HYDROGEN PRODUCTION FROM ETHANOL DRY REFORMING OVER LANTHANIA-PROMOTED C0/Al₂O₃ CATALYST

FAHIM FAYAZ¹, NGUYEN THI ANH NGA², THONG LE MINH PHAM³, HUONG THI DANH⁴, BAWADI ABDULLAH⁵, HERMA DINA SETIABUDI¹ AND DAI-VIET NGUYEN VO^{1, 6, *}

 ¹Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.
 ²Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, District 7, Ho Chi Minh City, Vietnam.
 ³Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang, Vietnam.
 ⁴Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), Daejeon, 305-350, Korea.
 ⁵Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
 ⁶Nguyen Tat Thanh University, 300A Nguyen Tat Thanh street, Ward 13, District 4, Ho Chi Minh City, Vietnam

*Corresponding author: vietvo@ump.edu.my

(Received: 20th Feb 2017; Accepted: 12th Oct 2017; Published on-line: 1st June 2018)

https://doi.org/10.31436/iiumej.v19i1.813

ABSTRACT: La-promoted and unpromoted 10%Co/Al₂O₃ catalysts were synthesized using wet a impregnation method and evaluated in a quartz fixed-bed reactor at different CO₂:C₂H₅OH ratios of 2.5:1-1:2.5 and a reaction temperature of 973 K under atmospheric pressure. X-ray diffraction measurements detected the presence of Co₃O₄ and CoAl₂O₄ phases on the surface of both promoted and unpromoted catalysts. BET surface area of promoted and unpromoted 10%Co/Al₂O₃ catalysts was about 143.09 and 136.04 m².g⁻¹, respectively. The La promoter facilitated Co₃O₄ reduction, improved the degree of reduction from 86 to 98% and increased metal dispersion from 9.11% to 16.64%. The Lapromoted catalyst appeared to be a better catalyst in terms of catalytic activity and product yield regardless of reactant partial pressure. Both C₂H₅OH and CO₂ conversions improved significantly with an increase in CO₂ partial pressure from 20 to 50 kPa for both catalysts whilst a decline in catalytic performance was observed with rising C₂H₅OH partial pressure. La addition improved C₂H₅OH and CO₂ conversions up to about 74.22% and 33.80%, respectively.

ABSTRAK: Penggalak-La dan bukan penggalak-La mangkin 10%Co/Al₂O₃ dihasilkan menggunakan kaedah impregnasi basah dan dinilai dalam reaktor alas-tetap quarza pada pelbagai nisbah CO₂:C₂H₅OH sebanyak 2.5:1-1:2.5 dan suhu tindak balas sebanyak 973 K di bawah tekanan atmosfera. Hasil daripada ukuran pembelauan X-ray, didapati terdapat kehadiran fasa Co₃O₄ dan CoAl₂O₄ pada permukaan kedua-dua mangkin penggalak dan bukan penggalak. Permukaan kawasan BET pada penggalak dan bukan penggalak mangkin 10%Co/Al₂O₃ adalah masing-masing sebanyak 143.09 dan 136.04 m².g⁻¹. Penggalak-La membantu dalam pengurangan Co₃O₄, membaiki peratus penurunan daripada 86 kepada 98% dan menambah penyebaran logam daripada 9.11% kepada 16.64%. Mangkin penggalak-La dilihat sebagai mangkin terbaik dari segi aktiviti

pemangkinan dan hasil pengeluaran, biarpun pada tekanan separa reaktan. Kedua-dua penukaran C_2H_5OH dan CO_2 meningkat dengan ketara dengan kenaikan separa tekanan CO_2 daripada 20 kepada 50 kPa bagi kedua-dua pemangkin, sementara penurunan dalam aktiviti pemangkinan dilihat dengan kenaikan tekanan separa C_2H_5OH . Penambahan La meningkatkan penukaran C_2H_5OH dan CO_2 , masing-masing sebanyak 74.22% dan 33.80%.

