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ABSTRACT:  Improving model generalization of aggregated multiple neural 

networks for nonlinear dynamic process modeling using Bayesian Model Averaging 

(BMA) is proposed in this paper. Using BMA method, the posterior probability of a 

particular network being the true model is used as the combination weight for 
aggregating the network despite of using fixed combination weight as the model. The 

posterior probabilities are calculated using the sum square error (SSE) from the training 

data on each of the sample time, and tested to the testing data. The selections for the final 
weight are based on the least SSE calculated when each of the posterior probability is 

applied to the testing data. The likelihood method is employed for calculating the 

network error for each input data. Then, it is used to calculate the combination weight for 

the networks. Two non-linear dynamic system-modeling case studies are selected for this 

proposed method, which are water tank level prediction and pH neutralization process. 

Application result demonstrates that the combination using BMA technique can 

significantly improve model generalization compared to other linear combination 

approaches.  

KEY WORDS:  Multiple Neural Networks, Process Control, Mathematical Modeling, 

Bayesian Model Averaging, Nonlinear Process, Nonlinear Dynamics  

1. INTRODUCTION 

As we know, many processes are complex and require a lot of time and effort to 

develop and validate the detailed theoretical dynamic models which often end up with a 

multivariable complicated mathematical model. As an alternative, a simpler empirical 

nonlinear model is often developed using experimental data. Neural networks or artificial 

neural networks (ANN) are attractive whenever it is necessary to model a complex or 

complicated processes with large input-output data sets as well as to replace models that 

are too complicated to solve in real time. Hence, neural networks have been used 

extensively in the recent years to model a wide range of physical and chemical phenomena 

and to model other non-engineering situations [1]. As mentioned by Willis et al. [2] more 

accurate representations of the processes are required to ensure good process control 

performance especially in Advanced Process Control.  

Therefore, neural network models must be robust, stable and reliable when they are 

applied to a new (unseen) data. Zhang [3] stated that even though neural networks have a 
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significant capability in representing nonlinear functions, inconsistency of accuracy still 

seems to be a problem where neural network models may not perform well when applied 

to unseen data. Even though neural network models are very powerful non-linear 

modeling tools, noises in the input data sometimes cause the model over-fitting [4]. It can 

lead to a situation where poor generalization of a neural network model. Such 

circumstance is undesirable since it obviously strays from the goal of using neural network 

model.  Another example is phenomena over fitting and under fitting in neural network 

training where a lot of researchers tried to solve it.  

Over-fitting and under-fitting are two of the problems that should be alleviated in 

utilizing neural networks. In over-fitting, the error on the training data set is driven to a 

very small value, but when applied to unseen data, the network error is large and the 

generalization capability of the neural network is poor. While under fitting is due to that 

the neural network itself cannot cope with or fails to capture the relationship within the 

complex data [5].  

In order to improve the robustness of neural networks and overcome the over and under 

fitting phenomena, a number of techniques have been developed lately like regularization 

(e.g [6]) and the early stopping method (e.g. [7]).  Ohbayashi [8] implemented the 

universal learning rule and second order derivatives to increase the robustness in neural 

network models.  Robustness is enhanced by minimizing the change in the values of 

criterion function caused by the small changes around nominal values of system 

parameters. Lack of robustness in individual neural networks is basically due to the over 

fitting of the models (e.g. [9]). Therefore, many researchers concentrate on how over 

fitting can be eliminated by improving the learning algorithm or by combining multiple 

imperfect neural networks. 

The method combining multiple neural networks seems to show some encouraging 

results in terms of improving the robustness of neural networks [10]. There are several 

methods of combining multiple neural networks such as stacked neural network and 

bootstrap aggregated networks where multiple networks are created on bootstrap resample 

of the original training data. Using this method, several networks are combined 

(aggregated) and the aggregated predictor is used as the final representation as shown in 

Fig. 1. They can be both the same or different structure of neural network from different 

data sets and the training algorithm.  

