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BASIC THEORY FOR DIFFERENTIAL EQUATIONS WITH UNIFIED

REIMANN-LIOUVILLE AND HADAMARD TYPE FRACTIONAL DERIVATIVES

BAŞAK KARPUZ1,∗, UMUT M. ÖZKAN2, TUĞBA YALÇIN2 AND MUSTAFA K. YILDIZ2

Abstract. In this paper, we extend the definition of the fractional integral and derivative intro-

duced in [Appl. Math. Comput. 218 (2011)] by Katugampola, which exhibits nice properties only

for numbers whose real parts lie in [0, 1]. We prove some interesting properties of the fractional inte-
grals and derivatives. Based on these properties, the following concepts for the new type fractional

differential equations are explored: Existence and uniqueness of solutions; Solutions of autonomous

fractional differential equations; Dependence on the initial conditions; Green’s function; Variation of
parameters formula.

1. Introduction

The history of fractional calculus was originated in the seventeenth century, when the half-order
derivative was discussed by Leibnitz in 1695. Since then, this theory became one of the interesting
subjects to mathematicians as well as biologists, chemists, economists, engineers and physicists. There
are several books written on this subject, for instance [3,9–11,13]. [13] is one of the most comprehensive
main tools of the subject, where several types of derivatives (such as Riemann-Liouville, Hadamard,
Grünwald-Letnikov, Riesz and Caputo) were introduced.

Derivatives of fractional order are defined by integrals with a fractional order kernel. Reimann-
Liouville ([3,9–11,13]) and Hadamard ([1,2,7,8,12]) type fractional integrals are two of the most studied
forms of fractional integrals. The Riemann–Liouville fractional integral of order α for a function f is
defined by ∫ t

s

[t− η]α−1

Γ(α)
f(η)dη for t > s and α > 0, (1.1)

which is motivated by the Cauchy integral formula∫ t

s

∫ η1

s

· · ·
∫ ηn−1

s

f(ηn)dηn · · · dη2dη1 =

∫ t

s

[t− η]n−1

Γ(n)
f(η)dη

for t > s and n ∈ N. Another one is the Hadamard fractional integral introduced in [4], which reads
as ∫ t

s

1

η1

∫ η1

s

1

η2
· · ·
∫ ηn−1

s

f(ηn)

ηn
dηn · · · dη2dη1 =

1

Γ(n)

∫ t

s

[
ln

(
t

η

)]n−1
f(η)

η
dη

for t > s and n ∈ N, from which the following fractional integral of f is deduced by∫ t

s

1

Γ(α)

[
ln

(
t

η

)]α−1
f(η)

η
dη for t > s and α > 0. (1.2)

In [5], Katugampola unified the Reimann-Liouville fractional integral and the Hadamard fractional
integral by ∫ t

s

[tρ − ηρ]α−1ηρ−1

ρα−1Γ(α)
f(η)dη for t > s and α > 0, (1.3)
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where ρ > 0, which we will call as the Reimann-Liouville-Hadamard (RLH) fractional integral. As

limρ→0+
tρ−sρ
ρ = ln( ts ), we see that (1.3) with ρ = 1 and ρ→ 0+ contains (1.1) and (1.2), respectively.

This fractional integral has also been extended to fractional derivative in [6], which holds “nicely”
for α with Re(α) ∈ (0, 1) (see [6, § 3]). Motivated by the definition of fractional order derivatives
given in [6], we will give a new extended the definition for arbitrary positive numbers. Based on this
fractional derivative, we will study important properties of the fractional differential equations (FDE)
defined with this new type of derivatives. The paper covers the following concepts:

• Existence and uniqueness of solutions to FDEs
• Solutions of autonomous FDEs
• Dependence of solutions on the initial conditions
• Green’s function for RLH FDEs
• Variation of parameters formula

The paper is organized as follows. In § 2, we give the basic definitions and related auxiliary results.
§ 3 includes the fundamental properties of the fractional integral/derivative, which will be required in
the latter sections. In § 4, we will provide existence and uniqueness for solutions of differential equations
of the new type of fractional derivative. By using direct substitution technique and the Picard iterates,
we will consider autonomous type fractional differential equations in § 5. In § 6, we will provide a
result on dependence of the initial conditions. § 7 is dedicated to the concept of Green’s function and
the variation of parameters formula for the new type fractional differential equations. Finally, in § 8,
we present some directions for future research and make our final discussion to conclude the paper.

2. Definitions and Auxiliary Results

Let us first introduce the kernel function Kαρ : R×R→ C, where α ∈ C\Z−0 and ρ ∈ R+, defined by

Kαρ (t, s) :=
[tρ − sρ]α−1sρ−1

ρα−1Γ(α)
for s, t ∈ R. (2.1)

We assume for convenience Kαρ (t, s) ≡ 0 for α ∈ Z−0 . Also, for n ∈ N, k ∈ {1, 2, · · · , n} and ρ ∈ R+,
we let

An,k(ρ) :=


[1− (n− 1)ρ]An−1,1(ρ), k = 1

An−1,k−1(ρ) + [k − (n− 1)ρ]An−1,k(ρ), k = 2, 3, · · · , n− 1

1, k = n.

(2.2)

Definition 2.1 (Cf. [5]). Let α ∈ R, ρ ∈ R+ and f : (0,∞) → R. We define the α-order fractional
integration of f by

[
J αρ f

]
(t) :=



∫ t

0

Kαρ (t, η)f(η)dη, α ∈ R\Z−0
f(t), α = 0
(−α)∑
i=1

A(−α),i(ρ)

t(−α)ρ−i

(
d

dt

)i
f(t), α ∈ Z−

(2.3)

for t > 0.

Remark 2.1. One can show that An,k(1) = δn,k, where δ is Kronecker’s delta. Hence, J αρ f = f (−α)

for α ∈ Z−.