KEYWORDS: Co-based catalyst; ethanol dry reforming; hydrogen; syngas

1. INTRODUCTION

Global warming issues, increasing greenhouse gas emissions, and the diminishing availability of fossil fuels have resulted in growing interest in exploring an ecofriendly and alternative energy for substituting petroleum-based energy. Hydrogen, a green energy carrier, has received significant attention from both academia and industry due to its outstanding energy capacity of 120.7 kJ.g⁻¹, zero emission during combustion, and employment as a main feedstock for Fischer-Tropsch synthesis (FTS) to produce synfuel [1, 2]. However, currently, industrial hydrogen production uses unsustainable fossil fuels, namely; natural gas and oil-derived naphtha leading to considerable emissions of undesirable CO₂ greenhouse gas [3]. Hence, ethanol dry reforming (EDR) has been regarded as an attractive route for H₂ synthesis since ethanol is a renewable and CO₂-neutral feedstock that can be easily derived from lignocellulosic biomass via hydrolysis-fermentation [4]. Additionally, EDR not only consumes unwanted CO₂ gas but also converts it to a value-added syngas, a mixture of H₂ and CO for the downstream FTS.

In reforming processes, γ -Al₂O₃ is normally used as support material owing to its mechanical stability, high melting temperature, and low cost [5-7]. In addition, Ni-based catalysts are conventionally employed for ethanol reforming reactions because of their low cost and high capability of cleaving C-C and C-O bonds [8-11]. However, carbon deposition via Boudouard, methane cracking, and ethylene polymerization reactions, as well as catalyst sintering, are the major issues resulting in the deactivation of Ni-based catalysts during the EDR reaction [12, 13]. In order to improve the stability of the catalyst and suppress the formation of deposited carbon, Ni-based catalysts are normally modified with promoters. La₂O₃ has been employed as a dopant for reforming catalysts due to its basic properties enhancing CO₂ adsorption [14] and outstanding oxygen storage capacity hindering carbon formation on the catalyst surface [15]. However, to the best of our knowledge, there is no previous study about promoted Co-based catalysts for EDR reaction. Thus, the objective of this study was to investigate the promotional effect of La dopant on the physicochemical properties and catalytic performance of Co/Al₂O₃ catalyst for hydrogen production from EDR reaction.

2. EXPERIMENTAL

2.1 Catalyst Preparation

Both 3%La-10%Co/Al₂O₃ and 10%Co/Al₂O₃ catalysts were synthesized using a wet impregnation method. Alumina support purchased from Sasol (Puralox SCCa-150/200) was calcined in air at 1023 K for 5 h with a heating rate of 5 K min⁻¹ to ensure thermal stability. A measured amount of La(NO₃)₃ and Co(NO₃)₂ aqueous solutions (Sigma-Aldrich) were mixed and stirred with pretreated Al₂O₃ support for 3 h followed by drying overnight at 383 K and subsequent air-calcination for 5 h at 823 K with a heating rate of 5 K min⁻¹. The

resulting solid catalyst was further crushed and sieved to the desired particle size of 125-160 µm before being employed for EDR evaluation.

2.2 Catalyst Characterization

The catalysts were characterized using Brunauer-Emmett-Teller (BET) surface area, Xray diffraction (XRD), and H₂ temperature-programmed reduction (H₂-TPR) measurements. The multipoint BET surface area was conducted in a Micromeritics ASAP-2010 apparatus using N₂ adsorption-desorption isotherms at 77 K. Before BET measurement, the sample was degassed in N₂ flow at 573 K for 1 h for moisture removal. XRD measurement for identifying crystal structure was studied in a Rigaku Miniflex II system using a Cu target as a radiation source with a wavelength of $\lambda = 1.5418$ Å at 30 kV and 15 mA. All specimens were recorded within 2θ range of 3° to 80° with low scan speed of 1° min⁻¹ and step size of 0.02°. H₂-TPR experiments were carried out on a Micromeritics AutoChem II-2920 apparatus for both support and as a catalyst. Roughly 0.1 g of sample sandwiched by quartz wool in a quartz U-tube was initially pre-heated at 373 K for 30 min under 50 ml.min⁻¹ of He flow for removal of volatile compounds. The specimen was subsequently heated to 1173 K at 10 K min⁻¹ with flowing 10% H₂/Ar mixture (50 ml.min⁻¹) and kept isothermally at this temperature for 30 min.