The overall output of the stacked neural network is a weighted combination of the 

individual network outputs. The main objective of this approach is to improve the 

generalization capability of the neural network models in such away that it will guard 

against the failure of individual component networks. Combining a set of imperfect 

models (networks) can be thought of as a way of managing the recognized limitation of 

the individual models, each is known to have errors but they are combined in so the effect 

of these errors are minimized. Proper determination of the stacking weights is essential for 

good modeling performance [10 - 12]. This is because each network output is weighted 

prior to summation of all the neural networks in the model, which will give the prediction 

value.   
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Fig. 1: Combining multiple neural networks. Re-sampling of X to get final output of Y 
 

In this paper, it is proposed that BMA technique is used to combine multiple neural 

networks and to compare this method with linear combination techniques which are 

simple averaging and multiple linear regressions (MLR) techniques. Other methods of 

combining multiple neural networks are nonlinear combination of neural networks such as 

Demspter-Shafers which uses rank-based information, voting, order statistic and also 

Turner and Ghosh methods. In BMA approach, a proper model is selected at each sample 

of the model input in training data using the probabilities analysis. The probability of an 

individual network being the true model is calculated using the sum of squared errors 

(SSE) on the training data. Each set of weight from each sample time resulting from the 

training data is then applied to the testing data. For each prediction in the testing data, SSE 

is calculated and the set of weight that produced least SSE is selected for the final 

prediction output and employed to the unseen data as the final model.   

The paper is organized as follows. Section 2 presents the combination using optimum 

selection of Bayesian Model Averaging (BMA). The applications of the proposed 

technique to two case studies are explained in Section 3. Section 4 covers the results and 

discussion and finally, the last section concludes this paper.  

2. BAYESIAN MODEL AVERAGING (BMA) METHOD FOR 

COMBINING MULTIPLE NEURAL NETWORKS  

Bootstrap re-sampling technique is proposed in this paper to randomly re-sample 

twenty different set of training, testing and validation data. Instead of choosing one ‘best’ 

neural network model, a set of imperfect  estimators (net), which has different  prediction 

performance are combined  using BMA method to improve the  generalization capability 

of the model.  

The Bayesian approach allows the predictive performance and better accounting of 

uncertainty. This can be seen as this approach tries to minimize the effect of the errors of 

the model through its method of using the least SSE. It also takes into account every 

sample and set in the calculation.  In some cases, for instance the heart attack data in 

Raftery [13], more than one model may have high posterior probability and these models 

will give different predictions. By using predictions from only a single model will grossly 

underestimate the variability of the estimates since it ignores the fact that another model 
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with significant posterior probability gives a different prediction. Despite of that, one 

should calculate predictions by using a weighted average over all models in the search 

space, where the weights are the posterior probabilities of the models [14, 15]. The BMA 

based combination of multiple neural networks can be represented as followed:   

y* =  p1 y 1 +  p2 y 2 +  p3 y 3  +…+  pkyk        (1)  

where y* is  the aggregated network model prediction and  pk is the weight for combining 

the k-th network with yk prediction. 

For a dynamic process modeling, each of the individual networks model can be 

represented as Eq. (1). Suppose that neural network models are to be developed from the 

data set {X, Y}, where X∈R pN×  is the input data, Y∈R qN×  is the output data, N is the 

number of samples, p is the number of input variables and q is the number of output  

variables. To develop an aggregated neural network model containing n individual 

networks, the original data set can be re-sampled using bootstrap re-sampling with 

replacement to form replications of the original data set [16]. The n replications can be 

denoted as {X(1), Y(1)}, {X(2), Y(2)},…, {X(n), Y(n)}, where X(i)∈R pN×  ,Y(i) ∈R qN× , i=1, 2,…, 

n .  A neural network model can be developed on each of these replications, which can be 

partitioned  into a training data set and  a testing data set if cross-validation is used in 

network training and network structure selection and the predictions of these n network on 

the original  data set are denoted as 1Ŷ , 2Ŷ , …. 

For the start, one should determine the aggregating weight for k-th networks as the 

posterior probability that k-th network is a true model with the posterior probabilities of 

the entire n network sum to 1. This aggregating weight is calculated from the training data,  
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where σ is the variance of the errors of the actual process output, yt for t-th training data, k 

is the number of variables and t is the sampling data [12, 17].  

However, there is a problem when applying Eq. (2) to practical applications. The error 

of each network at time t is required which is unknown as the true value of the process 

output at time t is unknown and is to be predicted. Thus, Eq. (2) needs to be modified in 

order to suit the practical applications. Likelihood method is then used to obtain the 

estimates of the likely errors at time t. This method works in such way that a given model 

input data point is compared to the model input data in the training and testing data sets. 