Example 2.1. For α ∈ R+
0 , ν ∈ (−1,∞) and ρ ∈ R+, we have

[
J αρ ∗ρν

]
(t) =

Γ(ν + 1)

ραΓ(ν + α+ 1)
tρ(ν+α) for t > 0.
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The proof is trivial for α = 0. We let α ∈ R+ and compute for t > 0 that

[
J α∗ρν

]
(t) =

∫ t

0

Kαρ (t, η)ηρνdη =

∫ t

0

[tρ − ηρ]α−1ηρ−1

ρα−1Γ(α)
ηρνdη

=
tρ(α+ν)

ραΓ(α)

∫ 1

0

[1− ζ]α−1ζνdζ =
tρ(α+ν)

ραΓ(α)
B(α, ν + 1)

=
Γ(ν + 1)

ραΓ(α+ ν + 1)
tρ(α+ν).

We proceed by recalling some important properties of the kernel K.

Lemma 2.1. The following basic properties of the kernel K are true.

(i)

∫ t

s

Kαρ (t, η)Kβρ (η, s)dη = Kα+β
ρ (t, s) for t ≥ s ≥ 0 and α, β ∈ R+.

(ii) tρ−1Kαρ (t, s) = (−1)αsρ−1Kαρ (s, t) for s, t ∈ R and α ∈ C.

(iii)
∂

∂t
Kα+1
ρ (t, s) = tρ−1Kαρ (t, s) for s, t ∈ R and α ∈ C\Z−0 .

(iv)
∂

∂s

Kα+1
ρ (t, s)

sρ−1
= −Kαρ (t, s) for s ∈ R\{0}, t ∈ R and α ∈ C\Z−0 .

Proof. (i) Then, we compute for t ≥ s ≥ 0 that

∫ t

s

Kαρ (t, η)Kβρ (η, s)dη =

∫ t

s

[tρ − ηρ]α−1ηρ−1

ρα−1Γ(α)

[ηρ − sρ]β−1sρ−1

ρβ−1Γ(β)
dη

=
1

ρα+β−2Γ(α)Γ(β)

∫ t

s

[tρ − ηρ]α−1ηρ−1[ηρ − sρ]β−1sρ−1dη

=
[tρ − sρ]α+β−1sρ−1

ρα+β−1Γ(α)Γ(β)

∫ 1

0

[1− ζ]α−1ζβ−1dζ

=
[tρ − sρ]α+β−1sρ−1

ρα+β−1Γ(α)Γ(β)
B(α, β)

=
[tρ − sρ]α+β−1sρ−1

ρα+β−1Γ(α+ β)
= Kα+β

ρ (t, s).

(ii) The proof is trivial and thus we omit it here.
(iii) For t ≥ s ≥ 0, we have

∂

∂t
Kα+1
ρ (t, s) =

∂

∂t

[tρ − sρ]αsρ−1

ραΓ(α+ 1)
=
αρtρ−1[tρ − sρ]α−1sρ−1

ραΓ(α+ 1)

=
tρ−1[tρ − sρ]α−1sρ−1

ρα−1Γ(α)
= tρ−1Kαρ (t, s).

(iv) The proof can be given similar to that of (iii). �

Lemma 2.2. Note that for α ∈ R, we have

[
J αρ f

]
(t) =

1

tρ−1

d

dt
[J α+1
ρ f ](t) for t > 0. (2.4)

Proof. We proceed with the following three distinct cases.



REIMANN-LIOUVILLE AND HADAMARD TYPE FRACTIONAL DERIVATIVES 219

• Let α ∈ R\Z−. Then, we have for t > 0 that

d

dt

[
J α+1
ρ f

]
(t) =

d

dt

∫ t

0

Kα+1
ρ (t, η)f(η)dη =

d

dt

∫ t

0

[tρ − ηρ]αηρ−1

ραΓ(α+ 1)
f(η)dη

=

∫ t

0

d

dt

[tρ − ηρ]αηρ−1

ραΓ(α+ 1)
f(η)dη +

[tρ − tρ]αηρ−1

ραΓ(α+ 1)
f(t)

=αρtρ−1

∫ t

0

[tρ − ηρ]α−1ηρ−1

ραΓ(α+ 1)
f(η)dη

=tρ−1

∫ t

0

[tρ − ηρ]α−1ηρ−1

ρα−1Γ(α)
f(η)dη

=tρ−1
[
J αρ f

]
(t).

• Let α = −1. Then,

d

dt
[J 0
ρ f ](t) =

d

dt
f(t) = tρ−1 1

tρ−1

d

dt
f(t) = tρ−1

[
J−1
ρ f

]
(t) for t > 0.

• Let α ∈ {· · · ,−3,−2}. Then, putting n := −α for simplicity, we compute for t > 0 that

d

dt

[
J α+1
ρ f

]
(t) =

d

dt

n−1∑
i=1

An−1,i

t(n−1)ρ−i

(
d

dt

)i
f(t) =

n−1∑
i=1

d

dt

An−1,i

t(n−1)ρ−i

(
d

dt

)i
f(t)

=

n−1∑
i=1

[
An−1,i

t(n−1)ρ−i

(
d

dt

)i+1

− [(n− 1)ρ− i] An−1,i

t(n−1)ρ−i+1

(
d

dt

)i]
f(t)

=tρ−1
n−1∑
i=1

[
An−1,i

tnρ−(i+1)

(
d

dt

)i+1

− [(n− 1)ρ− i]An−1,i

tnρ−i

(
d

dt

)i]
f(t)

=tρ−1

[
n−1∑
i=1

An−1,i

tnρ−(i+1)

(
d

dt

)i+1

f(t)−
n−1∑
i=1

[(n− 1)ρ− i]An−1,i

tnρ−i

(
d

dt

)i
f(t)

]

=tρ−1

[
n∑
i=2

An−1,i−1

tnρ−i

(
d

dt

)i
f(t)−

n−1∑
i=1

[(n− 1)ρ− i]An−1,i

tnρ−i

(
d

dt

)i
f(t)