2.3 Ethanol Dry Reforming Experiment

About 0.1 g of catalyst was mounted by quartz wool in the middle of quartz fixed-bed reactor (L = 17 in. and O.D. = 3/8 in.) placed vertically in a split tubular furnace. Ethanol dry reforming reaction was conducted at different CO₂ to C₂H₅OH ratios of 1:2.5 to 2.5:1 and reaction temperature of 973 K and atmospheric pressure. High gas hourly space velocity, GHSV of 42 L g_{cat}⁻¹.h⁻¹ was used for all runs to ensure the negligible internal and external transport resistances. A KellyMed KL-602 syringe pump was employed for feeding ethanol to the top of the reactor whilst CO₂ reactant and N₂ diluent gas were accurately regulated by Alicat mass flow controllers. The composition of gaseous products from the bottom of the reactor was analyzed on an Agilent GC 6890 series gas chromatograph equipped with a thermal conductivity detector (TCD).

3. RESULTS AND DISCUSSION

3.1 BET Surface Area Measurements

The multipoint BET surface area, pore volume, and pore diameter of the γ -Al₂O₃ support promoted and unpromoted catalysts are shown in Table 1. Gamma-Al₂O₃ support possesses a BET surface area of 175.29 m².g⁻¹. The loading of Co active metal and La dopant on the support surface resulted in a drop in surface area, pore volume, and pore diameter from 175.29 to 136.04 m².g⁻¹, 0.46 to 0.34 cm³.g⁻¹, and 10.65 to 10.41 nm, in that order. The reduction in textural properties for unpromoted and promoted catalysts was reasonably due to pore blockage indicating the successful diffusion of both Co and La metal oxides on the support surface during the impregnation and calcination processes.

3.2. X-ray Diffraction Analysis

The X-ray diffraction patterns of calcined γ -Al₂O₃ support, La-promoted and unpromoted 10%Co/Al₂O₃ catalysts, displayed in Fig. 1, are analyzed using the Joint Committee on Powder Diffraction Standards (JCPDS) database [16]. The γ -Al₂O₃ phase on catalysts and support was detected with typical peaks at $2\theta = 18.92^{\circ}$, 32.88° , 36.84° , 45.71° and 67.17° . In addition, the characteristic diffraction peaks of Co₃O₄ phase were observed at 2θ value of 31.45° and 36.84° , 55.61° and 56.12° whilst the spinel CoAl₂O₄ phase was

identified at about 59.51° and 65.38° for both promoted and unpromoted catalysts. Additionally, as seen in Fig. 1(c), La_2O_3 phase was not observable in XRD pattern of Lapromoted catalyst was reasonably due to the high metal dispersion with small La_2O_3 crystallite size lower than the detection limit

Table 1: Textural properties of $\gamma\text{-Al}_2O_3$ support, La-promoted and unpromoted $10\%Co/Al_2O_3$ catalysts

Sample	BET surface area [m ² g ⁻¹]	Pore volume [cm ³ g ⁻¹]	Pore diameter [nm]
γ -Al ₂ O ₃	175.29	0.46	10.65
10%Co/Al ₂ O ₃	143.09	0.36	10.63
3%La- 10%Co/Al ₂ O ₃	136.04	0.34	10.41

Fig. 1: XRD patterns of (a) γ -Al₂O₃ support, (b) 10%Co/Al₂O₃ and (c) 3%La-10%Co/Al₂O₃ catalysts.

As seen in Table 2, the average crystallite size of catalyst was computed using Debye-Scherrer equation (see Eq. (1)) [17].

$$d(nm) = \frac{0.94\lambda}{B\cos\theta} \tag{1}$$

where *d* is the crystallite size, *B* is the line broadening at half of the maximum intensity (FWHM) and λ is the X-ray wavelength while θ is the Bragg angle. Based on the relative molar volumes of Co₃O₄ and metallic Co⁰ phases, cobalt metal particle size, $d(Co^0)$ may be estimated via Eq. (2) [18].

$$d(Co^{0}) = 0.75 \times d(Co_{3}O_{4})$$
⁽²⁾

Hence, the dispersion, D (%) of metallic cobalt can be computed from the average cobalt metal particle size (see Eq. (3)) assuming spherical and uniform Co⁰ particles with Co⁰ density of 14.6 atoms nm⁻² [18, 19].

$$D = \frac{96}{d(Co^0)} \tag{3}$$

As seen in Table 2, La addition significantly reduced the average Co_3O_4 crystallite size from 14.05 to 7.70 nm. Thus, active metal dispersion was improved from 9.11% to 16.64%. The La₂O₃ promoter could act as a diluent preventing the agglomeration of Co_3O_4 particles on catalyst surface and hence increasing metal dispersion.