Data point in the training and testing data set that are likely is then obtained.  

BMA method is used to select the final value of the prediction output as that of the 

network with give least SSE  value of the posterior probability at any given time when 

apply to the testing data. Since earlier, model input data that are likely are employed. 

Therefore, the network prediction error for this data point seems to be closed to its “likely” 

error in the training and testing data. As the result, the “likely” error in the training and 

testing data sets are used as an estimate of the error of the network for the given input data 

point. From the obtained error, aggregated weight is then calculated based on Eq. (2).  
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The process of developing a model proceeds to the implementing step for the 

aggregated weight. They are employed to the testing data. The same equation as Eq. (1) is 

used to calculate the value of SSE for the testing data with y* is the aggregated network 

model prediction and pk is the weight for combining k-th network with yk prediction taken 

from the least SSE on the testing data. The value of SSE of each sample time is then 

plotted. The global optimum of SSE is selected from all the plotted SSE of the testing 

data. Then, the selected weight based on the least or optimum SSE value is applied to the 

validation data to obtain the final prediction output. The steps of obtaining optimum 

weight can be summarized as follows: 

Step 1: Generate n neural networks using bootstrap re-samples of the original training and 

testing data. 

Step 2: Calculate the SSE for all networks on the original training data set for each sample 

time. 

Step 3: Set the prior distribution of the 20 neural networks as equal. The neural networks 

are assumed to have the same prior probability with the sum of the probability of all the 

networks is 1. Hence, each network has a prior of 0.05. 

Step 4: Calculate likelihood or conditional probability that k-th network is the true model 

in the reduced universe of the 20 neural networks prediction for the training data using the 

SSE in Step 2. The likelihood is calculated as follows: 

( ) ( )[ ]2
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σπσ
k
tt yyk e
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In this case, the probability distribution is assumed as a normal distribution where k is the 

number of variables and t is the sampling data.  

Step 5: Find the posterior probability for each network by dividing the joint probability 

with the marginal probability of the first data set.  

Ste p 6: In training data set, use the posterior probability of the first data set as the prior for 

the second data set. In the same way, the second data set posterior is set as the prior for the 

third data set. The iteration continues with new posterior probability calculated using the 

posterior after the previous data set as the prior for the next data set.   

Step 7: Apply each posterior probability in every samples time calculated in Step 5 to the 

testing data. Compute SSE for each iteration. The selection of the final weight (or 

posterior probability) will be based on the least SSE produced in the testing data. Then, 

the weight is chosen as the final weight to obtain the aggregated neural network 

prediction.  

3. APPLICATIONS TO TWO NONLINEAR PROCESS MODELING 

CASE STUDIES  

Two case studies are used in this paper for evaluation and analysis of the proposed 

combination method for multiple neural networks. In each of the case study, 20 networks 

with fixed identical structure and 20 networks with various structures were developed 

from bootstrap re-samples of the original training and testing data. The meaning of various 

structures in this study is the number of neuron in the hidden layer is different in each 

individual network which randomly select in a certain range. The rational to choose 20 

networks for all combination is based on the reference by Zhang [16, 18] where 30 neural 

network models through bootstrap re-sampling method and applied the simple averaging 

combination method. After combining the aggregated networks, a constant SSE was 
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observed after about 15 combinations. Therefore, combining 20 neural networks is 

reasonably fine. If the number of networks is too small, one might not get the optimum 

reduction of the SSE in the combination of the network. As a result, the “best” model to 

represent the system cannot be achieved. 

In re-sampling the training and testing data using bootstrap re-sampling techniques, the 

training and testing data were already in discrete time function; therefore by re-sampling 

the discrete time function, it does not affect the sequence of input-output mapping of the 

prediction. Then, the individual networks were trained by the Levenberg-Marquardt 

optimization algorithm with regularization and “early stopping”. All weights and biases 

were randomly initialized in the range from –0.1 to 0.1. The individual networks are single 

hidden layer feed forward neural networks. Hidden neurons use the logarithmic sigmoid 

activation function whereas output layer neurons use the linear activation function. To 

cope with the different magnitudes in the input and output data, all the data were scaled to 

zero mean and unit standard deviation.  

