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FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH

NONLOCAL GENERALIZED RIEMANN-LIOUVILLE INTEGRAL BOUNDARY

CONDITIONS

BASHIR AHMAD1,∗, SOTIRIS K. NTOUYAS1,2 AND AHMED ALSAEDI1

Abstract. In this paper, we study a new kind of nonlocal boundary value problems of nonlinear

fractional differential equations and inclusions supplemented with nonlocal and generalized Riemann-
Liouville fractional integral boundary conditions. In case of single valued maps (equations), we make

use of contraction mapping principle, fixed point theorem due to Sadovski, Krasnoselskii-Schaefer

fixed point theorem due to Burton and Kirk, and fixed point theorem due to O’Regan to obtain the
desired existence results. On the other hand, the existence results for inclusion case are based on

Krasnoselskii’s fixed point theorem for multivalued maps and nonlinear alternative for contractive

maps. Examples illustrating the main results are also constructed.

1. Introduction

Fractional order differential and integral operators play an important role in the mathematical
modeling of several real world problems. It has been mainly due to the fact that such operators
can describe the memory and hereditary properties of various materials and processes involved in the
problem at hand. Examples include physics, chemical technology, population dynamics, biotechnology,
and economics [1–3]. In recent years, the study of initial and boundary value problems of fractional
differential equations involving a variety of conditions have been investigated by several researchers,
and the literature on the topic is now much enriched. For examples and details, see [4]- [18] and the
references cited therein.

Nonlocal conditions are found to be more plausible than the standard initial conditions for the
formulation of some physical phenomena in certain problems of thermodynamics, elasticity and wave
propagation. As a matter of fact, such conditions become inevitable in a situation when the con-
trollers at the boundary positions dissipate or add energy according to censors located at intermediate
positions. Further details can be found in the work by Byszewski [19,20].

Integral boundary conditions also find decent applications in blood flow problems, chemical en-
gineering, thermoelasticity, underground water flow, population dynamics, etc. In particular, the
assumption of ‘circular cross-section’ throughout the vessels in the study of fluid flow problems is not
always justifiable. In this situation, integral boundary conditions provide a more realistic (practical)
approach. Also, integral boundary conditions are found to be useful in regularizing ill-posed parabolic
backward problems in time partial differential equations, see for example, mathematical models for
bacterial self-regularization [21]. Integral boundary conditions involve classical, Riemann-Liouville or
Hadamard or Erdélyi-Kober type integral operators. In [22], it has been discussed that Riemann-
Liouville and Hadamard fractional integrals can jointly be represented by a single integral, which is
called generalized Riemann-Liouville fractional integral.

In this paper, we introduce a new class of boundary value problems of fractional differential equa-
tions and inclusions supplemented with nonlocal and generalized Riemann-Liouville fractional integral
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boundary conditions. In precise terms, we consider the following nonlocal problems:

Dαx(t) = f(t, x(t)), t ∈ [0, T ],

x(0) = g(x),

x(T ) = β
ρ1−q

Γ(q)

∫ ξ

0

sρ−1

(ξρ − sρ)1−q
x(s)ds := β ρIqx(ξ), 0 < ξ < T,

(1.1)

and {
Dαx(t) ∈ F (t, x(t)), t ∈ [0, T ],

x(0) = g(x), x(T ) = β ρIqx(ξ), 0 < ξ < T,
(1.2)

where Dα is the Caputo fractional derivative of order 1 < α ≤ 2, f : [0, T ] × R → R is a continuous
function, g : C([0, T ],R) → R is a continuous function, ρIq is the generalized Riemann-Liouville
fractional integral of order q > 0, ρ > 0 (see Definition 2.4) and F : [0, T ] × R → P(R) is a multi
valued function, (P(R) is the family of all nonempty subjects of R).

We remark that g(x) in (1.1) and (1.2) may be represented as g(x) =
∑p
j=1 αjx(tj), where αj , j =

1, . . . , p, are given constants and 0 < t1 < . . . < tp ≤ 1.
The rest of the paper is organized as follows: In Section 2 we present some useful preliminaries and

lemmas. Section 3 deals with the existence and uniqueness results for problem (1.1) which are estab-
lished via contraction mapping principle and fixed point theorems due to Sadovski, a Krasnoselskii-
Schaefer fixed point theorem due to Burton and Kirk, and a fixed point theorem due O’Regan. In
Section 4, we discuss the existence of solutions for problem (1.2) by means of Krasnoselskii fixed point
theorem for multivalued maps and nonlinear alternative for contractive maps. Examples illustrating
the main work are also presented.

2. Preliminaries

In this section, we recall some basic concepts of fractional calculus [1, 2] and present known results
needed in our forthcoming analysis.

Definition 2.1. The Riemann-Liouville fractional integral of order q > 0 of a continuous function
f : (0,∞)→ R is defined by

Jqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

provided the right-hand side is point-wise defined on (0,∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order q > 0, n − 1 < q < n, n ∈ N,
is defined as

Dq
0+f(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

0

(t− s)n−q−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 2.3. The Caputo derivative of order q for a function f : [0,∞)→ R can be written as

cDqf(t) = Dq
0+

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < q < n.

Remark 2.1. If f(t) ∈ Cn[0,∞), then

cDqf(t) =
1

Γ(n− q)

∫ t

0

f (n)(s)

(t− s)q+1−n ds = In−qf (n)(t), t > 0, n− 1 < q < n.

Definition 2.4. [22] The generalized Riemann-Liouville fractional integral of order q > 0 and ρ > 0,
of a function f(t), for all 0 < t <∞, is defined as

ρIqf(t) =
ρ1−q

Γ(q)

∫ t

0

sρ−1f(s)

(tρ − sρ)1−q
ds,

provided the right-hand side is point-wise defined on (0,∞).
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Remark 2.2. We notice that the above definition corresponds to the one for Riemann-Liouville frac-
tional integral of order q > 0 when ρ = 1, while the famous Hadamard fractional integral follows for
ρ→ 0, that is,

lim
ρ→0

ρIqf(t) =
1

Γ(q)

∫ t

0

(
log

t

s

)q−1 f(s)

s
ds.