Table 2: Physical properties of La-promoted and unpromoted10% Co/Al2O3 catalysts

Catalyst	Co ₃ O ₄ crystallite size, <i>d(Co₃O₄)</i> [nm]	Co^0 crystallite size, $d(Co^0)$ [nm]	Metal dispersion, D [%]
10%Co/Al ₂ O ₃	14.05	10.53	9.11
3%La- $10%$ Co/Al ₂ O ₃	7.70	5.77	16.64

3.3 H₂ Temperature-Programmed Reduction

The H₂-TPR profiles of the catalysts and Al₂O₃ support are shown in Fig. 2. There was no peak detected for the Al₂O₃ support during H₂-TPR measurement. Hence, three discrete peaks (P1, P2, and P3) were observed for 10%Co/Al₂O₃ and 3%La-10%Co/Al₂O₃ catalysts belonged to the reduction of active metal oxides. The first (P1) and second (P2) peaks were attributed to the reduction of Co₃O₄ to CoO phase and the subsequent conversion of the CoO intermediate phase to the final metallic Co⁰ form, respectively [20]. The high temperature peak (P3) at about 950 K was also ascribed to the reduction of CoAl₂O₄ phase possessing strong metal-support interaction to metallic Co⁰ phase [21]. Noticeably, the reduction temperature of peak P1 was shifted towards lower temperature of about 51 K with Lapromotion indicating that the transformation of Co₃O₄ to CoO phase was more facile with La-addition.

Fig. 2: Temperature-programmed reduction (H₂-TPR) profiles of Al₂O₃ support, Lapromoted and unpromoted 10%Co/Al₂O₃ catalysts.

As seen in Table 3, both H₂ uptake during H₂-TPR and degree of reduction increased from 1453 μ mol g_{cat}⁻¹ and 85.92% to 1660 μ mol g_{cat}⁻¹ and 98.27%, respectively with promoter addition. This observation further confirms that H₂ reduction of Co₃O₄ was facilitated with La₂O₃ modification. The improvement in the degree of reduction with La dopant was rationally due to the increasing electron density on catalyst surface donated by

 La_2O_3 promoter. The excessive electron population could alleviate the reduction of Co_3O_4 species [22, 23].

Catalyst	H ₂ uptake [μ mol g _{cat} ⁻¹]	Degree of reduction [%]
10%Co/Al ₂ O ₃	1453.18	85.92
3%La-10%Co/Al ₂ O ₃	1660.94	98.27

Table 3: Summary of H₂ uptake and degree of reduction for promoted and unpromoted 10%Co/Al₂O₃ catalysts

4. ETHANOL DRY REFORMING EVALUATION

4.1 Effect of CO₂ Partial Pressure

The effect of CO₂ partial pressure, P_{CO2} , on EDR performance was evaluated at a temperature of 973 K with a constant P_{C2H5OH} of 20 kPa and varying CO₂ partial pressure from 20-50 kPa. As seen in Fig. 3, an increase in CO₂ and C₂H₅OH conversions with rising P_{CO2} from 20 to 50 kPa was observed for both catalysts reasonably due to the enhancement of CO₂ gasification of deposited carbon on catalyst surface in CO₂-rich environment. In addition, Jankhah et al. studied the thermodynamics of EDR and reported that catalytic performance was favored at high ratio of CO₂ to C₂H₅OH [24]. This observation was in agreement with other studies about EDR using Ni-based catalysts [25]. Interestingly, regardless of CO₂ partial pressure, the La-promoted catalyst exhibited higher C₂H₅OH and CO₂ conversions up to about 74.22% and 33.80%, respectively than those of unpromoted catalyst rationally due to the high oxygen storage capacity of La₂O₃ promoter oxidizing deposited carbon [3, 26] and the enhancement of metal dispersion with La-promotion (Table 2).

Fig. 3: Influence of CO₂ partial pressure on C₂H₅OH and CO₂ conversions at $P_{C2H5OH} = 20$ kPa and T = 973 K.