The data for neural network model building need to be divided into: (1) Training data 

(for network training); (2) Testing data (for cross-validation based network structure 

selection and early stopping); and (3) Unseen validation data (for evaluation of the final 

selected model). The neural network models for both cases are developed using MATLAB 

(The Mathworks Inc.). In networks with fixed structure, the network structures, i.e. the 

number of hidden neurons, were determined through cross validation. Single hidden layer 

neural networks with different numbers of hidden neurons were trained on the training 

data and tested on the testing data. The network with the lowest sum of squared errors 

(SSE) on the testing data was considered as having the best network topology. In assessing 

the developed models, SSE on the unseen validation data is used as the performance 

criterion. For dynamic system modeling, multi-step-ahead or long range predictions 

should be taken into consideration. In many advanced process control applications, such as 

optimal control of batch processes, accurate long range predictions are required.   

 

Fig. 2: Long-Range predictions with feedback before the combination of individual 

networks 

For one-step-ahead predictions, the process output at time (t-1), y (t-1), is used as a 

model input to predict the process output at time t, ( )tŷ , as follows:  
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( ) )](),...,2(),1(),(),...,2(),1([ˆ mtututuntytytyfty −−−−−−=  (4) 

where u(t-1) is the process input at time (t-1), y(t) is the predicted process output at time  

t, m and n are the time lags in the process input and output respectively. In long range 

predictions or multi-step-ahead predictions, the current and past model predictions are 

used to predict the future values of the model outputs: 

( ) )](),...,2(),1(),(ˆ),...,2(ˆ),1(ˆ[ˆ mtututuntytytyfty −−−−−−=  (5) 

where the  model prediction, ( )1ˆ −ty  to ( )nty −ˆ  , are used in place of the process outputs, 

y(t-1) to y(t-n), to predict ( )tŷ . Here, one should bear in mind that for one-step-ahead 

predictions, the predicted process output, ( )tŷ is calculated based on previous process 

output whereas for multi-step-ahead predictions, the predicted process output is 

determined based on previous and current process predictions. In other words, for one-

step-ahead predictions, they request for previous real process output in order to predict 

future process output while multi-step-ahead predictions, they use previous and current 

predicted process output to predict future process output. 

Accurate long range predictions are much more difficult to achieve than accurate one-step-

ahead predictions due to the accumulation of the errors in the recursive predictions [19]. 

To obtain long range predictions from an aggregated network, two types of network output 

feedback schemes can be used as indicated in Fig. 2 and 3. In Fig. 2, the output of each 

individual network is fed back to its own input and the outputs of the individual networks 

are combined. This is equivalent to the step of combining the long range predictions of 

individual networks. In the scheme shown in Fig. 3, outputs of the individual networks are 

combined and the combined output is fed back to the inputs of all individual networks. In 

this paper, the first feedback scheme shown in Fig. 2 was adopted. 

 
Fig. 3: Long-Range predictions with feedback after the combination of individual 

networks. 

To test the performance of the proposed technique, the following networks/combination 

schemes are investigated: (A) Mean SSE with fixed structure; (B) Mean SSE with various 

structure; (C) Simple average of networks with fixed structures; (D) Simple average of 

networks with various structures; (E) MLR combination of networks with fixed structures, 
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(F) MLR combination of networks with various structures; (G) BMA combination for 

fixed structures; (H) BMA combination for various structures 

3.1 Case Study 1: Water Tank Level Prediction 

 
Fig. 4: A conic water tank 

Figure 4 shows the schematic diagram of a conic water tank. There is an inlet stream to 

the tank and an outlet stream from the tank. Manipulating the inlet water flow rate will 

regulate the water tank level [3].  