]

=tρ−1

[
An−1,n−1

tn(ρ−1)

(
d

dt

)n
f(t) +

n−1∑
i=2

An−1,i−1

tnρ−i

(
d

dt

)i
f(t)

−
n−1∑
i=2

(
(n− 1)ρ− i

)An−1,i

tnρ−i

(
d

dt

)i
f(t)− [(n− 1)ρ− 1]

An−1,1

tnρ−1

d

dt
f(t)

]

=tρ−1

[
An−1,n−1

tn(ρ−1)

(
d

dt

)n
f(t) +

n−1∑
i=2

[
An−1,i−1 − [(n− 1)ρ− i]An−1,i

] 1

tnρ−i

(
d

dt

)i
f(t)

− [(n− 1)ρ− 1]
An−1,1

tnρ−1

d

dt
f(t)

]

=tρ−1

[
An,n
tn(ρ−1)

(
d

dt

)n
f(t) +

n−1∑
i=2

An,i
tnρ−i

(
d

dt

)i
f(t) +

An,1
tnρ−1

d

dt
f(t)

]

=tρ−1
n∑
i=1

An,i
tnρ−i

(
d

dt

)i
f(t) = tρ−1

[
J αρ f

]
(t).

The proof is completed by considering the three cases above. �

Motivated by Lemma 2.2, we suggest the following definition for the fractional derivative of a
function.
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Definition 2.2. Let α ∈ R, ρ ∈ R+ and f : (0,∞) → R. We define the α-order fractional derivative
of f iteratedly by

[
Dαρ f

]
(t) :=


[
J−αρ f

]
(t), α ∈ R−0

1

tρ−1

d

dt

[
Dα−1
ρ f

]
(t), α ∈ R+.

Example 2.2. For α, ν ∈ R+
0 and ρ ∈ R+, we have[
Dαρ ∗ρν

]
(t) =

ραΓ(ν + 1)

Γ(ν − α+ 1)
tρ(ν−α) for t > 0. (2.5)

We will prove this by applying induction on n ∈ Z+
0 for α ∈ [n, n + 1). First, let α ∈ [0, 1), then we

have [
Dαρ ∗ρν

]
(t) =

1

tρ−1

d

dt

[
Dα−1
ρ ∗ρν

]
(t) =

1

tρ−1

d

dt

[
J 1−α
ρ ∗ρν

]
(t)

=
1

tρ−1

d

dt

Γ(ν + 1)

ρ1−αΓ
(
ν + (1− α) + 1

) tρ(ν+(1−α))

=
ραΓ(ν + 1)

Γ(ν − α+ 1)
tρ(ν−α)

for t > 0, where we have applied Example 2.1 in the second line above. This proves validity of (2.5) for
all α ∈ [0, 1). Let n ∈ Z+

0 , and assume now for all α ∈ [n, n+ 1) that (2.5) is true. By Definition 2.2,
we have for any α ∈ [n+ 1, n+ 2) that[

Dαρ ∗ρν
]
(t) =

1

tρ−1

d

dt

[
Dα−1
ρ ∗ρν

]
(t) =

1

tρ−1

d

dt

ρα−1Γ(ν + 1)

Γ
(
ν − (α− 1) + 1

) tρ(ν−(α−1))

=
ραΓ(ν + 1)

Γ(ν − α+ 1)
tρ(ν−α)

for t > 0, which completes the proof.

In the following lemma, we provide a direct form for the definition of the fractional derivative in
terms of the coefficients defined in (2.2).

Lemma 2.3. For α, ρ ∈ R+, we have

[
Dαρ f

]
(t) =

dαe∑
i=1

Adαe,i(ρ)

tdαeρ−i

(
d

dt

)i[
J dαe−αρ f

]
(t) for t > 0.

Proof. We compute that[
Dαρ f

]
(t) =

1

tρ−1

d

dt

[
Dα−1
ρ f

]
(t) =

1

tρ−1

d

dt

[
1

tρ−1

d

dt

[
Dα−2
ρ f

]
(t)

]
=

1

tρ−1

d

dt

[
1

tρ−1

d

dt

[
· · · 1

tρ−1

d

dt

[
Dα−dαeρ f

]
(t) · · ·

]]

=
1

tρ−1

d

dt

[
1

tρ−1

d

dt

[
· · · 1

tρ−1

d

dt

[
J dαe−αρ f

]
(t) · · ·

]]
,

where we have for a total of dαe usual derivatives above. Let us denote g := J dαe−αρ f and use (2.4)
repeatedly inside to outside, then[

Dαρ f
]
(t) =

1

tρ−1

d

dt

[
1

tρ−1

d

dt

[
· · · 1

tρ−1

d

dt

[
J 0
ρ g
]
(t) · · ·

]]

= · · · = 1

tρ−1

d

dt

[
J−dαe+1
ρ g

]
(t) =

[
J−dαeρ g

]
(t),

which completes the proof by using (2.3). �
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3. Properties of the Operators J and D

The main result of this section is the following theorem.

Theorem 3.1. The following properties hold.

(i) Dαρ = J−αρ for α ∈ R.

(ii) J αρ J βρ = J α+β
ρ for α, β ∈ R+

0 .

(iii) DαρDβρ = Dα+β
ρ for α ∈ Z+

0 and β ∈ R+
0 or for α, β ∈ R+\Z+ with (α+ β) 6∈ Z+.

(iv) DαρJ αρ = I for α ∈ R, where I is the identity operator.

(v)
[
J αρ Dαρ f

]
(t) = f(t)−

dαe∑
i=1

tρ(α−i)

ρα−iΓ(α− i+ 1)

[
Dα−iρ f

]
(0+) for α ∈ R+.