The effect of P_{CO2} on H_2 and CO yields at $P_{C2H5OH} = 20$ kPa and T = 973 K are shown in Fig. 4. H_2 and CO yields improved with growing CO₂ partial pressure from 20 to 50 kPa for both catalysts owing to the enhancement of CO₂ reforming of CH₄ intermediate product formed from ethanol decomposition [24]. Interestingly, H_2 and CO yields for La-promoted catalyst were always superior to those of unpromoted 10%Co/Al₂O₃ catalyst for all CO₂ partial pressure. The enhancement of product yield with the La addition could be due to the improved metal dispersion (see Table 2) and the basic property of the La_2O_3 promoter [14] increasing the adsorptive capacity of CO_2 reactant and hence resulting high catalytic performance.

Fig. 4: Influence of P_{CO2} on H_2 and CO yields at $P_{C2H5OH} = 20$ kPa and T = 973 K.

4.2 Influence of C₂H₅OH Partial Pressure

The effect of ethanol partial pressure on EDR performance was also studied by varying P_{C2H5OH} from 20 to 50 kPa at $P_{CO2} = 20$ kPa and T = 973 K. As seen in Fig. 5 and Fig. 6, both catalysts experienced a considerable drop in reactant conversions and gaseous product yield with increasing C_{2H5OH} partial pressure from 20 to 50 kPa. The reduction in catalytic performance with rising P_{C2H5OH} , exceeding the stoichiometric feed composition was rationally due to the excess presence of ethanol hindering CO_2 adsorption on catalyst surface and hence lessening the EDR reaction. However, irrespective of C_2H_5OH partial pressure, the catalytic performance of the La-doped catalyst was always greater than that of unpromoted catalyst in terms of reactant conversion and product yield (see Fig. 5 and Fig. 6).

Fig. 5: Influence of P_{C2H5OH} on C_{2H5OH} and CO_{2} conversions at $P_{CO2} = 20$ kPa and T = 973 K.

Fig. 6: Influence of P_{C2H5OH} on H_2 and CO yields at $P_{CO2} = 20$ kPa and T = 973 K.

5. CONCLUSIONS

EDR reaction runs over both La-promoted and unpromoted 10%Co/Al₂O₃ catalysts were evaluated in a quartz fixed-bed reactor at different CO2:C2H5OH ratios of 2.5:1 to 1:2.5 with a reaction temperature of 973 K and atmospheric pressure. The Co₃O₄ and CoAl₂O₄ phases were formed on both promoted and unpromoted catalysts. However, the La₂O₃ phase was not detectable, indicating high metal dispersion. The La-addition improved metal dispersion from 9.11 to 16.64% and the degree of reduction from 86% to 98%. The BET surface area, pore volume, and pore diameter were reduced with the introduction of Co and La metal oxides indicating the successful penetration of these metal oxides into the porous Al₂O₃ support. Additionally, the catalyst was reduced completely at a temperature beyond 1000 K, based on H₂-TPR measurements. Regardless of CO₂ and C₂H₅OH partial pressure, the La-promoted catalyst performed superior catalytic activity and product yield to those of the unpromoted catalyst due to the oxygen storage capacity of the La₂O₃ promoter resistant to carbon deposition and the improvement of active metal dispersion as well as the basic attribute of La2O3 dopant. Regardless of catalysts, reactant conversions improved significantly with increasing CO₂ partial pressure. However, a considerable decline was observed for both CO₂ and C₂H₅OH conversions with rising C₂H₅OH feed composition.

ACKNOWLEDGEMENTS

The authors are indebted to the financial support from UMP Research Grant Scheme (RDU160323) for conducting this research. Fahim Fayaz is also thankful for the Graduate Research Scheme Award (GRS) from Universiti Malaysia Pahang (UMP).

REFERENCES

- Haryanto A, Fernando S, Murali N, Adhikari S. (2005) Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy and Fuels, 19:2098-2106.
- [2] Vo D.-VN, and Adesina AA. (2012) A potassium-promoted Mo carbide catalyst system for hydrocarbon synthesis. Catal. Sci. Technol, 2:2066-2076.