Let V, Qi and Qo be the volume of water in the tank and the inlet and outlet water flows 

rates respectively, then the material balance in the water tank can be written as:  

oi QQ
dt

dV
−=  (6) 

The outlet water flow rate, Qo, is related to the tank level, h, by the following equation: 

hkQo =   (7) 

where k is constant for a fixed valve opening. The volume of water in the tank is related to 

the tank level by the following equation:  
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where r is the tank bottom radius and is the angle between the tank boundary and the 

horizontal plane. Combining Eq. (6) to Eq. (8), the following dynamics model for the tank 

level can be obtained: 
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Based on the above model, a simulation program is developed to simulate the process. The 

parameters used in the simulation are r = 10 cm, k = 34.77 cm
2.5
/s and θ = 60°. The 

sampling time is 10 seconds. The above equation indicates that the relationship between 

the inlet water flow rate and the water level in the tank is quite non linear. The outlet valve 

characteristic determines that the static gain increases with tank level.   Because the tank is 

of a conical shape, the time constant of the processes increases with the tank level. Thus, 
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both the static and dynamic characteristics of the process vary with the operating 

condition. All the network building data were generated from the simulation programme 

and normally distributed noise with zero mean and a standard deviation of 0.7 cm were 

added to the simulated tank level.    

For one-step-ahead predictions, the dynamic model for tank level prediction is of the 

form: 

( ) ( ) ( )[ ]1,1ˆ −−= tutyfty   (10) 

This is based on the one-step-ahead predictions equation as stated earlier in Equation 4, 

where ( )tŷ  represents the tank level prediction, y represents tank level, u represents the in 

let flow rate, f is a nonlinear function represented by the neural networks and t is the 

discrete time. Meanwhile, for long range predictions, it can be calculated as follows:  

( ) ( ) ( )[ ]1,1ˆˆ −−= tutyfty  (11) 

where ( )tŷ  represents  the tank level prediction which is  included in the input of the next 

prediction, f  is a nonlinear function represented by the neural networks and u represents 

the inlet flow rate.  In the networks with fixed structure, the number of hidden neurons 

was determined based on cross validation technique. It was found that using 4 hidden 

neurons gives the least SSE on the testing data. 

3.2 Case Study 2:  pH Neutralization Process 

 
Fig. 5: CSTR for pH neutralization process 

The neutralization process takes place in a CSTR and the re are two input streams to the 

CSTR. One is acetic acid of concentration C1 at flow rate F1 and the other is sodium 

hydroxide of concentration C2 at flow rate F2 [20]. The apparatus of the CSTR are shown 

in Fig. 5 and the mathematical equations of the CSTR can be described as follows by 

assuming that the tank level is perfectly controlled:  

( )ζζ
2111 FFCF

dt

d
V +−=   (12) 

( )ςζ
2122 FFCF

dt

d
V +−=   (13) 
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[ ] ( )[ ] ( )[ ][ ] awwaa KKHKKHKH −−+++ +++ ζςς
2

 (14) 

[ ]+= HpH 10log   (15) 

where 

[ ] [ ]−+= ACHACζ  (16) 

[ ]+= Naς   (17) 

The meanings and nominal values of the variables in the above equations are given in 

Table 1. These equations show that the dynamic relation ship between the titration flow 

and pH in the CSTR is very nonlinear.  To generate training, testing and validation data, 

multi-level random perturbations were added to the flow rate of acetic acid while other 

inputs to the reactor were kept constant. The pH measurements were corrupted with 

normally distributed random noise with zero mean and a standard deviation of 0.2. For 

one-step-ahead predictions, the dynamic model representing the neutralization process is 

of the form:  

( ) ( ) ( ) ( ) ( )[ ]2,1,2,1ˆ −−−−= tututytyfty   (18) 

The above equation is reduced from Eq. (4) in the previous section, where ( )tŷ is the pH in 

the reactor at time t, f is a nonlinear function represented by neural networks and u(t) is the 

acid flow rates at time t. Long range predictions are calculated as follows: 

( ) ( ) ( ) ( ) ( )[ ]2,1,2ˆ,1ˆˆ −−−−= tututytyfty   (19) 

where the model predictions, ( )1ˆ −ty  to ( )2ˆ −ty  ,are used in place of the process outputs, 

y(t-1) to y(t-2), to predict y(t). It was found that using 5 hidden neurons gives the least SSE 

on the testing data in cross validation techniques. 

4. RESULTS AND DISCUSSION  

4.1 Case Study 1: Water Tank Level Prediction  

In this case study, 20 single networks with fixed number of hidden neurons (4) and 20 

networks with varying number of hidden neurons (between 1 to 10) were developed. 