The following lemma is obvious via Definition 2.4.

Lemma 2.1. Let q > 0 and p > 0 be the given constants. Then

ρIqtp =
Γ
(
p+ρ
ρ

)
Γ
(
p+ρq+ρ

ρ

) tp+ρq
ρq

. (2.1)

Lemma 2.2. [2] For q > 0, the general solution of the fractional differential equation cDqx(t) = 0 is
given by

x(t) = c0 + c1t+ . . .+ cn−1t
n−1,

where ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).

In view of Lemma 2.2, it follows that

Iq cDqx(t) = x(t) + c0 + c1t+ . . .+ cn−1t
n−1, (2.2)

for some ci ∈ R, i = 1, 2, . . . , n− 1 (n = [q] + 1).

Lemma 2.3. For any y ∈ C([0, T ],R), the following linear fractional boundary value problem{ cDαx(t) = y(t), 1 < α ≤ 2,

x(0) = g(x), x(T ) = β ρIqx(ξ), 0 < ξ < T,
(2.3)

is equivalent to fractional integral equation:

x(t) = Jαy(t) +
t

Λ

{
β ρIqJαy(ξ)− Jαy(T )

}
+
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), (2.4)

where

Λ = T − β ξ
ρq+1

ρq

Γ( 1+ρ
ρ )

Γ( 1+ρq+ρ
ρ )

6= 0. (2.5)

Proof. It is well known that the general solution of the fractional differential equation in (2.3) can be
written as

x(t) = c0 + c1t+ Jαy(t), (2.6)

where c0, c1 ∈ R are arbitrary constants. Using the first condition (x(0) = g(x)) given by (2.3) in
(2.6), we get c0 = g(x). Applying the generalized Riemann-Liouville fractional integral operator on
(2.6) and using Lemma 2.1, we obtain

ρIqx(t) = ρIqJαy(t) + c0
tρq

ρq
1

Γ(q + 1)
+ c1

tρq+1

ρq

Γ( 1+ρ
ρ )

Γ( 1+ρq+ρ
ρ )

, (2.7)

which together with the second condition of (2.3) yields

Jαy(T ) + c1T + c0 = β ρIqJαy(ξ) + βc0
ξρq

ρq
1

Γ(q + 1)
+ βc1

ξρq+1

ρq

Γ( 1+ρ
ρ )

Γ( 1+ρq+ρ
ρ )

. (2.8)

Using c0 = g(x) in (2.8), we find that

c1 =
1

Λ

{
β ρIqJαy(ξ)− Jαy(T ) + βg(x)

ξρq

ρq
1

Γ(q + 1)

}
.

Substituting the values of c0, c1 in (2.6), we get (2.4). Conversely, it follows by direct computation that
the integral equation (2.4) satisfies the problem (2.3). This completes the proof. �
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For computational convenience, we introduce the notations:

Jzf(s, x(s))(y) =
1

Γ(z)

∫ y

0

(y − s)z−1f(s, x(s))ds,

ρIzf(s, x(s))(y) =
ρ1−z

Γ(z)

∫ y

0

sρ−1f(s, x(s))

(yρ − sρ)1−z
ds,

where z > 0 and y ∈ [0, T ].

3. Existence and uniqueness results for problem (1.1)

We denote by C = C([0, T ],R) the Banach space of all continuous functions from [0, T ]→ R endowed
with a topology of uniform convergence with the norm defined by ‖x‖ = sup{|x(t)| : t ∈ [0, T ]}. Also
by L1([0, T ],R) we denote the Banach space of measurable functions x : [0, T ]→ R which are Lebesgue

integrable and normed by ‖x‖L1 =
∫ T
0
|x(t)|dt.

In view of Lemma 2.3, we define an operator P : C → C associated with problem (1.1) as

(Px)(t) = Jαf(s, x(s))(t) +
t

Λ

{
β ρIqJαf(s, x(s))(ξ)− Jαf(s, x(s))(T )

}
+
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), t ∈ [0, T ].

(3.1)

Let us define P1,2 : C → C by

(P1x)(t) = Jαf(s, x(s))(t) +
t

Λ

{
β ρIqJαf(s, x(s))(ξ)− Jαf(s, x(s))(T )

}
, (3.2)

and

(P2x)(t) =
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x). (3.3)

Clearly

(Px)(t) = (P1x)(t) + (P2x)(t), t ∈ [0, T ]. (3.4)

In the sequel, we use the notations:

p0 :=
Tα

Γ(α+ 1)

(
1 +

T

|Λ|

)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )
, (3.5)

and

k0 := 1 +
T

|Λ|
|β|ξ

ρq

ρq
1

Γ(q + 1)
. (3.6)

Theorem 3.1. Let f : [0, T ]× R→ R be a continuous function. Assume that

(A1) |f(t, x)− f(t, y)| ≤ L‖x− y‖,∀t ∈ [0, T ], L > 0, x, y ∈ R;
(A2) g : C([0, 1],R)→ R is a continuous function satisfying the condition:

|g(u)− g(v)| ≤ `‖u− v‖, ` < k−10 , ∀ u, v ∈ C([0, 1],R), ` > 0;

(A3) γ := Lp0 + k0` < 1.

Then the boundary value problem (1.1) has a unique solution on [0, T ].
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Proof. For x, y ∈ C and for each t ∈ [0, T ], from the definition of P and assumptions (A1) and (A2),
we obtain

|(Px)(t)− (Py)(t)| ≤ sup
t∈[0,T ]

{
Jα|f(s, x(s))− f(s, y(s))|(t) +

t

|Λ|
Jα|f(s, x(s))− f(s, y(s))|(T )

+
|β|t
|Λ|

ρIqJα|f(s, x(s))− f(s, y(s))|(ξ)

+

∣∣∣∣∣1 + β
t

Λ

ξρq

ρq
1

Γ(q + 1)

∣∣∣∣∣|g(x)− g(y)|

}

≤ L‖x− y‖Jα(1)(T ) + L‖x− y‖ T
|Λ|

Jα(1)(T ) + L‖x− y‖ |β|T
|Λ|

ρIqJα(1)(ξ)

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
|g(x)− g(y)|

≤ L

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}
‖x− y‖

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`‖x− y‖

= (Lp0 + k0`)‖x− y‖.
Hence

‖(Px)− (Py)‖ ≤ γ‖x− y‖.
As γ < 1 by (A3), the operator P is a contraction map from the Banach space C into itself. Hence the
conclusion of the theorem follows by the contraction mapping principle (Banach fixed point theorem).