Proof. (i) For α ∈ R+
0 , the proof is similar to that of Lemma 2.3, and for α ∈ R−, the proof follows

from Definition 2.2.
(ii) The proof is trivial for α = 0 or β = 0. Hence, we consider below the case where α, β ∈ R+. Then,[

J αρ J βρ f
]
(t) =

∫ t

0

Kαρ (t, η)

∫ η

0

Kβρ (η, ζ)f(ζ)dζdη

=

∫ t

0

∫ η

0

Kαρ (t, η)Kβρ (η, ζ)f(ζ)dζdη

=

∫ t

0

∫ t

ζ

Kαρ (t, η)Kβρ (η, ζ)f(ζ)dηdζ

=

∫ t

0

[∫ t

ζ

Kαρ (t, η)Kβρ (η, ζ)dη

]
f(ζ)dζ

=

∫ t

0

Kα+β
ρ (t, ζ)f(ζ)dζ =

[
J α+β
ρ f

]
(t),

where we have applied Lemma 2.1 (i) for the last line.
(iii) The proof is trivial for α = 0 or β = 0. Below, we consider the case where α 6= 0 and β 6= 0.

(a) For α ∈ Z+ and β ∈ R+, then

[
DαρDβρ f

]
(t) =

1

tρ−1

d

dt

[
1

tρ−1

d

dt

[
· · · 1

tρ−1

d

dt

[
Dβρ f

]
(t) · · ·

]]

= · · · = 1

tρ−1

d

dt

[
Dβ+(α−1)
ρ f

]
(t) =

[
Dβ+α
ρ f

]
(t).

(b) For α, β ∈ R+\Z+ with (α+ β) 6∈ Z+, then DαρDβρ = Dα+β
ρ as in (ii).

(iv) This follows from (i) by using the steps in the proof of (ii) and (iii).
(v) Performing integration by parts, for α ∈ R+, we obtain

[
J α+1
ρ Dαρ f

]
(t) =

[
J α+1
ρ

1

∗ρ−1

[
Dα−1
ρ f

]′]
(t) =

∫ t

0

Kα+1
ρ (t, η)

ηρ−1

[
Dα−1
ρ f

]′
(η)dη

=
Kα+1
ρ (t, η)

ηρ−1

[
Dα−1
ρ f

]
(η)

∣∣∣∣η=t

η=0+

−
∫ t

0

∂

∂η

(Kα+1
ρ (t, η)

ηρ−1

)[
Dα−1
ρ f

]
(η)dη

=− [tρ − ηρ]α

ραΓ(α+ 1)

[
Dα−1
ρ f

]
(η)

∣∣∣∣η=t

η=0+

+

∫ t

0

Kαρ (t, η)
[
Dα−1
ρ f

]
(η)dη

=
[
J αρ Dα−1

ρ f
]
(t)− tρα

ραΓ(α+ 1)

[
Dα−1
ρ f

]
(0+)

where ∗′ in the first line stands for the usual derivative. Using (ii), we get[
J 1
ρ J αρ Dαρ f

]
(t) =

[
J 1
ρ J α−1

ρ Dα−1
ρ f

]
(t)− tρα

ραΓ(α+ 1)

[
Dα−1
ρ f

]
(0+).
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An application of D1
ρ on both sides yields by using (iv) that[
J αρ Dαρ f

]
(t) =

[
J α−1
ρ Dα−1

ρ f
]
(t)− tρ(α−1)

ρα−1Γ(α)

[
Dα−1
ρ f

]
(0+).

Repeating this procedure for a total of dαe times, we get

[
J αρ Dαρ f

]
(t) =

[
J α−dαeρ Dα−dαeρ f

]
(t)−

dαe∑
i=1

tρ(α−i)

ρα−iΓ(α− i+ 1)

[
Dα−iρ f

]
(0+) (3.1)

for all t > 0. By Definition 2.1, Definition 2.2 and (ii), we have

J α−dαeρ Dα−dαeρ =

{
J 0
ρD0

ρ = I, α ∈ N
J α−dαeρ J dαe−αρ = J 0

ρ = I, α ∈ R+\N,

which completes the proof by using this in (3.1).
Thus, we have justified the validity of each of the properties above, and completed the proof. �

4. Existence and Uniqueness for RLH FDEs

Let us consider the initial-value problem{[
Dαρ y

]
(t) = f

(
t, y(t)

)
for t > 0[

Dα−kρ y
]
(0+) = ydαe−k for k = 1, 2, · · · , dαe,

(4.1)

where α ∈ R+ and y0, y1, · · · , ydαe−1 ∈ R. Suppose that f is defined in a domain Ω of a plane (t, y),
and define a region R(h,K) ⊂ Ω as a set of points (t, y) ∈ Ω, which satisfy the inequality∣∣∣∣∣y(t)−

dαe∑
i=1

tρ(α−i)

ρα−iΓ(α− i+ 1)

∣∣∣∣∣ ≤ K for all t ∈ (0, h),

where h and K are constants.

Theorem 4.1. Let f : Ω → R satisfy the Lipschitz condition with respect to its second component,
i.e.,

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| for all (t, y1), (t, y2) ∈ Ω, where L ∈ R+,

and f be bounded on Ω, i.e.,

|f(t, y)| ≤M for all (t, y) ∈ Ω, where M ∈ R+.

Further, assume that there exist h,K ∈ R+ such that

Mhρα

ραΓ(α+ 1)
≤ K.

Then, there exists a unique and continuous solution of the problem (4.1) in the region R(h,K) ⊂ Ω.

