain

$$
\begin{align*}
K_{1} & =\frac{1}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-x\right)^{p \alpha}(x-a)^{p \alpha}(d x)^{\alpha} \tag{3.11}\\
& =\left(\frac{b-a}{2}\right)^{(2 p+1) \alpha} \frac{1}{\Gamma(1+\alpha)} \int_{0}^{1}(1-t)^{p \alpha} t^{p \alpha}(d t)^{\alpha} \\
& =\left(\frac{b-a}{2}\right)^{(2 p+1) \alpha} B(p+1, p+1) .
\end{align*}
$$

Similarliy, using changing variable with $x=(1-t) \frac{a+b}{2}+t b$, we have

$$
\begin{align*}
K_{2} & =\frac{1}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b}\left(x-\frac{a+b}{2}\right)^{p \alpha}(b-x)^{p \alpha}(d x)^{\alpha} \tag{3.12}\\
& =\left(\frac{b-a}{2}\right)^{(2 p+1) \alpha} B(p+1, p+1)
\end{align*}
$$

Putting (3.11) and (3.12) in (3.10), we obtain

$$
\begin{aligned}
& \left|\frac{1}{2^{\alpha}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x)\right| \\
\leq & \frac{\left\|f^{(2 \alpha)}\right\|_{q}}{2^{\alpha}(b-a)^{\alpha} \Gamma(1+\alpha)}\left(2^{\alpha} \frac{(b-a)^{(2 p+1) \alpha}}{2^{(2 p+1) \alpha}} B(p+1, p+1)\right)^{\frac{1}{p}} \\
= & \frac{(b-a)^{\left(1+\frac{1}{p}\right) \alpha}}{8^{\alpha} \Gamma(1+\alpha)}(B(p+1, p+1))^{\frac{1}{p}}\left\|f^{(2 \alpha)}\right\|_{q}
\end{aligned}
$$

which completes the proof.
Theorem 3.6. The assumptions of Theorem 3.4 are satisfied. If the mapping

$$
\varphi(x)= \begin{cases}(a-x)^{\alpha}\left(x-\frac{a+b}{2}\right)^{\alpha} f^{(2 \alpha)}(x), & {\left[a, \frac{a+b}{2}\right)} \\ (b-x)^{\alpha}\left(x-\frac{a+b}{2}\right)^{\alpha} f^{(2 \alpha)}(x), & {\left[\frac{a+b}{2}, b\right]}\end{cases}
$$

is a generalized convex, then we have the inequality

$$
\begin{aligned}
& \frac{(b-a)^{2 \alpha}}{64^{\alpha}(\Gamma(1+\alpha))^{2}}\left[f^{(2 \alpha)}\left(\frac{3 a+b}{4}\right)+f^{(2 \alpha)}\left(\frac{a+3 b}{4}\right)\right] \\
\leq & \frac{1}{2^{\alpha}}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
\leq & \frac{(b-a)^{2 \alpha}}{128^{\alpha}(\Gamma(1+\alpha))^{2}}\left[f^{(2 \alpha)}\left(\frac{3 a+b}{4}\right)+f^{(2 \alpha)}\left(\frac{a+3 b}{4}\right)\right] .
\end{aligned}
$$

Proof. Applying the first inequality (2.1) for the mapping φ, we get

$$
\begin{align*}
& \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{2^{\alpha}}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}} \varphi(x)(d x)^{\alpha} \tag{3.13}\\
\geq & \varphi\left(\frac{3 a+b}{4}\right)=\frac{(b-a)^{2 \alpha}}{16^{\alpha}} f^{(2 \alpha)}\left(\frac{3 a+b}{4}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{2^{\alpha}}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b} \varphi(x)(d x)^{\alpha} \tag{3.14}\\
\geq & \varphi\left(\frac{a+3 b}{4}\right)=\frac{(b-a)^{2 \alpha}}{16^{\alpha}} f^{(2 \alpha)}\left(\frac{a+3 b}{4}\right) .
\end{align*}
$$

