
International Journal of Analysis and Applications
ISSN 2291-8639
Volume 13, Number 2 (2017), 198-205
http://www.etamaths.com

BEST PROXIMITY POINTS FOR A NEW CLASS OF GENERALIZED

PROXIMAL MAPPINGS

TAYYAB KAMRAN1, MUHAMMAD USMAN ALI2 MIHAI POSTOLACHE3,4,∗,
ADRIAN GHIURA4 AND MISBAH FARHEEN1

Abstract. The best proximity points are usually used to find the optimal approximate solution

of the operator equation Tx = x, when T has no fixed point. In this paper, we prove some best
proximity point theorems for nonself multivalued operators, following the foot steps of Basha and

Shahzad [Best proximity point theorems for generalized proximal contractions, Fixed Point Theory

Appl., 2012, 2012:42].

1. Introduction

Fixed point theory have an important role in many branches of mathematics such as differential and
integral equations, optimization and variational analysis. This theory mainly concerns with the fixed
point equation Tx = x, where T : A→ B is some nonlinear operator. The solution of this equation is
called a fixed point of the operator T . It is not necessary that the equation has a solution for every
nonlinear operator T . For example this one has no solution when A ∩ B = ∅. In this case we may
find a point x ∈ A which is closest to Tx, that is, the distance between Tx and x is least as compare
to other elements of A. Such a point is called the best proximity point of T . The notion of best
proximity point was initiated by Fan [1] for normed spaces. Eldred and Veeramani [2] generalized
this notion in the context of metric spaces. In literature there are many important best proximity
point theorems in different settings: Jleli et al. and Ali et al. [3,4], for α-ψ-proximal mappings; Akbar
and Gabeleh [5, 6], Derafshpour et al. [7], Di Bari et al. [8], Rezapour et al. [9], Vetro [10], for cyclic
mappings; Alghamdi et al. [11] for mappings in geodesic metric spaces; Al-Thagafi and Shahzad [12],
for Kakutani multimaps; Markin and Shahzad [13], for relatively u-continuous mappings; Nashine et
al. [14], for rational proximal contractions; Akbar and Gabeleh [15], for multivalued non-self mappings;
Choudhury et al. [16] for best proximity point and coupled best proximity point in partially ordered
metric spaces; Shatanawi and Pitea [17], for best proximity points and best proximity coupled points
in complete metric spaces with (P)-property; Jamali and Vaespour [18], for best proximity point for
nonlinear contractions in Menger probabilistic metric spaces; Bejenaru and Pitea [19], for fixed point
and best proximity point theorems in partial metric spaces.

Motivated and inspired by the research introduced above, in this paper we introduce our best
proximity point theorems for nonself multivalued operators, following the foot steps method of Basha
and Shahzad [20].

2. Previous results

Now, we recollect some basic notions, definitions and results which we require subsequently. Let
(X, d) be a metric space. For A,B ⊆ X, dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, d(x,B) =
inf{d(x, b) : b ∈ B}, A0 = {a ∈ A : d(a, b) = dist(A,B) for some b ∈ B}, B0 = {b ∈ B : d(a, b) =
dist(A,B) for some a ∈ A}, while CB(B) is the set of all nonempty closed and bounded subsets of B.

A point x∗ ∈ X is said to be a best proximity point of T : A→ CB(B) if d(x∗, Tx∗) = dist(A,B).
The set B is said to be approximatively compact with respect to the set A, if each {vn} in B with

d(x, vn)→ d(x,B) for some x in A, has a convergent subsequence [20].
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A class of all functions F : (0,∞)→ R satisfying the conditions:
(F1) F is strictly increasing, that is, for each a1, a2 ∈ (0,∞) with a1 < a2, we have F (a1) < F (a2),
(F2) For each sequence {dn} of positive real numbers we have limn→∞ dn = 0 if and only if

limn→∞ F (dn) = −∞,
(F3) For each sequence {dn} of positive real numbers with limn→∞ dn = 0, there exists k ∈ (0, 1)

such that limn→∞ dn
kF (dn) = 0,

is called class F.
A contraction involving a function F ∈ F is called an F -contraction. This class was introduced by

Wardowski in [21]. In time, the functions from this class were used by various authors to generalize
their contractive conditions: Cosentino and Vetro [22]; Minak et al. [23]; Sgroi and Vetro [24]; Paesano
and Vetro [25]; Piri and Kumam [26]; Acar et al. [27]; Batra and Vashistha [28].