Proof. The method proof based on the ideas in [11, Theorem 3.4]. First, consider Theorem 3.1 (v) and
reduce the problem (4.1) to an equivalent fractional integral equation

y(t) =

dαe∑
i=1

ydαe−i

ρα−iΓ(α− i+ 1)
tρ(α−i) +

∫ t

0

Kαρ (t, η)f
(
η, y(η)

)
dη for t ∈ (0, h]. (4.2)

If y satisfies (4.1), then it also satisfies the equation (4.2). On the other hand, if y is a solution of
(4.2), then it is satisfies (4.1) initial-value problem. Therefore, the equation (4.2) is equivalent to the
initial value problem (4.1). Now, let us define the sequence of functions {ym}m∈N0

by

ym(t) =


dαe∑
i=1

ydαe−i

ρα−iΓ(α− i+ 1)
tρ(α−i), m = 0

y0(t) +
[
J αρ f

(
∗, ym−1(∗)

)]
(t), m ∈ N

(4.3)
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for t ∈ (0, h]. We will show that limm→∞ ym exists and gives the required solution y of the integral
equation (4.2). First, it can be shown by induction that ym(t) ∈ R(h,K) for all t ∈ (0, h] and m ∈ N0.
Indeed, for all t ∈ (0, h] and all m ∈ N0, we obtain

|ym(t)− y0(t)| =
∣∣∣∣∫ t

0

Kαρ (t, η)f
(
η, ym−1(η)

)
dη

∣∣∣∣ ≤ ∫ t

0

Kαρ (t, η)
∣∣f(η, ym−1(η)

)∣∣dη
≤M

∫ t

0

Kαρ (t, η)dη =
Mtρα

ραΓ(α+ 1)
≤ Mhρα

ραΓ(α+ 1)
≤ K

and thus

|y1(t)− y0(t)| ≤ Mhρα

ραΓ(α+ 1)
≤ K for all t ∈ (0, h]. (4.4)

Let us show by induction that

|ym(t)− ym−1(t)| ≤ MLm−1tmρα

ρmαΓ(mα+ 1)
for all t ∈ (0, h] and all m ∈ N. (4.5)

It follows from (4.4) that (4.5) holds for m = 1. Suppose for some m ∈ N that

|ym(t)− ym−1(t)| ≤ MLm−1tmρα

ρmαΓ(mα+ 1)
for all t ∈ (0, h]. (4.6)

Then, using (4.3) and (4.6), we have

|ym+1(t)− ym(t)| =
∣∣∣∣∫ t

0

Kαρ (t, η)
[
f
(
η, ym(η)

)
− f

(
η, ym−1(η)

)]
dη

∣∣∣∣
≤
∫ t

0

Kαρ (t, η)
∣∣f(η, ym(η)

)
− f

(
η, ym−1(η)

)∣∣dη
≤L

∫ t

0

Kαρ (t, η)|ym(η)− ym−1(η)|dη

≤ MLm

ρmαΓ(mα+ 1)

∫ t

0

Kαρ (t, η)ηmραdη

=
MLm

ρ(m+1)αt(m+1)ραΓ(α)Γ(mα+ 1)

∫ 1

0

[1− ζ]α−1ζmαdζ

=
MLmt(m+1)ρα

ρ(m+1)αΓ(α)Γ(mα+ 1)

∫ 1

0

[1− ζ]α−1ζmαdζ

=
MLmt(m+1)ρα

ρ(m+1)αΓ(α)Γ(mα+ 1)
B(α,mα+ 1)

=
MLmt(m+1)ρα

ρ(m+1)αΓ
(
(m+ 1)α+ 1

)
for all t ∈ (0, h]. This means that (4.5) is true.

Let us consider the limiting function

y(t) := lim
m→∞

ym(t) = y0(t) +

∞∑
j=1

[yj(t)− yj−1(t)] for t ∈ (0, h]. (4.7)

According to the estimate (4.5), for t ∈ (0, h], the absolute value of its terms is less than the corre-
sponding terms of the convergent numeric series

∞∑
j=1

|yj(t)− yj−1(t)| ≤
∞∑
j=1

MLj−1hjρα

ρjαΓ(jα+ 1)
=
M

L

∞∑
j=1

Ljhjρα

ρjαΓ(jα+ 1)

=
M

L

[
Eα,1

(
Lhρα

ρα

)
− 1

]
,
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where E is the two-parameter Mittag-Leffler function defined by

Eα,β(z) :=

∞∑
j=0

zj

Γ(αj + β)
for z ∈ C and α, β ∈ C, (4.8)

which converges for all values of z (i.e., it is an entire function). This means that the series (4.7)
converges uniformly. Letting m→∞ in (4.3) and using (4.7), we get

y(t) = y0(t) +

∫ t

0

Kαρ (t, η)f
(
η, y(η)

)
dη for all t ∈ (0, h].

Therefore, y defined by (4.7) is a solution of (4.2), and thus (4.1).

What follows next is to prove the uniqueness of the solution. Let us suppose that z is another
solution of the equation (4.2), which is continuous in the interval (0, h]. Then w(t) := y(t) − z(t) for
t ∈ (0, h], then satisfies the equation

w(t) =

∫ t

0

Kαρ (t, η)
[
f
(
η, y(η)

)
− f

(
η, z(η)

)]
dη (4.9)

from which it follows that w(0+) = 0. Therefore, w extends continuously to [0, h]. Then, |w(t)| ≤ C
for all t ∈ (0, h], where C ∈ R+, and we obtain from (4.9) that

|w(t)| ≤ CLtρα

ραΓ(α+ 1)
for all t ∈ (0, h].

Repeating this procedure for a total of m ∈ N times, we obtain

|w(t)| ≤ CLmtmρα

ρmαΓ(mα+ 1)
for all t ∈ (0, h].

In the right-hand side, we recognize the general term of the series for the Mittag-Leffler function
Eα,1(Lt

ρα

ρα ), and therefore

lim
m→∞

Lmtmρα

ρmαΓ(mα+ 1)
= 0 for all t ∈ (0, h].

Then, we have w(t) ≡ 0 for all t ∈ (0, h], and thus y(t) ≡ z(t) for all t ∈ (0, h]. This ends the proof. �

5. The Autonomous Equation of RL Type

Let us consider initial-value problem{[
Dαρ y

]
(t) = λy(t) for t > 0[

Dα−kρ y
]
(0+) = ydαe−k for k = 1, 2, · · · , dαe,

(5.1)

where λ ∈ R. In this case, when compared to (4.1), we have f(t, y) = λy. Now, we will introduce two
techniques for obtaining the unique solution of (5.1).