�

Example 3.1. Consider the following fractional boundary value problem
cD3/2x(t) =

sin2(πt)

2(et + 9)

(
|x(t)|
|x(t)|+ 1

+ 1

)
|x(t)|+

√
3

4
, t ∈ [0, 1],

x(0) =
1

2
+

1

12
tan−1(x(1/8)), x(1) =

1

2
2/3I3/2x(3/4).

(3.7)

Here, α = 3/2, T = 1, β = 1/2, ξ = 3/4, ρ = 2/3, q = 3/2,

f(t, x) =
sin2(πt)

2(et + 9)

( |x|
|x|+ 1

+ 1
)
|x|+

√
3

4
, g(x) = (1/12) tan−1(x(1/8)).

Since |f(t, x)−f(t, y)| ≤ 1

10
‖x−y‖, |g(x)−g(y)| ≤ 1

12
‖x−y‖, therefore, (A1) and (A2) are respectively

satisfied with L = 1/10 and ` = 1/12. Using the given values, it is found that Λ ≈ 0.8851733, p0 ≈
1.6599468, k0 ≈ 1.563258. Clearly γ = Lp0 + k0` ≈ 0.2962661 < 1. Thus, the conclusion of Theorem
3.1 applies and the boundary value problem (3.7) has a solution on [0, 1].

Our second existence result is based on Sadovskii’s fixed point theorem. Before proceeding further,
let us recall some auxiliary material.

Definition 3.1. Let M be a bounded set in metric space (X, d), then Kuratowskii measure of noncom-
pactness, α(M) is defined as inf{ε : M covered by a finitely many sets such that the diameter of each
set ≤ ε}.

Definition 3.2. [23] Let Φ : D(Φ) ⊆ X → X be a bounded and continuous operator on Banach space
X. Then Φ is called a condensing map if α(Φ(B)) < α(B) for all bounded sets B ⊂ D(Φ), where α
denotes the Kuratowski measure of noncompactness.

Lemma 3.1. [24, Example 11.7] The map K + C is a k-set contraction with 0 ≤ k < 1, and thus
also condensing, if
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(i) K,C : D ⊆ X → X are operators on the Banach space X;
(ii) K is k-contractive, i.e.,

‖Kx−Ky‖ ≤ k‖x− y‖

for all x, y ∈ D and fixed k ∈ [0, 1);
(iii) C is compact.

Lemma 3.2. [25] Let B be a convex, bounded and closed subset of a Banach space X and Φ : B → B
be a condensing map. Then Φ has a fixed point.

Theorem 3.2. Let f : [0, T ]×R→ R be a continuous function and condition (A2) holds. In addition
we assume that:

(A4) g(0) = 0;
(A5) there exists a nonnegative function p ∈ C([0, T ],R) and a nondecreasing function ψ : [0,∞)→

(0,∞) such that

|f(t, u)| ≤ p(t)ψ(‖u‖) for any (t, u) ∈ [0, T ]× R;

Then the problem (1.2) has at least one solution on [0, T ].

Proof. Let Br = {x ∈ C : ‖x‖ ≤ r} be a closed bounded and convex subset of C, where r will be fixed
later. We define a map P : Br → C as

(Px)(t) = (P1x)(t) + (P2x)(t), t ∈ [0, T ],

where P1 and P2 are defined by (3.2) and (3.3) respectively. Notice that the problem (1.2) is equivalent
to a fixed point problem P(x) = x.

Step 1. (Px)Br ⊂ Br.

Let us select r ≥ ψ(r)‖p‖p0
1− `k0

where p0 and k0 are defined by (3.5) and (3.6). For any x ∈ Br, we

have

‖Px‖ ≤ Jα|f(s, x(s))|(T ) +
T

|Λ|

{
|β| ρIqJα|f(s, x(s))|(ξ) + Jα|f(s, x(s))|(T )

}
+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
|g(x)− g(y)|

≤ ψ(‖x‖)Jαp(s)(T ) + ψ(‖x‖) |β|T
|Λ|

ρIqJαp(s)(ξ) + ψ(‖x‖) T
|Λ|

Jαp(s)(T )

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`‖x‖

≤ ‖p‖ψ(r)

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`r

= ψ(r)‖p‖p0 + k0`r < r,

which implies that (Px)Br ⊂ Br,

Step 2. P1 is compact.
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Observe that the operator P1 is uniformly bounded in view of Step 1. Let τ1, τ2 ∈ [0, T ] with τ1 < τ2
and x ∈ Br. Then we obtain

|(P1x)(τ2)− (P1x)(τ1)| ≤ |Jαf(s, x(s))(τ2)− Jαf(s, x(s))(τ1)|+ |τ2 − τ1|
|Λ|

Jα|f(s, x(s))|(T )

+
|β||τ2 − τ1|
|Λ|

ρIqJα|f(s, x(s))|(ξ)

≤ ψ(r)

Γ(α)

∣∣∣∣∫ τ1

0

[(τ2 − s)α−1 − (τ1 − s)α−1]p(s)ds+

∫ τ2

τ1

(τ2 − s)α−1p(s)ds
∣∣∣∣

+
ψ(r)|τ2 − τ1|

|Λ|

(
Jαp(s)(T ) + |β| ρIqJαp(s)(ξ)

)
,

which is independent of x and tends to zero as τ2− τ1 → 0. Thus, P1 is equicontinuous. Hence, by the
Arzelá-Ascoli Theorem, P1(Br) is a relatively compact set.

Step 3. P2 is continuous and γ-contractive.