Applying the inequality (3.8) for the mapping φ, we have

$$
\begin{align*}
& \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{2^{\alpha}}{\Gamma(1+\alpha)} \int_{a}^{\frac{a+b}{2}} \varphi(x)(d x)^{\alpha} \tag{3.15}\\
\leq & \frac{1}{2^{\alpha}}\left[\varphi\left(\frac{3 a+b}{4}\right)+\frac{\varphi(a)+\varphi\left(\frac{a+b}{2}\right)}{2^{\alpha}}\right] \\
= & \frac{(b-a)^{2 \alpha}}{32^{\alpha}} f^{(2 \alpha)}\left(\frac{3 a+b}{4}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{2^{\alpha}}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b} \varphi(x)(d x)^{\alpha} \tag{3.16}\\
\leq & \frac{1}{2^{\alpha}}\left[\varphi\left(\frac{a+3 b}{4}\right)+\frac{\varphi\left(\frac{a+b}{2}\right)+\varphi(b)}{2^{\alpha}}\right] \\
= & \frac{(b-a)^{2 \alpha}}{32^{\alpha}} f^{(2 \alpha)}\left(\frac{a+3 b}{4}\right)
\end{align*}
$$

Adding the inequalities (3.13)-(3.16) and from Theorem 3.4, we write

$$
\begin{aligned}
& \frac{(b-a)^{2 \alpha}}{16^{\alpha}}\left[f^{(2 \alpha)}\left(\frac{3 a+b}{4}\right)+f^{(2 \alpha)}\left(\frac{a+3 b}{4}\right)\right] \\
\leq & \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{2^{\alpha}}{\Gamma(1+\alpha)} \int_{\frac{a+b}{2}}^{b} \varphi(x)(d x)^{\alpha} \\
= & 4^{\alpha}(\Gamma(1+\alpha))^{2}\left[\frac{1}{2^{\alpha}}\left(f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2^{\alpha}}\right)-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x)\right] \\
\leq & \frac{(b-a)^{2 \alpha}}{32^{\alpha}}\left[f^{(2 \alpha)}\left(\frac{3 a+b}{4}\right)+f^{(2 \alpha)}\left(\frac{a+3 b}{4}\right)\right] .
\end{aligned}
$$

If we devide the resulting inequality with $4^{\alpha}(\Gamma(1+\alpha))^{2}$, then we complete the proof.

References

[1] P. S. Bullen, Error estimates for some elementary quadrature rules, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1978) 602-633, (1979) 97-103.
[2] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) (1998), 91-95.
[3] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[4] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (5) (1998), 91-95.
[5] A. El Farissi, Z. Latreuch and B. Belaidi, Hadamard-Type inequalities for twice diffrentiable functions, RGMIA Research Report Collection, 12 (1) (2009), Art. ID 6.
[6] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4 (3) (2010), 365-369.
[7] X. Gao, A note on the Hermite-Hadamard inequality, JMI Jour. Math. Ineq.. (4) (2010), 587-591.
[8] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
[9] U. S. Kirmaci and M. E. Ozdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math Comput. 153 (2004), 361-368.
[10] U. S. Kirmaci and R. Dikici, On some Hermite-Hadamard type inequalities for twice differentiable mappings and applications, Tamkang J. Math. 44 (1) (2013), 41-51.
[11] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 147 (2004) 137-146.
[12] D. S. Mitrinovic, J. E. Pečarič, and A. M. Fink, Classical and new inequalities in analysis, ser. Math. Appl. (East European Ser.). Dordrecht: Kluwer Academic Publishers Group, vol. 61, 1993.
[13] H. Mo, X. Sui and D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal. 2014 (2014), Art. ID 636751, 7 pages.
[14] M. Z. Sarikaya and H. Yaldiz, On the Hadamard's type inequalities for L-Lipschitzian mapping, Konuralp J. Math. 1 (2) (2013), 33-40.
[15] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.
[16] J. Yang, D. Baleanu and X. J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys. 2013 (2013), Art. ID 632309.
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Konuralp Campus, DüzceTURKEY
${ }^{2}$ Department of Mathematics, Faculty of Science, Bartin University, BARTIN-TURKEy
*Corresponding author: sarikayamz@gmail.com

[^0]: Received $1^{\text {st }}$ December, 2016; accepted $9^{\text {th }}$ February, 2017; published $2^{\text {nd }}$ May, 2017.
 2010 Mathematics Subject Classification. 26D15, 26A51, 52A40, 52A41.
 Key words and phrases. Hermite-Hadamard inequality; local fractional integral; fractal space; generalized convex function.