Recently, Basha and Shahzad [20] proved the following best proximity point theorem:

Theorem 2.1. Let A and B be nonempty closed subsets of a complete metric space (X, d). Assume
that A0 is nonempty and T : A→ B is a mapping such that for each x1, x2, u1, u2 ∈ A with d(u1, Tx1) =
dist(A,B) = d(u2, Tx2), we have

d(u1, u2) ≤ a1d(x1, x2) + a2d(x1, u1) + a3d(x2, u2) + a4[d(x1, u2) + d(x2, u1)] (2.1)

where a1, a2, a3, a4 ≥ 0 satisfying a1 + a2 + a3 + 2a4 < 1. Further assume that the following conditions
hold:

(i) T (A0) is contained in B0;
(ii) B is approximatively compact with respect to A.
Then T has a best proximity point.

In this paper we introduce some new F type proximal contractions and prove some best proximity
point theorems for such contractions. Our results generalize some existing best proximity point results.
In particular Theorem 2.1 becomes a special case of one of our results (Theorem 3.1).

3. Main results

We begin this section with the following definition.

Definition 3.1. Let A and B be two nonempty subsets of a metric space (X, d). A mapping T : A→
CB(B) is called αF -proximal contraction of Hardy Rogers type if there exist two functions α : A×A→
[0,∞), F ∈ F and a constant τ > 0 such that for each x1, x2, u1, u2 ∈ A and v1 ∈ Tx1, v2 ∈ Tx2 with
α(x1, x2) ≥ 1 and d(u1, v1) = dist(A,B) = d(u2, v2), we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (N(x1, x2)) (3.1)

whenever min{d(u1, u2), N(x1, x2)} > 0, where

N(x1, x2) = a1d(x1, x2) + a2d(x1, u1) + a3d(x2, u2) + a4[d(x1, u2) + d(x2, u1)]

with a1, a2, a3, a4 ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Remark 3.1. By taking F (x) = lnx for each x ∈ (0,∞), one can see that (3.1) reduces to (2.1).
Therefore, (3.1) is a proper generalization/extension of (2.1).

Theorem 3.1. Let A and B be nonempty closed subsets of a complete metric space (X, d). Assume
that A0 is nonempty and T : A → CB(B) is an αF -proximal contraction of Hardy Rogers type and
satisfying the following conditions:

(i) for each x ∈ A0, we have Tx ⊆ B0;
(ii) there exist x1, x2 ∈ A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ 1 and d(x2, v1) = dist(A,B);
(iii) T is continuous, or,
for any sequence {xn} ⊆ A such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for each n ∈ N, we

have α(xn, x) ≥ 1 for each n ∈ N;
(iv) B is approximatively compact with respect to A.
Then T has a best proximity point.



200 KAMRAN, ALI, POSTOLACHE, GHIURA AND FARHEEN

Proof. By hypothesis (ii), we have x1, x2 ∈ A0 and v1 ∈ Tx1 for which

α(x1, x2) ≥ 1 and d(x2, v1) = dist(A,B).

As v2 ∈ Tx2 ⊆ B0, there is x3 ∈ A0 satisfying

d(x3, v2) = dist(A,B).

From (3.1), we get α(x2, x3) ≥ 1 and

τ + F (d(x2, x3)) ≤ F (a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3) + a4[d(x1, x3) + d(x2, x2)])

≤ F (a1d(x1, x2) + a2d(x1, x2) + a3d(x2, x3) + a4[d(x1, x2) + d(x2, x3)])

= F ((a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3)). (3.2)

As F is strictly increasing, from (3.2), we get

d(x2, x3) < (a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(x2, x3).

That is,

(1− a3 − a4)d(x2, x3) < (a1 + a2 + a4)d(x1, x2).