To show the continuity of P2 for t ∈ [0, T ], let us consider a sequence xn converging to x. Then, we
have

‖P2xn − P2x‖ ≤

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
|g(xn)− g(x)|

≤

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`‖xn − x‖,

which, in view of (A2), implies that P2 is continuous. Also P2 is γ-contractive, since

γ =

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
` = k0` < 1.

Step 4. P is condensing.

Since P2 is continuous, γ-contraction and P1 is compact, therefore, by Lemma 3.1, P : Br → Br
with P = P1 + P2 is a condensing map on Br.

From the above four steps, we conclude by Lemma 3.2 that the map P has a fixed point which, in
turn, implies that the problem (1.2) has a solution. �

Example 3.2. Consider the following boundary value problem
cD3/2x(t) =

e−2t

π
√

9 + t2

(
x tan−1 x+ π/2

)
, 0 < t < 1,

x(0) =
1

4
(1− cosx) , x(1) =

1

2
2/3I3/2x(3/4).

(3.8)

Observe that |f(t, x)| ≤ p(t)ψ(|x|) with p(t) =
e−2t

2
√

9 + t2
, ψ(|x|) = 1 + |x|, and g(0) = 0, ` = 1/4

as |g(u)− g(v)| ≤ (1/4)|u− v|. Thus, all the conditions of Theorem 3.2 are satisfied and hence by its
conclusion, the problem (3.8) has at least one solution on [0, 1].

Our next result relies on the following fixed point theorem due to Burton and Kirk [26].

Theorem 3.3. Let X be a Banach space, and A,B : X → X be two operators such that A is a
contraction and B is completely continuous. Then either

(a) the operator equation y = A(y) +B(y) has a solution, or
(b) the set E =

{
u ∈ X : λA

(
u
λ

)
+ λB(u) = u

}
is unbounded for λ ∈ (0, 1).

Theorem 3.4. Assume that f, g : [0, T ] × R → R are continuous functions and conditions (A2) and
(A4) hold. In addition we suppose that:
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(A6) there exists a function p ∈ L1(J,R+) such that

|f(t, u)| ≤ p(t), for a.e. t ∈ J, and each u ∈ R.

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. To transform the problem (1.1) into a fixed point problem, we consider the map P : C → C
given by

(Px)(t) = (P1x)(t) + (P2x)(t), t ∈ [0, T ],

where P1 and P2 are defined by (3.2) and (3.3) respectively.
We shall show that the operators P1 and P2 satisfy all the conditions of Theorem 3.3.

Step 1. The operator P1 defined by (3.2) is continuous.

Let xn ⊂ Br = {x ∈ C : ‖x‖ ≤ r} with ‖xn−x‖ → 0. Then the limit ‖xn(t)−x(t)‖ → 0 is uniformly
valid on [0, T ]. From the uniform continuity of f(t, x) on the compact set [0, T ]× [−r, r], it follows that
‖f(t, xn(t)) − f(t, x(t))‖ → 0 uniformly on [0, T ]. Hence ‖P1xn − P1x‖ → 0 as n → ∞ which implies
that the operator P1 is continuous.

Step 2. The operator P1 maps bounded sets into bounded sets in C.

It is indeed enough to show that for any r > 0 there exists a positive constant L such that for each
x ∈ Br = {x ∈ C : ‖x‖ ≤ r}, we have ‖P1x‖ ≤ L. Let x ∈ Br. Then

‖P1x‖ ≤ Jα|f(s, x(s))|(T ) +
T

|Λ|

{
|β| ρIqJα|f(s, x(s))|(ξ) + Jα|f(s, x(s))|(T )

}
≤ Jαp(s)(T ) +

|β|T
|Λ|

ρIqJαp(s)(ξ) +
T

|Λ|
Jαp(s)(T ) := L.

Step 3. The operator P1 maps bounded sets into equicontinuous sets in C.

Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Br. Then, for each x ∈ Br, we obtain

|(P1x)(τ2)− (P1x)(τ1)| ≤ |Jαf(s, x(s))(τ2)− Jαf(s, x(s))(τ1)|+ |τ2 − τ1|
|Λ|

Jα|f(s, x(s))|(T )

+
|β||τ2 − τ1|
|Λ|

|ρIqJα|f(s, x(s))|(ξ)

≤ 1

Γ(α)

∣∣∣∣∫ τ1

0

[(τ2 − s)α−1 − (τ1 − s)α−1]p(s)ds+

∫ τ2

τ1

(τ2 − s)α−1p(s)ds
∣∣∣∣

+
|τ2 − τ1|
|Λ|

(
Jαp(s)(T ) + |β| ρIqJαp(s)(ξ)

)
,

which is independent of x and tends to zero as τ2 − τ1 → 0. Thus, P1 is equicontinuous.

Step 4. The operator P2 defined by (3.3) is a contraction.

This was established in Step 3 of Theorem 3.2.

Step 5. A priori bounds on solutions.

Now it remains to show that the set E =
{
u ∈ C : λP2

(
u
λ

)
+ λP1(u) = u

}
is unbounded for some

λ ∈ (0, 1).
Let λ ∈ (0, 1) and x ∈ E be a solution of the integral equation

x(t) = λJαf(s, x(s))(t) + λ
t

Λ

{
β ρIqJαf(s, x(s))(ξ)− Jαf(s, x(s))(T )

}
+λ
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), t ∈ [0, T ].
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Then, for each t ∈ [0, T ], we have

|x(t)| ≤ Jαp(s)(T ) +
|β|T
|Λ|

ρIqJαp(s)(ξ) +
T

|Λ|
Jαp(s)(T )

+λ
[
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

][∣∣∣g(x(s)

λ

)
− g(0)

∣∣∣+ |g(0)|

]

≤ Jαp(s)(T ) +
|β|T
|Λ|

ρIqJαp(s)(ξ) +
T

|Λ|
Jαp(s)(T ) +

[
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

]
`‖x‖,

or

(1− k0`)‖x‖ ≤ Jαp(s)(T ) +
|β|T
|Λ|

ρIqJαp(s)(ξ) +
T

|Λ|
Jαp(s)(T ).