- [3] Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J. (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B Environ,176-177:532-541.
- [4] Vicente J, Montero C, Ereña J, Azkoiti MJ, Bilbao J, Gayubo AG. (2014) Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. Int. J. Hydrogen Energy, 39:12586-12596.
- [5] Cui W, Yuan X, Wu P, Zheng B, Zhang W, Jia M. (2015) Catalytic properties of γ-Al₂O₃ supported Pt–FeOx catalysts for complete oxidation of formaldehyde at ambient temperature R.S.C. Adv, 5:104330-104336.
- [6] Chuah GK, Jaenicke S, Xu TH. (2000) The effect of digestion on the surface area and porosity of alumina. Microporous Mesoporous Mater, 37:345-353.
- [7] Zhang Z, Hicks RW, Pauly TR, Pinnavaia TJ. (2002) Mesostructured forms of γ-Al₂O₃. J. Am. Chem. Soc, 124:1592-1593.
- [8] Akiyama M, Oki Y, Nagai M. (2012) Steam reforming of ethanol over carburized alkalidoped nickel on zirconia and various supports for hydrogen production. Catal. Today, 181:4-13.
- [9] Comas J, Marino F, Laborde M, Amadeo N. (2004) Bio-ethanol steam reforming on Ni/Al₂O₃ catalyst. Chem. Eng. J, 98:61-68.
- [10] Yu X.-P, Chu W, Wang N, Ma F. (2011) Hydrogen production by ethanol steam reforming on NiCuMgAl catalysts derived from hydrotalcite-like precursors. Catal. Letters, 141:1228-1236.
- [11] Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM. (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol, 128:432-440.
- [12] Torres JA, Llorca J, Casanovas A, Domínguez M, Salvadó J, Montané D. (2007) Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La₂O₃-Al₂O₃, and Fe- and Mn-promoted Co/ZnO catalysts. J. Power Sources, 169:158–166.
- [13] Li M, Wang X, Li S, Wang S, Ma X. (2010) Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. Int. J. Hydrogen Energy, 35:6699-6708.
- [14] Mazumder J, De Lasa HI. (2014) Ni catalysts for steam gasification of biomass: Effect of La₂O₃ loading. Catal. Today, 237:100-110.
- [15] Al-Fatesh AS, Naeem MA, Fakeeha AH, Abasaeed AE. (2014) Role of La₂O₃ as promoter and support in Ni/γ-Al₂O₃ catalysts for dry reforming of methane. Chinese J. Chem. Eng, 22:28-37.
- [16] JCPDS Powder Diffraction File. (2000) International Centre for Diffraction Data. Swarthmore, PA.
- [17] Patterson AL. (1939) The Scherrer formula for I-Ray particle size determination," Phys. Rev, 56:978-982.
- [18] Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A. (1995) Study of Ptpromoted cobalt CO hydrogenation catalysts J. Catal, 156:85-95.
- [19] Storsæter S, Tøtdal B, Walmsley JC, Tanem BS, Holmen A. (2005) Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts. J. Catal, 236:139-152.
- [20] Ewbank JL, Kovarik L, Kenvin CC, Sievers C. (2014) Effect of preparation methods on the performance of Co/Al₂O₃ catalysts for dry reforming of methane. Green Chem, 16:885-896.
- [21] Fayaz F, Danh HT, Nguyen-Huy C, Vu KB, Abdullah B, Vo D.-VN. (2016) Promotional Effect of Ce-dopant on Al₂O₃-supported Co Catalysts for Syngas Production via CO₂ Reforming of Ethanol. Procedia Eng, 148:646-653.
- [22] Li X, Wu M, Lai Z, He F. Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl. Catal. A Gen, 290:81-86.
- [23] Zhi G, Guo X, Guo X, Wang Y, Jin G. (2011) Effect of La₂O₃ modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal. Commun, 16:56-59.

- [24] Jankhah S, Abatzoglou N, Gitzhofer F. (2008) Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments' production. Int. J. Hydrogen Energy, 33:4769-4779.
- [25] Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo D.-VN. (2016) Ethanol dry reforming for syngas production over Ce-promoted Ni/Al₂O₃ catalyst J. Environ. Chem. Eng, 4:4830-4838.
- [26] Foo SY, Cheng CK, Nguyen TH, Adesina AA. (2011) Evaluation of lanthanide-group promoters on Co-Ni/Al₂O₃ catalysts for CH₄ dry reforming. J. Mol. Catal. A Chem, 344:28-36.