5.1. Direct Substitution. Let α ∈ R and β ∈ R and define

yα,β(t) :=
tρβ

ρβ
Eα,β+1

(
λtρα

ρα

)
for t > 0,

where E is the two-parameter Mittag-Leffler function defined in (4.8).
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Then, Dαρ y = λy. Indeed, we have

[
Dαρ yα,β

]
(t) =

[
Dαρ
∗ρβ

ρβ
Eα,β+1

(
λ∗ρα

ρα

)]
(t) =

[
Dαρ

∞∑
j=0

λj∗ρ(αj+β)

ραj+βΓ(αj + β + 1)

]
(t)

=

∞∑
j=0

λj
[
Dαρ ∗ρ(αj+β)

]
(t)

ραj+βΓ(αj + β + 1)
=

∞∑
j=0

λjtρ(α(j−1)+β)

ρα(j−1)+βΓ
(
α(j − 1) + β + 1

)
=

tρ(β−α)

ρβ−αΓ(β − α+ 1)
+

∞∑
j=1

λjtρ(α(j−1)+β)

ρα(j−1)+βΓ
(
α(j − 1) + β + 1

)
=

tρ(β−α)

ρβ−αΓ(β − α+ 1)
+ λ

tρβ

ρβ

∞∑
j=0

λjtραj

ραjΓ(αj + β + 1)

=
tρ(β−α)

ρβ−αΓ(β − α+ 1)
+ λyα,β(t)

for all t > 0. Here, we see that yα,β solves Dαρ y = λy provided that (β−α) is a negative integer. That
is, yα,α−i, where i = 1, 2, · · · , dαe, satisfies Dαρ y = λy. Moreover, we compute that

[
Dα−kρ yα,α−i

]
(t) =

[
Dα−kρ

∗ρ(α−i)

ρα−i
Eα,α−i+1

(
λ∗ρα

ρα

)]
(t)

=

[
Dα−kρ

∞∑
j=0

λj∗ρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)](t)

=

∞∑
j=0

λj
[
Dα−kρ ∗ρ(α(j+1)−i)](t)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)
=

∞∑
j=0

λjtρ(αj−i+k)

ραj−i+kΓ(αj − i+ k + 1)

for t > 0 and k = 1, 2, · · · , dαe. Using the properties of the Gamma function and considering the
positive powers of t, we find that[

Dα−kρ yα,α−i
]
(0+) = δi,k for k = 1, 2, · · · , dαe,

where δ is Kronecker’s delta. Therefore, {yα,α−i}dαei=1 is the set of normalized fundamental solutions of
Dαρ y = λy. Moreover, the following linear combination of functions

y(t) :=

dαe∑
i=1

ydαe−i
tρ(α−i)

ρα−i
Eα,α−i+1

(
λtρα

ρα

)
for t > 0

forms the solution desired of (5.1).

5.2. The Picard Iterates. In accordance with the proof of Theorem 4.1, let us take

ym(t) =


dαe∑
i=1

tρ(α−i)

ρα−iΓ(α− i+ 1)
[Dα−iρ y](0+), m = 0

y0(t) + λ
[
J αρ ym−1

]
(t), m ∈ N

(5.2)

for t ∈ (0, h].
We will show by induction that

ym(t) =

dαe∑
i=1

ydαe−i

m∑
j=0

tρ(α(j+1)−i)λj

ρ(α(j+1)−i)Γ
(
α(j + 1)− i+ 1

) (5.3)
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for all t ∈ (0, h] and m ∈ N0. The claim holds for m = 0 by (5.2). Assume for some m ∈ N0 that

ym(t) =

dαe∑
i=1

ydαe−i

m∑
j=0

tρ(α(j+1)−i)λj

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

) for all t ∈ (0, h],

which together with Example 2.1 and (5.2) yields

ym+1(t) =y0(t) + λ
[
J αρ ym

]
(t) = y0(t) + λ

dαe∑
i=1

ydαe−i

m∑
j=0

λj
[
J αρ ∗ρ(α(j+1)−i)](t)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)
=

dαe∑
i=1

ydαe−i
tρ(α−i)

ρα−iΓ(α− i+ 1)
+

dαe∑
i=1

ydαe−i

m∑
j=0

λj+1tρ((j+2)α−i)

ρ(j+2)α−iΓ
(
(j + 2)α− i+ 1

)
=

dαe∑
i=1

ydαe−i

m+1∑
j=0

λjtρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)
for all t ∈ (0, h]. This justifies (5.3).

Letting m→∞ in (5.3), we obtain the solution of the problem (5.2) as

y(t) = lim
m→∞

ym(t) =

dαe∑
i=1

ydαe−i

∞∑
j=0

λjtρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)
=

dαe∑
i=1

ydαe−i
tρ(α−i)

ρα−i
Eα,α−i+1

(
λtρα

ρα

)
for t > 0, where E is the two-parameter Mittag-Leffler function defined in (4.8).

6. Dependence on Initial Conditions

Let us introduce small changes in the initial conditions of (4.1) and consider{[
Dαρ y

]
(t) = f

(
t, y(t)

)
for t > 0[

Dα−kρ y
]
(0+) = ydαe−k + εdαe−k for k = 1, 2, · · · , dαe,

(6.1)

where εdαe−k are arbitrary constants.

Theorem 6.1. Assume that conditions of Theorem 4.1 hold. Let y and z be respective solutions of
the initial value problems (4.1) and (6.1). Then,

|y(t)− z(t)| ≤
dαe∑
i=1

∣∣εdαe−i∣∣ ρi
Atρi

Eα,1−i

(
Atρα

ρα

)
for t ∈ (0, h].