Consequently we have

‖x‖ ≤M :=
1

(1− k0`)

[
Jαp(s)(T ) +

|β|T
|Λ|

ρIqJαp(s)(ξ) +
T

|Λ|
Jαp(s)(T )

]
,

which shows that the set E is bounded, since k0` < 1. Hence, P has a fixed point in [0, T ] by Theorem
3.3, and consequently the problem (1.1) has a solution. This completes the proof. �

Finally, we show the existence of solutions for the boundary value problem (1.1) by applying a fixed
point theorem due to O’Regan in [27].

Lemma 3.3. Denote by U an open set in a closed, convex set C of a Banach space E. Assume 0 ∈ U.
Also assume that F (Ū) is bounded and that F : Ū → C is given by F = F1 +F2, in which F1 : Ū → E
is continuous and completely continuous and F2 : Ū → E is a nonlinear contraction (i.e., there exists
a nonnegative nondecreasing function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0, such that
‖F2(x)− F2(y)‖ ≤ φ(‖x− y‖) for all x, y ∈ Ū). Then, either

(C1) F has a fixed point u ∈ Ū ; or
(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u), where Ū and ∂U, respectively,

represent the closure and boundary of U.

In the next result, we use the terminology:

Ωr = {x ∈ C : ‖x‖ < r}, Mr = max{|f(t, x)| : (t, x) ∈ [0, T ]× [−r, r]}.

Theorem 3.5. Let f : [0, T ] × R → R be a continuous function and conditions (A1), (A2), (A4) and
(A5) hold. In addition we assume that:

(A7) sup
r∈(0,∞)

r

p0ψ(r)‖p‖
>

1

1− k0`
, where p0 and k0 are defined in (3.5) and (3.6) respectively.

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. By the assumption (A7), there exists a number r0 > 0 such that

r0
p0ψ(r0)‖p‖

>
1

1− k0`
. (3.9)

We shall show that the operators P1 and P2 defined by (3.2) and (3.3) respectively, satisfy all the
conditions of Lemma 3.3.

Step 1. The operator P1 is continuous and completely continuous. We first show that P1(Ω̄r0) is
bounded. For any x ∈ Ω̄r0 , we have

‖P1x‖ ≤ Jα|f(s, x(s))|(T ) +
T

|Λ|

{
|β| ρIqJα|f(s, x(s))|(ξ) + Jα|f(s, x(s))|(T )

}
≤ MrJ

αp(s)(T ) +Mr
|β|T
|Λ|

ρIqJαp(s)(ξ) +Mr
T

|Λ|
Jαp(s)(T )

≤ ‖p‖Mr

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}
= Mr‖p‖p0.



240 AHMAD, NTOUYAS AND ALSAEDI

Thus the operator P1(Ω̄r0) is uniformly bounded. Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Br. Then

|(P1x)(τ2)− (P1x)(τ1)| ≤ |Jαf(s, x(s))(τ2)− Jαf(s, x(s))(τ1)|+ |τ2 − τ1|
|Λ|

Jα|f(s, x(s))|(T )

+
|β||τ2 − τ1|
|Λ|

|ρIqJα|f(s, x(s))|(ξ)

≤ Mr

Γ(α)

∣∣∣∣∫ τ1

0

[(τ2 − s)α−1 − (τ1 − s)α−1]p(s)ds+

∫ τ2

τ1

(τ2 − s)α−1p(s)ds
∣∣∣∣

+
Mr|τ2 − τ1|
|Λ|

(
Tα

Γ(α+ 1)
+

|β|
Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

)
,

which is independent of x and tends to zero as τ2− τ1 → 0. Thus, P1 is equicontinuous. Hence, by the
Arzelá-Ascoli Theorem, P1(Ω̄r0) is a relatively compact set. Now, let xn ⊂ Ω̄r0 with ‖xn − x‖ → 0.
Then the limit ‖xn(t)− x(t)‖ → 0 is uniformly valid on [0, T ]. From the uniform continuity of f(t, x)
on the compact set [0, T ]× [−r0, r0], it follows that ‖f(t, xn(t))− f(t, x(t))‖ → 0 uniformly on [0, T ].
Hence ‖P1xn − P1x‖ → 0 as n → ∞ which proves the continuity of P1. This completes the proof of
Step 1.

Step 2. The operator P2 : Ω̄r0 → C([0, T ],R) is contractive. This is a consequence of (A2).
Step 3. The set P(Ω̄r0) is bounded. The assumptions (A2) and (A4) imply that

‖P2(x)‖ ≤ k0`r0,

for any x ∈ Ω̄r0 . This, with the boundedness of the set P1(Ω̄r0) implies that the set P(Ω̄r0) is bounded.
Step 4. Finally, it will be shown that the case (C2) in Lemma 3.3 does not hold. On the contrary,

we suppose that (C2) holds. Then, we have that there exist λ ∈ (0, 1) and x ∈ ∂Ωr0 such that x = λPx.
So, we have ‖x‖ = r0 and

x(t) = λJαf(s, x(s))(t) + λ
t

Λ

{
β ρIqJαf(s, x(s))(ξ)− Jαf(s, x(s))(T )

}
+λ
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), t ∈ [0, T ].

Using the assumptions (A4)− (A6), we get

r0 ≤ ‖p‖ψ(r0)

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`r0,

which yields

r0 ≤ p0ψ(r0)‖p‖+ k0`r0.

Thus, we get a contradiction:
r0

p0ψ(r0)‖p‖
≤ 1

1− k0`
.

Thus the operators P1 and P2 satisfy all the conditions of Lemma 3.3. Hence, the operator P has at
least one fixed point x ∈ Ω̄r0 , which is a solution of the problem (1.2). This completes the proof. �

Example 3.3. Consider the following fractional order boundary value problem
cD3/2x(t) =

e−2t

2π
√

9 + t2

(
x tan−1 x+ π/2

)
, 0 < t < 1,

x(0) =
1

4
(1− cosx) , x(1) =

1

2
2/3I3/2x(3/4).