Figure 6 shows the SSE on the unseen validation data of the individual networks for one-

step-ahead predictions. For this case study, 79, 99 and 199 data were used for the purposes 

of training, testing and validation respectively. It can be seen that their performance varies 

quite significantly. This demonstrates the different generalization capabilities of the 

individual networks.  These phenomena were also observed in long-range prediction. Once 

these individual networks were developed, they were combined using the different 

combination schemes proposed in section 2 and 3. It is shown in Fig. 6 that the lowest 

SSE on the unseen validation data for the single neural networks with fixed number of 

hidden neurons is 3.3032 (the 17
th
 network) and the majority of these networks have SSE 

over 3.5. The mean SSE for fixed and various structures are 3.8122 and 4.0325 

respectively.  

Figure 7 shows the pattern of the SSE on the testing data when the BMA combination is 

applied. It is clearly shown that there is a couple of local minima in this combination and 
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the final weight for the combination are based on the iteration number 49 and 33 for fixed 

and various structures respectively which show the least SSE. Global minima were 

obtained after certain period of iteration where sometimes it can be assumed as the local 

minima and this will affect the final prediction. 

In long-range prediction, the final weight were obtained after 7 and 33 iteration for 

fixed and various structures respectively as shown in Fig. 8. For long-range predictions, 

SSE in the testing data is quite consistent where the local minima are less compare to one-

step-ahead predictions. It might be due to the individual neural networks predictions where 

the SSE is high due to the recursive error occurred in the predictions. The overall result for 

this case study is shown in Table 2 for both one-step and long-range predictions. 

For one-step-ahead predictions, BMA shows quite a superior result compare to MLR 

and gives SSE of 3.45 and 3.83 for fixed and various structures,  respectively. However, 

simple averaging performance is slightly better than BMA with SSE of 3.43 and 3.39 for 

fixed and various structures. For long-range prediction, BMA combination method is 

superior compare to mean, simple averaging and MLR. The SSE for BMA is 11.68 and 

10.32 for fixed and various structures respectively compare to MLR with an SSE of 

142.04 and 99.31. MLR is gave the worst performance in this case study and it might be 

due to the co-linearity of the individual neural networks that deteriorated the performance 

of MLR. 

 

 

Fig. 6: Validation SSE in single networks with fixed and varying structures for Case 

Study 1 
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Fig. 7:  SSE in testing data for fixed and varying structures using weight from the 

training data for Case Study 1: one-step-ahead prediction 

4.2 Case Study 2:  pH Neutralization Process 

It is well known that the dynamics of pH is highly nonlinear. In this case study, 20 

networks with fixed number of hidden neurons (5) and 20 networks with various numbers 

of hidden neurons (between 1 and 10) were developed. For this case study, 300 data were 

used for each training, testing and validation steps. Figure 9 shows the SSE of long-range 

predictions on the unseen validation data from the individual networks. It can be seen from 

Fig.10 that single networks give various performance. This demonstrates the variation in 

individual network performance and the non-robust nature of single networks. 

Figure 9 also indicates that the lowest SSE achieved by single networks with fixed and 

various structures are 49.3 and 39.77, respectively. The worst performance for single 

networks with fixed structure is from network 9 with an SSE of 2966 on the unseen 

validation data. The worst performance for single networks with various structures is from 

network 20 with an SSE of 293 on the unseen validation data. The mean SSE for fixed and 

various structures are 328.4 and 106.6.  The proposed combination scheme was then 

applied with the results given in Fig. 10, Fig. 11 and the overall result are shown in Table 

3. Figure 10 shows the variation of SSE when applying the weight from the training data 

to the testing data for fixed and various structures. It is clearly shown that, it is not easy to 
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obtain the global minima in this case study. The least SSE obtained on iteration number 

260 for fixed structures and iteration number 136 for various structures.  

Table 1: Nominal values for Case Study 2 

 

 

In long-range predictions, the global minima are easy to obtain where the variation of 

SSE is quite consistent as shown in Fig. 11. The global minima was achieved after 135 

and 84 iteration for fixed and various structures respectively. Then, the final weight 

corresponding to the least SSE in the testing data is chosen as the final model for 

prediction output. The combined networks with fixed and various structures based on the 

BMA give SSE of 8.06 and 6.59 respectively on the validation data for one-step-ahead 

predictions. It is shown in Table 4 that the BMA combination scheme gives smaller SSE 

on the unseen validation data than mean and simple averaging method for all networks 

except in MLR with SSE of 7.25 and 7.84 respectively. However, this does not leave 

much effect compare to the BMA combination approach. The ‘best’ combination is 

coming from scheme H which is a BMA combination with various structures with SSE of 

6.59. 