As a1 + a2 + a3 + 2a4 = 1, the above inequality implies that

d(x2, x3) < d(x1, x2).

Thus by (3.2), we have

τ + F (d(x2, x3)) ≤ F (d(x1, x2)). (3.3)

From above we have x2, x3 ∈ A0 and v2 ∈ Tx2 satisfying

α(x2, x3) ≥ 1 and d(x3, v2) = dist(A,B).

As v3 ∈ Tx3 ⊆ B0, there is x4 ∈ A0 such that

d(x4, v3) = dist(A,B).

From (3.1), we get α(x3, x4) ≥ 1 and

τ + F (d(x3, x4)) ≤ F (a1d(x2, x3) + a2d(x2, x3) + a3d(x3, x4) + a4[d(x2, x4) + d(x3, x3)])

≤ F (a1d(x2, x3) + a2d(x2, x3) + a3d(x3, x4) + a4[d(x2, x3) + d(x3, x4)])

= F ((a1 + a2 + a4)d(x2, x3) + (a3 + a4)d(x3, x4)).

After simplification we get

τ + F (d(x3, x4)) ≤ F (d(x2, x3)). (3.4)

From (3.4) and (3.3), we obtain

F (d(x3, x4)) ≤ F (d(x1, x2))− 2τ.

Continuing the same process we get sequences {xn} in A0 and {vn} in B0 such that vn ∈ Txn,
α(xn, xn+1) ≥ 1, d(xn+1, vn) = dist(A,B) and

F (d(xn, xn+1)) ≤ F (d(x1, x2))− nτ for each n ∈ N \ {1}. (3.5)

Letting n → ∞ in (3.5), we get limn→∞ F (d(xn, xn+1)) = −∞. Thus, by property (F2), we have
limn→∞ d(xn, xn+1) = 0. Let dn = d(xn, xn+1) for each n ∈ N. From (F3) there exists k ∈ (0, 1) such
that

lim
n→∞

dknF (dn) = 0.

From (3.5) we have

dknF (dn)− dknF (d1) ≤ −dknnτ ≤ 0 for each n ∈ N. (3.6)

Letting n→∞ in (3.6), we get

lim
n→∞

ndkn = 0.

This implies that there exists n1 ∈ N such that ndkn ≤ 1 for each n ≥ n1. Thus, we have

dn ≤
1

n1/k
, for each n ≥ n1. (3.7)
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To prove that {xn} is a Cauchy sequence in A, consider m,n ∈ N with m > n > n1. By using the
triangular inequality and (3.7), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

di ≤
∞∑
i=n

di ≤
∞∑
i=n

1

i1/k
.

Since
∑∞

i=1
1

i1/k
is convergent series, we get limn→∞ d(xn, xm) = 0, which implies that {xn} is a Cauchy

sequence in A. Since A is closed subset of a complete metric space, there exists x∗ in A such that
xn → x∗ as n → ∞. As d(xn+1, vn) = dist(A,B), we have limn→∞ d(x∗, vn) = dist(A,B). As B is
approximatively compact with respect to A, we get a subsequence {vnk

} of {vn} with vnk
∈ Txnk

that
converges to v∗. Thus,

d(x∗, v∗) = lim
k→∞

d(xnk
, vnk

) = dist(A,B).

By hypothesis (iii), when T is continuous, we get v∗ ∈ Tx∗. Hence dist(A,B) ≤ d(x∗, Tx∗) ≤
d(x∗, v∗) = dist(A,B). This implies that dist(A,B) = d(x∗, Tx∗). Now we prove the theorem for
second assumption of hypothesis (iii), that is, α(xn, x

∗) ≥ 1 for each n ∈ N. Since x∗ ∈ A0, then
Tx∗ ⊆ B0. This implies that for z∗ ∈ Tx∗, we have w∗ ∈ A0 such that d(w∗, z∗) = dist(A,B). Further
note that d(xn+1, vn) = dist(A,B).

We claim that d(x∗, w∗) = 0.
Suppose on contrary that d(x∗, w∗) 6= 0 Now from (3.1), we get

d(xn+1, w
∗) < a1d(xn, x

∗) + a2d(xn, xn+1) + a3d(x∗, w∗) + a4[d(xn, w
∗) + d(x∗, xn+1)].