Proof. In conformity with Theorem 4.1, we have

y(t) = lim
m→∞

ym(t) for t ∈ (0, h],

where the sequence of functions {ym}m∈N0 is defined by (4.3) for t ∈ (0, h]. Similarly,

z(t) = lim
m→∞

zm(t) for t ∈ (0, h],

where

zm(t) =


dαe∑
i=1

tρ(α−i)

ρα−iΓ(α− i+ 1)
(ydαe−i + εdαe−i), m = 0

z0(t) +
[
J αρ f

(
∗, zm−1(∗)

)]
(t), m ∈ N

(6.2)

for t ∈ (0, h]. Let us prove by induction that

|ym(t)− zm(t)| ≤
dαe∑
i=1

∣∣εdαe−i∣∣ m∑
j=0

Ajtρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

) (6.3)
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for all t ∈ (0, h] and all m ∈ N0. From (4.3) and (6.2), it directly follows that

|y0(t)− z0(t)| ≤
dαe∑
i=1

∣∣εdαe−i∣∣ tρ(α−i)

ρα−iΓ(α− i+ 1)
for all t ∈ (0, h].

Assume now for some m ∈ N that

|ym(t)− zm(t)| ≤
dαe∑
i=1

∣∣εdαe−i∣∣ m∑
j=0

Ajtρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

) (6.4)

for all t ∈ (0, h]. Then, using (4.3) and (6.2), the Lipschitz condition for the function f together with
the inequality (6.4), we obtain

|ym+1(t)− zm+1(t)|

≤
dαe∑
i=1

∣∣εdαe−i∣∣ tρ(α−i)

ρα−iΓ(α− i+ 1)
+A

∫ t

0

Kαρ (t, η)|ym(η)− zm(η)|dη

≤
dαe∑
i=1

∣∣εdαe−i∣∣ tρ(α−i)

ρα−iΓ(α− i+ 1)
+A

∫ t

0

Kαρ (t, η)

dαe∑
i=1

∣∣εdαe−i∣∣ m∑
j=0

Ajηρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)dη

=

dαe∑
i=1

∣∣εdαe−i∣∣ tρ(α−i)

ρα−iΓ(α− i+ 1)
+

dαe∑
i=1

∣∣εdαe−i∣∣ m∑
j=0

Aj+1tρ((j+2)α−i)

ρ(j+2)α−iΓ
(
(j + 2)α− i+ 1

)
=

dαe∑
i=1

∣∣εdαe−i∣∣m+1∑
j=0

Ajtρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)
for all t ∈ (0, h]. This proves (6.3).

Taking the limit of (6.4) as m→∞, we obtain

|y(t)− z(t)| ≤
dαe∑
i=1

∣∣εdαe−i∣∣ ∞∑
j=0

Ajtρ(α(j+1)−i)

ρα(j+1)−iΓ
(
α(j + 1)− i+ 1

)
=

dαe∑
i=1

∣∣εdαe−i∣∣ ρi
Atρi

∞∑
j=0

Aj+1t(j+1)ρα

ρα(j+1)Γ
(
α(j + 1)− i+ 1

)
=

dαe∑
i=1

∣∣εdαe−i∣∣ ρi
Atρi

Eα,1−i

(
Atρα

ρα

)
for all t ∈ (0, h], which completes the proof. �

7. The Green’s Function for Linear Equations

The objective of this section is to define the Green’s function notion for the initial value problem{[
Dαρ y

]
(t) = p(t)y(t) + f(t) for t > 0[

Dα−kρ y
]
(0+) = ydαe−k for k = 1, 2, · · · , dαe,

(7.1)

where p, f : [0,∞)→ R are continuous functions, and then present its role in obtaining the solution of
the equation.

Let ∆ := {(t, s) : t > s ≥ 0} and denote by sDαρ f and sJ αρ f the fractional derivative and the
fractional integral of a function f centered at s ∈ [0,∞), respectively.

Definition 7.1 (Green’s function). Let the continuous function Gρ : ∆ → R satisfy the following
properties.

(i) [sDαρ Gρ(∗, s)](t) = p(t)Gρ(t, s) for all (t, s) ∈ ∆.

(ii) lim
s→t−

[sDα−kρ Gρ(∗, s)](t) = δk,1 for t > 0 and k = 1, 2, · · · , dαe.
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(iii) lim
s→t−
t→0+

[sDα−kρ Gρ(∗, s)](t) = 0 for k = 1, 2, · · · , dαe − 1.

Then, Gρ is called the Green’s function for the initial value problem (7.1).

Theorem 7.1. Let Gρ be the Green’s function for the initial value problem (7.1). Then,

y(t) :=

∫ t

0

Gρ(t, η)ηρ−1f(η)dη for t > 0 (7.2)

is the (unique) solution of the initial value problem{[
Dαρ y

]
(t) = p(t)y(t) + f(t) for t > 0[

Dα−kρ y
]
(0+) = 0 for k = 1, 2, · · · , dαe.

(7.3)

Proof. First, we will show that y defined by (7.2) solves the fractional differential equation in (7.3).
To this end, we let β = α− dαe+ 1, then β ∈ (0, 1]. From (7.2), we have for t > 0 that[
Dβρ y

]
(t) =

1

tρ−1

d

dt

[
Dβ−1
ρ y

]
(t) =

1

tρ−1

d

dt

[
J 1−β
ρ y

]
(t)

=
1

tρ−1

d

dt

[∫ t

0

K1−β
ρ (t, η)

∫ η

0

Gρ(η, ζ)ζρ−1f(ζ)dζdη

]
=

1

tρ−1

d

dt

[∫ t

0

∫ η

0

K1−β
ρ (t, η)Gρ(η, ζ)ζρ−1f(ζ)dζdη

]
=

1

tρ−1

d

dt

[∫ t

0

∫ t

ζ

K1−β
ρ (t, η)Gρ(η, ζ)ζρ−1f(ζ)dηdζ

]
=

1

tρ−1

d

dt

[∫ t

0

[∫ t

ζ

K1−β
ρ (t, η)Gρ(η, ζ)dη

]
ζρ−1f(ζ)dζ

]