Table 2 Overall results for Case Study 1: One-step-ahead predictions and long-range 

predictions 

 

SSE (Validation) Combination 

Schemes One-step-ahead predictions Long-range predictions 

A 3.80 92.34 

B 4.03 52.79 

C 3.44 20.62 

D 3.99 12.12 

E 5.94 142.04 

F 7.27 99.31 

G 3.45 11.68 

H 3.83 10.32 

Variables Meanings Nominal Values 

V Volume of the tank 1 L 

F1 Flow rate of acid 0.081 L/min 

F2 Flow rate of base 0.512 L/min 

C1 Concentration of acids in F1 0.32 mol/L 

C2 Concentration of acids in F2 0.05 mol/L 

Ka Acid equilibrium constant 1.8 x 10
-5
 

Kw Water equilibrium constant 1.0 x 10
-14
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Table 3: Overall results for Case Study 2: One-step-ahead predictions and long-range 

predictions 

 

 

In long-range predictions, combination using BMA approach outperforms the other 

combinations with SSE for validation data as 53.04 and 37.21 for fixed and various 

structures respectively. MLR shows quite poor performance in this case with SSE of 

124.21 and 270.63 for fixed and various structures. The ‘best’ combination in this case is 

coming from combination scheme H which is a BMA combination with various structures 

with SSE of 37.21.  
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Fig. 8: SSE in testing data for fixed and varying structures using weight from the training 

data for Case Study 1: long-range predictions 

SSE (Validation) Combination 

Schemes 
One-step-ahead predictions Long-range predictions 

A 10.44 328.00 

B 10.12 106.55 

C 8.78 57.31 

D 7.84 43.84 

E 7.25 124.21 

F 6.39 270.63 

G 8.06 53.04 

H 6.59 37.21 
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Fig. 9: SSE of long-range predictions on the validation data from single networks with 

fixed and various structures in Case Study 2 
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Fig. 10: SSE in testing data for fixed and varying structures using weight from the training 

data for Case Study 2: one-step-ahead predictions 
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Fig. 11: SSE in testing data for fixed and varying structures using weight from the training 

data for Case Study 2: long-range predictions 

5. CONCLUSION  

In multiple neural networks, the generalization capability of each network is somehow 

different. Thus, it is not possible to find the ‘best’ network to model the process by 

looking at the SSE of the training and testing data. Combining these networks have proved 

to be promising in improving the robustness of the model by sharing and averaging out the 

errors. Therefore, in this paper, combination using BMA approach is introduced by 

selectively choose the optimum weight by looking at the weight that have the least SSE in 

training data. As a comparison, linear combination of simple averaging and MLR were 

implemented.  

The simple averaging and MLR combinations have not been able to perform well 

compare to BMA proved by the larger prediction errors and unsatisfactory resulting model 

by using these approaches. Even though they are relatively easy to understand, the simple 

averaging and MLR combinations do not perform adequately well for this application. 

BMA shows a superior result in this study where in both nonlinear case studies, clearly, 

BMA have the advantages. The prediction error is much smaller or decreased compare to 

other linear combinations and at the same time, BMA improves the model selection 

(weight selection). 
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NOMENCLATURE  

C1  Acetic acid inlet concentration, mol/L 

C2  Sodium hydroxide inlet concentration, mol/L 

F1  Acetic acid input flow rate, L/min 

F2  Sodium hydroxide input flow rate, L/min 

Ka  Acid equilibrium constant 

Kw  Water equilibrium constant 

N  Number of samples 

P  Loading matrix 

Qi  Inlet water flow rate, cm
3
/s  

Qo  Outlet water flow rate, cm
3
/s 

V  Volume of water in the tank, cm
3 

X  Input data vector 

Y  Output data vector 

h  Water level in the tank, cm 

k  Constant for a fixed valve opening, cm
2.5
/s  

r  Radius of the tank, cm 

t  Sampling time for case study 1, s 

  Sampling time for case study 2, min 

 