Letting n→∞, we get

d(x∗, w∗) ≤ (a3 + a4)d(x∗, w∗),

which is only possible when d(x∗, w∗) = 0. Thus we get

dist(A,B) ≤ d(x∗, Tx∗) ≤ d(x∗, z∗) = dist(A,B),

and this completes the proof. �

Example 3.1. Let X = R × R be endowed with a metric d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|
for each x, y ∈ X. Take A = {(0, x) : −1 ≤ x ≤ 1} and B = {(1, x) : −1 ≤ x ≤ 1}. Define

T : A→ CB(B), T (0, x) =


{(

1,
x+ 1

2

)}
if x ≥ 0

{(1, x), (1, x2)} otherwise,

and

α : A×A→ [0,∞), α((0, x), (0, y)) =

{
1 if x, y ∈ [0, 1]

0 otherwise.

Take F (x) = lnx for each x ∈ (0,∞) and τ = 1
2 . It is easy to see that T is αF -proximal contraction

of Hardy Rogers type with a0 = 1 and a2 = a3 = a4 = 0. For each x ∈ A0, we have Tx ⊆ B0.
Also for x1 = (0, 12 ) ∈ A0 and v1 = (1, 34 ) ∈ Tx1, we have x2 = (0, 34 ) such that α(x1, x2) = 1 and
d(x2, v1) = dist(A,B). Moreover, for any sequence {xn} ⊆ A such that xn → x as n → ∞ and
α(xn, xn+1) = 1 for each n ∈ N, we have α(xn, x) = 1 for each n ∈ N. Further note that B is
approximatively compact with respect to A, therefore, by Theorem 3.1, T has a best proximity point.

Remark 3.2. Note that Theorem 2.1 is not applicable in the above example. Therefore, our theorem
properly generalizes/extends Theorem 2.1.

Definition 3.2. Let A and B be two nonempty subsets of a metric space (X, d). A mapping T : A→
CB(B) is called αF -proximal contraction of Ciric type if there exist two functions α : A×A→ [0,∞),
continuous F in F and a constant τ > 0 such that for each x1, x2, u1, u2 ∈ A and v1 ∈ Tx1, v2 ∈ Tx2
with α(x1, x2) ≥ 1 and d(u1, v1) = dist(A,B) = d(u2, v2), we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (M(x1, x2)) (3.8)
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whenever min{d(u1, u2),M(x1, x2)} > 0, where

M(x1, x2) = max
{
d(x1, x2), d(x1, u1), d(x2, u2),

d(x1, u2) + d(x2, u1)

2

}
.

Theorem 3.2. Let A and B be nonempty closed subsets of a complete metric space (X, d). Assume
that A0 is nonempty and T : A → CB(B) is an αF -proximal contraction of Ciric type satisfying the
following conditions:

(i) for each x ∈ A0, we have Tx ⊆ B0;
(ii) there exist x1, x2 ∈ A0 and v1 ∈ Tx1 such that α(x1, x2) ≥ 1 and d(x2, v1) = dist(A,B);
(iii) T is continuous, or,
for any sequence {xn} ⊆ A such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for each n ∈ N, we

have α(xn, x) ≥ 1 for each n ∈ N;
(iv) B is approximatively compact with respect to A.
Then T has a best proximity point.

Proof. By hypothesis (ii), we have x1, x2 ∈ A0 and v1 ∈ Tx1 for which

α(x1, x2) ≥ 1 and d(x2, v1) = dist(A,B).

As v2 ∈ Tx2 ⊆ B0, there is x3 ∈ A0 satisfying

d(x3, v2) = dist(A,B).

From (3.8), we get α(x2, x3) ≥ 1 and

τ + F (d(x2, x3)) ≤ F
(

max
{
d(x1, x2), d(x1, x2), d(x2, x3),

d(x1, x3) + d(x2, x2)

2

})
= F

(
max{d(x1, x2), d(x2, x3)}

)
= F (d(x1, x2)), (3.9)

otherwise we have a contradiction. From above we have x2, x3 ∈ A0 and v2 ∈ Tx2 satisfying

α(x2, x3) ≥ 1 and d(x3, v2) = dist(A,B).