(3.10)

Observe that |f(t, x)| ≤ p(t)ψ(|x|) with p(t) =
e−2t

4
√

9 + t2
, ψ(|x|) = 1 + |x|, and g(0) = 0, ` = 1/4 as

|g(u) − g(v)| ≤ (1/4)|u − v|. With ψ(r) = 1 + r, ‖p‖ = 1/12, Λ ≈ 0.8851733, p0 ≈ 1.6599468, k0 ≈
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1.563258 (as found in Example 3.1), we have that (A7) holds, since sup
r∈(0,∞)

r

p0ψ(r)‖p‖
≈ 7.2291473 >

1.6415361 ≈ 1

1− k0`
. Thus, all the conditions of Theorem 3.5 are satisfied and hence by its conclusion,

the problem (3.10) has at least one solution on [0, 1].

4. Existence results for problem (1.2)

First of all, we introduce notions and recall some basic material on multivalued maps related to our
work [28–30].

For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈ P(X) :
Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact} and Pcp,c(X) = {Y ∈ P(X) : Y is compact
and convex}.

A multivalued map G : X → P(X) :

(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X;
(ii) is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e.

supx∈B{sup{|y| : y ∈ G(x)}} <∞);
(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty

closed subset of X, and if for each open set N of X containing G(x0), there exists an open
neighborhood N0 of x0 such that G(N0) ⊆ N ;

(iv) G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩B 6= ∅} is open for any open set
B in E;

(v) is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb(X);
(vi) is said to be measurable if for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable;
(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued

operator G will be denoted by FixG.

Definition 4.1. A multivalued map F : [0, T ]× R→ P(R) is said to be Carathéodory if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;
(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ];

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, T ],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)

for all ‖x‖ ≤ α and for a. e. t ∈ [0, T ].

For each x ∈ C([0, T ],R), define the set of selections of F by

SF,x := {v ∈ L1([0, T ],R) : v(t) ∈ F (t, x(t)) for a.e. t ∈ [0, T ]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)} and recall two useful
results on closed graphs and upper-semicontinuity.

Lemma 4.1. ( [28, Proposition 1.2]) If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed subset of
X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗, yn → y∗
and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a closed graph,
then it is upper semi-continuous.

Lemma 4.2. ( [31]) Let X be a Banach space. Let F : [0, T ]×R→ Pcp,c(X) be an L1− Carathéodory
multivalued map and let Θ be a linear continuous mapping from L1([0, T ], X) to C([0, T ], X). Then
the operator

Θ ◦ SF : C([0, T ], X)→ Pcp,c(C([0, T ], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x,y)

is a closed graph operator in C([0, T ], X)× C([0, T ], X).
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Lemma 4.3. ( [32], Krasnoselskii’s fixed point theorem). Let X be a Banach space, Y ∈ Pb,cl,c(X)
and A,B : Y → Pcp,c(X) two multivalued operators. If the following conditions are satisfied

(i) Ay +By ⊂ Y for all y ∈ Y ;
(ii) A is contraction;
(iii) B is u.s.c and compact,

then, there exists y ∈ Y such that y ∈ Ay +By.

Definition 4.2. A function x ∈ C2([0, T ],R) is a solution of the problem (1.2) if x(0) = g(x), x(T ) =
β ρIqx(ξ), and there exists a function f ∈ L1([0, T ],R) such that f(t) ∈ F (t, x(t)) a.e. on [0, T ] and

x(t) = Jαf(s)(t) +
t

Λ

{
β ρIqJαf(s)(ξ)− Jαf(s)(T )

}
+
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x).

Theorem 4.1. Assume that (A2) holds. In addition we suppose that:

(H1) F : [0, T ]× R→ Pcp,c(R) is L1−Carathéodory multivalued map;
(H2) there exists a function p ∈ C([0, T ],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t), for each (t, x) ∈ [0, T ]× R.

Then the boundary value problem (1.2) has at least one solution on [0, T ].

Proof. To transform the problem (1.2) to a fixed point problem, we define an operator N : C −→ P(C)
by

N (x) =


h ∈ C :

h(t) =


Jαf(s)(t) +

t

Λ

{
αρIqJαf(s)(ξ)− Jαf(s)(T )

}
+
[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x),


for f ∈ SF,x.

Next we introduce operators A : C −→ C and B : C −→ P(C) by

Ax(t) =

[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), (4.1)

B(x) =

{
h ∈ C : h(t) = Jαf(s)(t) +

t

Λ

{
β ρIqJαf(s)(ξ)− Jαf(s)(T )

}
.

}
(4.2)

Observe that N = A + B. We shall show that the operators A and B satisfy all the conditions of
lemma 4.3 on [0, T ]. First, we show that the operators A and B define the multivalued operators
A,B : Br → Pcp,c(C) where Br = {x ∈ C : ‖x‖ ≤ r} is a bounded set in C. First we prove that B is
compact-valued on Br. Note that the operator B is equivalent to the composition L ◦ SF , where L is
the continuous linear operator on L1([0, T ],R) into C, defined by

L(v)(t) = Jαv(s)(t) +
t

Λ

{
β ρIqJαv(s)(ξ)− Jαv(s)(T )

}
.

Suppose that x ∈ Br is arbitrary and let {vn} be a sequence in SF,x. Then, by definition of SF,x,
we have vn(t) ∈ F (t, x(t)) for almost all t ∈ [0, T ]. Since F (t, x(t)) is compact for all t ∈ J , there is a
convergent subsequence of {vn(t)} (we denote it by {vn(t)} again) that converges in measure to some
v(t) ∈ SF,x for almost all t ∈ J . On the other hand, L is continuous, so L(vn)(t)→ L(v)(t) pointwise
on [0, T ].
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In order to show that the convergence is uniform, we have to show that {L(vn)} is an equicontinuous
sequence. Let t1, t2 ∈ [0, T ] with t1 < t2. Then, we have

|L(vn)(t2)− L(vn)(t1)|

≤ |Jαvn(s)(t2)− Jαvn(s)(t1)|+ |t2 − t1|
|Λ|

Jα|vn(s)|(T ) +
|β||t2 − t1|
|Λ|

|ρIqJα|vn(s)|(ξ)

≤ 1

Γ(α)

∣∣∣∣∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]p(s)ds+

∫ t2

t1

(t2 − s)α−1p(s)ds
∣∣∣∣

+
|t2 − t1|
|Λ|

(
Jqp(s)(T ) + |β| ρIqJqp(s)(ξ)

)
.