=
1

tρ−1

d

dt

[∫ t

0

[
ζJ 1−β

ρ Gρ(∗, ζ)
]
(t)ζρ−1f(ζ)dζ

]
=

∫ t

0

1

tρ−1

d

dt

[
ζJ 1−β

ρ Gρ(∗, ζ)
]
(t)ζρ−1f(ζ)dζ +

1

tρ−1
lim
ζ→t−

[[
ζJ 1−β

ρ Gρ(∗, ζ)(t)
]
ζρ−1f(ζ)

]
,

where we have applied the well-known Leibnitz rule. Using the definition of the fractional derivative,
we obtain [

Dβρ y
]
(t) =

∫ t

0

[
ζDβρGρ(∗, ζ)

]
(t)ζρ−1f(ζ)dζ + lim

ζ→t−

[
ζDβ−1

ρ Gρ(∗, ζ)
]
(t)f(t)

for all t > 0. Applying D1 repeatedly for a total of (dαe − 1) times and using Definition 7.1 (ii), we
find for all t > 0 that[

Dαρ y
]
(t) =

∫ t

0

[
ζDαρ Gρ(∗, ζ)

]
(t)ζρ−1f(ζ)dζ + lim

ζ→t−

[
ζDα−1

ρ Gρ(∗, ζ)
]
(t)f(t) (7.4)

=

∫ t

0

[
ζDαρ G(∗, ζ)

]
(t)ζρ−1f(ζ)dζ + f(t)

=p(t)

∫ t

0

Gρ(t, ζ)ζρ−1f(ζ)dζ + f(t)

=p(t)y(t) + f(t)

for all t > 0 by Definition 7.1 (i). Thus, y is a solution of the fractional differential equation in (7.3).

Next, we justify the initial conditions. As in (7.4), we compute that[
Dα−kρ y

]
(t) =

∫ t

0

[
ζDα−kρ Gρ(∗, ζ)

]
(t)ζρ−1f(ζ)dζ + lim

ζ→t−

[
ζDα−k+1

ρ Gρ(∗, ζ)
]
(t)f(t)

for all t > 0 and k = 1, 2, · · · , dαe . By Definition 7.1 (iii) and letting t→ 0+, we obtain
[
Dα−kρ y

]
(0+) =

0 for k = 1, 2, · · · , dαe.
We have therefore justified that y defined in (7.2) solves the initial value problem (7.3). �



REIMANN-LIOUVILLE AND HADAMARD TYPE FRACTIONAL DERIVATIVES 229

Corollary 7.1. If {Hi}dαei=1 forms the set of normalized fundamental solutions of the homogeneous
initial value problem associated with (7.1), i.e.,{

[DαρHi](t) = p(t)Hi(t) for t > 0

[Dα−kρ Hi](0
+) = δi,k for k = 1, 2, · · · , dαe,

and G is the Green’s function for the initial value problem (7.1), then the solution of the initial value
problem (7.1) is given by

y(t) =

dαe∑
k=1

ydαe−iHi(t) +

∫ t

0

Gρ(t, η)ηρ−1f(η)dη for t > 0.

7.1. Representation of Solutions for the Autonomous Equation. In this section, we confine
our attention to the linear autonomous initial value problem{[

Dαρ y
]
(t) = λy(t) + f(t) for t > 0[

Dα−kρ y
]
(0+) = ydαe−k for k = 1, 2, · · · , dαe.

(7.5)

For linear autonomous equations, we can easily verify that

Gρ(t, s) = Gρ
(
ρ
√
tρ − sρ, 0

)
for all (t, s) ∈ ∆. (7.6)

Moreover, Gρ(∗, 0) is the solution of the associated homogeneous equation{[
Dαρ y

]
(t) = λy(t) for t > 0[

Dα−kρ y
]
(0+) = δk,1 for k = 1, 2, · · · , dαe.

Due to the discussion made in § 5.1, we see that the Green’s function of (7.5) is given by

Gρ(t, s) =
[tρ − sρ]α−1

ρα−1
Eα,α

(
λ[tρ − sρ]α

ρα

)
for (t, s) ∈ ∆.

Further, the variation of parameters formula for the initial value problem (7.5) is given by

y(t) =

dαe∑
i=1

ydαe−i
tρ(α−i)

ρα−i
Eα,α−i+1

(
λtρα

ρα

)
+

∫ t

0

[tρ − ηρ]α−1

ρα−1
Eα,α

(
λ[tρ − ηρ]α

ρα

)
ηρ−1f(η)dη (7.7)

for t > 0 (cf. [9, Equation (3.1.11)]).

8. Final Comments

The following two examples can be easily verified.

Example 8.1. For α ∈ R+
0 , ν ∈ (−1,∞) and ρ ∈ R+, we have[

sJ αρ [∗ρ − sρ]ν
]
(t) =

Γ(ν + 1)

ραΓ(ν + α+ 1)
[tρ − sρ]ν+α for t > s ≥ 0.

Example 8.2. For α, ν ∈ R+
0 and ρ ∈ R+, we have[

sDαρ [∗ρ − sρ]ν
]
(t) =

ραΓ(ν + 1)

Γ(ν − α+ 1)
[tρ − sρ]ν−α for t > s ≥ 0.

As our first remark, we would like to say that one can justify (7.6) similar to that in the third part
of [11, § 5.1.2].

As an another note, we would like to emphasis that one can justify the variation of parameters
formula given in (7.7) by using Example 8.2 and applying the Picard iterates technique (used in § 5.2)
to (7.5).

As to some directions for future research, we would like to mention that the study of numerical
solutions to FDEs and numerical integration techniques would very important. Next, we note that
the extension of any of the results in this paper to the case FDEs with Miller-Ross type sequential
derivatives would be of significant interest too. Finally, obtaining the solutions of FDEs of the type
(7.5) by the Laplace transform would also deserve attention for the sake of completeness.
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