As v3 ∈ Tx3 ⊆ B0, there is x4 ∈ A0 such that

d(x4, v3) = dist(A,B).

From (3.8), we get α(x3, x4) ≥ 1 and

τ + F (d(x3, x4)) ≤ F
(

max
{
d(x2, x3), d(x2, x3), d(x3, x4),

d(x2, x4) + d(x3, x3)

2

})
= F

(
max{d(x2, x3), d(x3, x4)}

)
= F (d(x2, x3)), (3.10)

otherwise we have a contradiction. From (3.9) and (3.10), we have

F (d(x3, x4)) ≤ F (d(x1, x2))− 2τ.

Continuing the same process we get sequences {xn} in A0 and {vn} in B0 such that vn ∈ Txn,
α(xn, xn+1) ≥ 1, d(xn+1, vn) = dist(A,B) and

F (d(xn, xn+1)) ≤ F (d(x1, x2))− nτ for each n ∈ N− {1}.
Working on the same lines as the proof of Theorem 3.1 is done.

We prove that {xn} is a Cauchy sequence in A.
Since A is closed subset of a complete metric space, there exists x∗ in A such that xn → x∗ as

n → ∞. As d(xn+1, vn) = dist(A,B). Thus, we have limn→∞ d(x∗, vn) = dist(A,B). Since B is
approximatively compact with respect to A, we get a subsequence {vnk

} of {vn} with vnk
∈ Txnk

that
converges to v∗. Thus,

d(x∗, v∗) = lim
k→∞

d(xnk+1, vnk
) = dist(A,B).

By hypothesis (iii), when T is continuous, we get v∗ ∈ Tx∗. Hence dist(A,B) ≤ d(x∗, Tx∗) ≤
d(x∗, v∗) = dist(A,B). Now assume that we have α(xn, x

∗) ≥ 1 for each n ∈ N. Since x∗ ∈ A0, then
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Tx∗ ⊆ B0. This implies that for z∗ ∈ Tx∗, we have w∗ ∈ A0 such that d(w∗, z∗) = dist(A,B). Further
note that d(xn+1, vn) = dist(A,B).

We claim that d(x∗, w∗) = 0.
On contrary assume that d(x∗, w∗) 6= 0. Now, from (3.8), we get

τ + F (d(xn+1, w
∗)) < F

(
max

{
d(xn, x

∗), d(xn, xn+1), d(x∗, w∗),
d(xn, w

∗) + d(xn+1, x
∗)

2

)
.

Letting n→∞, we obtain

τ + F (d(x∗, w∗)) ≤ F (d(x∗, w∗)),

which is not possible. Hence, we have d(x∗, w∗) = 0. Thus we get

dist(A,B) ≤ d(x∗, Tx∗) ≤ d(x∗, z∗) = dist(A,B),

and this completes the proof. �

Example 3.2. Let X = R × R be endowed with a metric d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|
for each x, y ∈ X. Take A = {(0, x) : −1 ≤ x ≤ 1} and B = {(1, x) : −1 ≤ x ≤ 1}. Define

T : A→ CB(B), T (0, x) =

{
{(1, x3 ), (1, x2 )} if x ≥ 0

{(1, x), (1, x2)} otherwise,

and

α : A×A→ [0,∞) α((0, x), (0, y)) =

{
1 if x, y ∈ [0, 1]

0 otherwise.

Take F (x) = lnx for each x ∈ (0,∞) and τ = 1
2 . It is easy to see that T is αF -proximal contraction

of Ciric type. For each x ∈ A0, we have Tx ⊆ B0. Also for x1 = (0, 13 ) ∈ A0 and v1 = (1, 16 ) ∈ Tx1,

we have x2 = (0, 16 ) such that α(x1, x2) = 1 and d(x2, v1) = dist(A,B). Moreover, for any sequence
{xn} ⊆ A such that xn → x as n → ∞ and α(xn, xn+1) = 1 for each n ∈ N, we have α(xn, x) = 1
for each n ∈ N. Further, note that B is approximatively compact with respect to A. Therefore, by
Theorem 3.2, T has a best proximity point.