We see that the right hand of the above inequality tends to zero as t2 → t1. Thus, the sequence
{L(vn)} is equicontinuous and hence, by the Arzelá-Ascoli theorem, we get that there is a uniformly
convergent subsequence. So, there is a subsequence of {vn} (we denote it again by {vn}) such that
L(vn)→ L(v). Note that L(v) ∈ L(SF,x). Hence, B(x) = L(SF,x) is compact for all x ∈ Br. So B(x)
is compact.

Now, we show that B(x) is convex for all x ∈ C. Let z1, z2 ∈ B(x). We select f1, f2 ∈ SF,x such that

zi(t) = Jαfi(s)(t) +
t

Λ

{
β ρIqJαfi(s)(ξ)− Jαfi(s)(T )

}
, i = 1, 2,

for almost all t ∈ [0, T ]. Let 0 ≤ λ ≤ 1. Then, we have

[λz1 + (1− λ)z2](t) = Jα[λf1(s) + (1− λ)f2(s)](t)

+
t

Λ

{
β ρIqJα[λf1(s) + (1− λ)f2(s)](ξ)− Jα[λf1(s) + (1− λ)f2(s)](s)(T )

}
.

Since F has convex values, so SF,u is convex and λf1(s) + (1− λ)f2(s) ∈ SF,x. Thus

λz1 + (1− λ)z2 ∈ B(x).

Consequently, B is convex-valued. Obviously, A is compact and convex-valued.
The rest of the proof consists of several steps and claims.

Step 1: We show that A is a contraction on C. For x, y ∈ C, we have

|Ax(t)−Ay(t)| =

∣∣∣∣∣1 + β
t

Λ

ξρq

ρq
1

Γ(q + 1)

∣∣∣∣∣|g(x)− g(y)|

≤

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
|g(x)− g(y)|,

≤ k0`‖x− y‖,

which, on taking supremum over t ∈ [0, T ], yields

‖Ax−Ay‖ ≤ L0‖x− y‖, L0 = k0`.

This shows that A is a contraction as L0 < 1.

Step 2: B is compact and upper semicontinuous. This will be established in several claims.

Claim I: B maps bounded sets into bounded sets in C.

Let Br = {x ∈ C : ‖x‖ ≤ r} be a bounded set in C. Then, for each h ∈ B(x), x ∈ Br, there exists
f ∈ SF,x such that

h(t) = Jαf(s)(t) +
t

Λ

{
β ρIqJαf(s)(ξ)− Jαf(s)(T )

}
.
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Then, for t ∈ [0, T ], we have

|h(t)| ≤ Jα|f(s)|(T ) +
T

|Λ|
{|β|ρIqJα|f(s)|(ξ)− Jα|f(s)|(T )

}
≤ Jαp(s)(T ) +

|β|T
|Λ|

ρIqJαp(s)(ξ) +
T

|Λ|
Jαp(s)(T )

≤ ‖p‖

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}
.

Thus,

‖h‖ ≤ ‖p‖

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}
.

Claim II: B maps bounded sets into equicontinuous sets.

Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Br. Then, for each h ∈ B(x), we obtain

|h(τ2)− h(τ1)|

≤ |Jαf(s)(τ2)− Jαf(s)(τ1)|+ |τ2 − τ1|
|Λ|

Jα|f(s)|(T ) +
|β||τ2 − τ1|
|Λ|

ρIqJα|f(s)|(ξ)

≤ 1

Γ(α)

∣∣∣∣∫ τ1

0

[(τ2 − s)α−1 − (τ1 − s)α−1]p(s)ds+

∫ τ2

τ1

(τ2 − s)α−1p(s)ds
∣∣∣∣

+‖p‖ |τ2 − τ1|
|Λ|

(
Tα

Γ(α+ 1)
+

|β|
Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

)

≤ ‖p‖
Γ(α+ 1)

[τα2 − τα1 + 2(τ2 − τ1)α] + ‖p‖ |τ2 − τ1|
|Λ|

(
Tα

Γ(α+ 1)
+

|β|
Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

)
.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br as
τ2 − τ1 → 0. Therefore it follows by the Ascoli-Arzelá theorem that B : C → P(C) is completely
continuous.

By Claims I and II, B is completely continuous. By Lemma 4.1, B will be upper semicontinuous
(since it is completely continuous) if we prove that it has a closed graph.

Claim III: B has a closed graph.

Let xn → x∗, hn ∈ B(xn) and hn → h∗. Then we need to show that h∗ ∈ B(x∗). Associated with
hn ∈ B(xn), there exists fn ∈ SF,xn

such that for each t ∈ [0, T ],

h(t) = Jαfn(s)(t) +
t

Λ

{
β ρIqJαfn(s)(ξ)− Jαfn(s)(T )

}
.

Thus it suffices to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, T ],

h∗(t) = Jαf∗(s)(t) +
t

Λ

{
β ρIqJαf∗(s)(ξ)− Jαf∗(s)(T )

}
.

Let us consider the linear operator Θ : L1([0, T ],R)→ C given by

f 7→ Θ(f)(t) = Jαf(s)(t) +
t

Λ

{
β ρIqJαf(s)(ξ)− Jαf(s)(T )

}
.

Observe that

‖hn(t)− h∗(t)‖ =
∥∥∥Jα(fn(s)− f∗(s))(t)

+
t

Λ

{
β ρIqJα(fn(s)− f∗(s))(ξ)− Jα(fn(s)− f∗(s))(T )

}∥∥∥→ 0,

as n→∞.
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Thus, it follows by Lemma 4.2 that Θ ◦ SF is a closed graph operator. Further, we have hn(t) ∈
Θ(SF,xn

). Since xn → x∗, we have that

h∗(t) = Jαf∗(s)(t) +
t

Λ

{
β ρIqJαf∗(s)(ξ)− Jαf∗(s)(T )

}
,

for some f∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed values). In consequence,
the operator B is compact and upper semicontinuous.

Step 3: Here, we show that A(x) + B(x) ⊂ Br for all x ∈ Br. Suppose x ∈ Br, with r >
p0‖p‖

1− k0`
and h ∈ B are arbitrary elements. Choose f ∈ SF,x such that

h(t) = Jαf(s)(t) +
t

Λ

{
β ρIqJαf(s)(ξ)− Jαf(s)(T )

}
+

[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), t ∈ [0, T ].

Following the method for proof for Claim I, we can obtain

|h(t)| ≤ ‖p‖

{
Tα

Γ(α+ 1)
+

T

|Λ|
Tα

Γ(α+ 1)
+

T

|Λ|
|β|

Γ(α+ 1)

ξα+ρq

ρq

Γ(α+ρρ )

Γ(α+ρq+ρρ )

}

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`‖x‖.

Thus
‖h‖ ≤ p0‖p‖+ k0`r < r. (4.3)

Hence ‖h‖ ≤ r, which means that A(x) + B(x) ⊂ Br for all x ∈ Br.
Thus, the operators A and B satisfy all the conditions of Lemma 4.3 and hence its conclusion implies

that x ∈ A(x) +B(x) in Br. Therefore the boundary value problem (1.2) has a solution in Br and the
proof is completed. �

To prove our next result, we make use of the following form of the nonlinear alternative for con-
tractive maps [33, Corollary 3.8].

Theorem 4.2. Let X be a Banach space, and D a bounded neighborhood of 0 ∈ X. Let Z1 : X →
Pcp,c(X) and Z2 : D̄ → Pcp,c(X) two multivalued operators satisfying

(a) Z1 is contraction, and
(b) Z2 is u.s.c and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 4.3. Assume that (A2)and (H1) are satisfied. In addition we suppose that:

(H3) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈
L1([0, T ],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, T ]× R;

(H4) there exists a number M > 0 such that

M

ψ(M)
>

1

(1− k0`)

[
Jαp(s)(T ) +

T

|Λ|

{
|β| ρIqJαp(s)(ξ) + Jαp(s)(T )

}]
, (4.4)

where k0 is defined in (3.6).

Then the boundary value problem (1.2) has at least one solution on [0, T ].

Proof. To transform the problem (1.2) to a fixed point, we define an operator N : C([0, T ],R) −→ P(C)
and consider the operatorsA and B defined in the beginning of the proof of Theorem 4.1. As in Theorem
4.1, one can show that the operatorsA and B are indeed the multivalued operatorsA,B : Br → Pcp,c(C)
where Br = {x ∈ C : ‖x‖ ≤ r} is a bounded set in C, A is a contraction on C and B is u.s.c. and
compact.
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Thus the operators A and B satisfy all the conditions of Theorem 4.2 and hence its conclusion
implies either condition (i) or condition (ii) holds. We show that the conclusion (ii) is not possible. If
x ∈ λA(x) + λB(x) for λ ∈ (0, 1), then there exists f ∈ SF,x such that

x(t) = Jαf(s)(t) +
t

Λ

{
β ρIqJαf(s)(ξ)− Jαf(s)(T )

}
+

[
1 + β

t

Λ

ξρq

ρq
1

Γ(q + 1)

]
g(x), t ∈ [0, T ],

and

|x(t)| ≤ Jαp(s)|ψ(‖x‖)(T ) +
T

|Λ|

{
|β| ρIqJαp(s)ψ(‖x‖)(ξ) + Jαp(s)ψ(‖x‖)(T )

}
+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`‖x‖

≤ ψ(‖x‖)

[
Jαp(s)(T ) +

T

|Λ|

{
|β| ρIqJαp(s)(ξ) + Jαp(s)(T )

}]

+

(
1 + |β| T

|Λ|
ξρq

ρq
1

Γ(q + 1)

)
`‖x‖.

Thus

(1− k0`)‖x‖ ≤ ψ(‖x‖)

[
Jαp(s)(T ) +

T

|Λ|

{
|β| ρIqJαp(s)(ξ) + Jαp(s)(T )

}]
. (4.5)

If condition (ii) of Theorem 4.2 holds, then there exists λ ∈ (0, 1) and x ∈ ∂BM with x = λN (x).
Then, x is a solution of (1.2) with ‖x‖ = M. Now, by the inequality (4.5), we get

M

ψ(M)
≤ 1

(1− k0`)

[
Jαp(s)(T ) +

T

|Λ|

{
|β| ρIqJαp(s)(ξ) + Jαp(s)(T )

}]
,

which contradicts (4.4). Hence, N has a fixed point in [0, T ] by Theorem 4.2, and consequently the
problem (1.2) has a solution. This completes the proof. �

Example 4.1. Consider the following boundary value problem of fractional differential inclusions
D3/2x(t) ∈ F (t, x(t)), t ∈ [0, 1], 0 < t < 1,

x(0) =
1

8
x(1/4), x(1) =

1

2
2/3I3/2x(3/4),

(4.6)

where

F (t, x(t)) =

[
2√

t2 + 64

(
|x(t)|

2

(
|x(t)|
|x(t)|+ 1

+ 1

)
+

1

5

)
,

e−t

(10 + t)

(
sinx(t) +

1

15

)]
.

Clearly |F (t, x)| ≤ p(t)ψ(|x|), where p(t) = 2/
√
t2 + 64, ψ1(|x|) = |x|+ 1/5 and ` = 1/8. Using the

values: Λ ≈ 0.8851733, p0 ≈ 1.6599468, k0 ≈ 1.563258 (see Example 3.1) and the condition (H4), we
find that M > M1 ' 0.2130287. Since the hypotheses of Theorem 4.3 are satisfied, the problem (4.6)
has a solution on [0, 1].
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