4. Consequences

By taking α(x, y) = 1 for each x, y ∈ A, the following two theorems immediately follow from our
results.

Theorem 4.1. Let A and B be nonempty closed subsets of a complete metric space (X, d). Assume
that A0 is nonempty and T : A → CB(B) is a mapping for which there exist a function F ∈ F and
a constant τ > 0 such that for each x1, x2, u1, u2 ∈ A and v1 ∈ Tx1, v2 ∈ Tx2 with d(u1, v1) =
dist(A,B) = d(u2, v2), we have

τ + F (d(u1, u2)) ≤ F (N(x1, x2))

whenever min{d(u1, u2), N(x1, x2)} > 0, where

N(x1, x2) = a1d(x1, x2) + a2d(x1, u1) + a3d(x2, u2) + a4[d(x1, u2) + d(x2, u1)]

with a1, a2, a3, a4 ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 6= 1. Further assume that the following
conditions hold:

(i) for each x ∈ A0, we have Tx ⊆ B0;
(ii) B is approximatively compact with respect to A.
Then T has a best proximity point.

Theorem 4.2. Let A and B be nonempty closed subsets of a complete metric space (X, d). Assume
that A0 is nonempty and T : A → CB(B) is a mapping for which there exist a continuous function
F ∈ F and a constant τ > 0 such that for each x1, x2, u1, u2 ∈ A and v1 ∈ Tx1, v2 ∈ Tx2 with
d(u1, v1) = dist(A,B) = d(u2, v2), we have

τ + F (d(u1, u2)) ≤ F (M(x1, x2))
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whenever min{d(u1, u2),M(x1, x2)} > 0, where

M(x1, x2) = max
{
d(x1, x2), d(x1, u1), d(x2, u2),

d(x1, u2) + d(x2, u1)

2

}
.

Further assume that the following conditions hold:
(i) for each x ∈ A0, we have Tx ⊆ B0;
(ii) B is approximatively compact with respect to A.
Then T has a best proximity point.

When we take X = A = B, we get the following fixed point theorems from our results:

Theorem 4.3. Let (X, d) be a complete metric space. Assume T : X → CB(X) is a mapping for
which there are two functions α : A × A → [0,∞), F ∈ F and a constant τ > 0 such that for each
x1, x2 ∈ X and u1 ∈ Tx1, u2 ∈ Tx2 with α(x1, x2) ≥ 1, we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (N(x1, x2))

whenever min{d(u1, u2), N(x1, x2)} > 0, where

N(x1, x2) = a1d(x1, x2) + a2d(x1, u1) + a3d(x2, u2) + a4[d(x1, u2) + d(x2, u1)]

with a1, a2, a3, a4 ≥ 0 satisfying a1+a2+a3+2a4 = 1 and a3 6= 1. Further assume that T is continuous,
or, for any sequence {xn} ⊆ X such that xn → x as n→∞ and α(xn, xn+1) ≥ 1 for each n ∈ N, we
have α(xn, x) ≥ 1 for each n ∈ N. Then T has a fixed point.

Theorem 4.4. Let (X, d) be a complete metric space. Assume T : X → CB(X) is a mapping for which
there is α : A×A→ [0,∞), continuous function, F in F and τ > 0 such that for each x1, x2 ∈ X and
u1 ∈ Tx1, u2 ∈ Tx2 with α(x1, x2) ≥ 1, we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (M(x1, x2))

whenever min{d(u1, u2),M(x1, x2)} > 0, where

M(x1, x2) = max
{
d(x1, x2), d(x1, u1), d(x2, u2),

d(x1, u2) + d(x2, u1)

2

}
.

Further assume that T is continuous, or, for any sequence {xn} ⊆ X such that xn → x as n→∞ and
α(xn, xn+1) ≥ 1 for each n ∈ N, we have α(xn, x) ≥ 1 for each n ∈ N. Then T has a fixed point.
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