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ABSTRACT: This paper investigates the performance of three different symbol level 

decoding algorithms for Duo-Binary Turbo codes. Explicit details of the computations 

involved in the three decoding techniques, and a computational complexity analysis are 
given. Simulation results with different couple lengths, code-rates, and QPSK 

modulation reveal that the symbol level decoding with bit-level information outperforms 

the symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a 

complexity analysis reveals that symbol level decoding with bit-level information 
reduces the decoding complexity by 19.6 % in terms of the total number of computations 

required for each half-iteration as compared to symbol level decoding.  

ABSTRAK: Kertas ini mengkaji prestasi tiga algoritma dekoding aras simbol yang 
berbeza untuk kod Turbo Duo-Binari. Butiran jelas mengenai komputasi yang terlibat 

dalam tiga teknik dekoding dan analisis kompleksiti komputasi adalah dibentangkan. 

Hasil simulasi yang menggunakan panjang ganding yang berbeza, kadar-kod, dan 
modulasi QPSK mendapati bahawa dekoding aras simbol dengan maklumat aras-bit 

melebihi prestasi dekoding aras simbol sebanyak 0.1 dB purata rantau ralat lantai. Selain 

itu, analisis kompleksiti menunjukkan bahawa dekoding aras simbol dengan maklumat 

aras-bit mengurangkan kompleksiti dekoding sebanyak 19.6% dari segi jumlah 
komputasi yang diperlukan bagi setiap setengah-lelaran berbanding dekoding aras 

simbol. 

KEYWORDS: duo-binary turbo code; max-log MAP turbo decoding 

1. INTRODUCTION  

Since its inception in 1993, Turbo code [1], which allowed the bound established by 

Shannon in 1948 [2] to be approached significantly, have been the center of attention of 

researchers. The Turbo code community has recently been conducting a lot of research on 

non-binary Turbo codes. With a comparable implementation complexity, duo-binary 

Turbo codes can provide better performance in terms of error correction than binary Turbo 

codes [3]. The excellent performance of duo-binary Circular Recursive Systematic 

Convolutional (CRSC) codes [4] has led to their adoption in Digital Video Broadcasting 

with Return Channel via Satellite (DVB-RCS) [5] replacing the conventional scheme that 

consisted of serial concatenation of a Reed Solomon (RS) code and a convolutional code. 

The DVB-RCS standard specifies an air-interface where many small terminals send return 

signals via satellite to a central gateway [6, 7].  

There are several advantages of non-binary turbo codes, for example: better 

convergence of iterative decoding, low latency, and reduced sensitivity to puncturing 
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patterns [13]. Puncturing and the sub-optimal Max-Log-MAP decoding algorithm have a 

less significant influence with duo-binary Turbo codes than with binary Turbo codes [6]. 

Also, duo-binary Turbo codes allow for the latency of the decoder to be halved [7]. 

Recently, in [14], the performance of transmission systems with Duo-binary Turbo Codes 

(DBTC) and 16-QAM square modulation in Additive White Gaussian Noise (AWGN) 

channel have been investigated for various allocation modes. The author of [15], has 

investigated the input quantization of low complexity decoding algorithms and proposed 

an algorithm for an effective decoder quantization with the introduction of a scale factor 

into the decoding algorithm so as to achieve significant improvement in the hardware 

implementation of the decoder architecture. In [16], a duo-binary turbo code incorporating 

the Quadratic Permutation Polynomial (QPP) interleaver rather than the one defined in the 

DVB-RCS standard has been proposed. A complete detailing has been performed on the 

parameters and performance of the proposed scheme. In [12], a low-memory intensive 

decoding architecture has been proposed for a double binary convolutional Turbo code. 

The scheme is based on an improved decoding algorithm storing part of state metrics in 

the state metrics cache. In [13], the algorithm for double-binary Turbo decoding is studied 

using QPSK modulation over Rayleigh Fading channel. The authors of [17], have made a 

performance analysis between Turbo-φ codes and 3D-Turbo codes for the next generation 

DVB-RCS system in terms of error performance and decoder complexities. The decoding 

algorithms for Turbo codes are the Maximum A-Posteriori Probability (MAP), 

Logarithmic MAP (Log-MAP) and the Maximum Log-MAP (Max Log-MAP) algorithms. 

Due to the extensive computational complexity and numerical instability of the MAP 

algorithm, researchers have proposed the Log-MAP algorithm [18]. In order to further 

reduce computational complexity, the Max Log-MAP algorithm was brought forward. 

This reduction in computational complexity comes with a slight degradation in error 

performance as trade-off. 

In [19] and [20], the authors have presented a symbol level decoding scheme for duo-

binary and triple-binary Turbo codes. This comprehensive study has been carried out over 

an AWGN channel to demonstrate the good performance of the proposed schemes. In [6], 

a variant of the symbol level decoding algorithm for duo-binary Turbo codes has been 

presented. The performance of the decoding scheme is compared to the Turbo code 

standard for DVB-RCS over a Gaussian channel at Frame Error Rate (FER) of 10-4. The 

results demonstrate the performance of the proposed scheme is almost similar to that used 

in the DVB-RCS standard. In [21], an investigation of bit-wise and symbol-wise decoding 

for the case of multi-binary convolutional Turbo codes employing the MAP algorithms 

has been performed. The symbol-wise decoding algorithm presented in this work operates 

on bit-level LLRs as input and is shown to outperform the bit-wise decoding. The 

advantage of this technique is that the limitation of using only QPSK modulation with the 

duo-binary Turbo codes [19, 20] can be overcome.  

Different equations have been used in Turbo decoding algorithms. As such, this 

survey paper presents the existing Max Log-MAP Turbo decoding algorithm with the 

different equations used for duo-binary Turbo codes. Explicit details of the computations 

involved in the three decoding techniques as well as a complexity analysis have been 

provided. Simulation results with different couple lengths, code-rates and QPSK 

modulation reveal that symbol level decoding with bit-level information outperforms 

symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a 

complexity analysis reveals that symbol level decoding with bit-level information reduces 

the complexity by 19.6 % as compared to symbol level decoding. 
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The paper is organized as follows. Section 2 presents the different methods for Max 

Log-MAP decoding algorithm for duo-binary Turbo codes. Section 3 presents the 

simulation results and Section 4 concludes the paper. 

2.   DUO-BINARY TURBO CODES 

The encoding structure for duo-binary Turbo codes employed in the DVB-RCS 

standard is shown in Fig. 1. 
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Fig. 1: Outputs at time t of the duo-binary encoder with QPSK modulation [14]. 

The DVB-RCS standard uses a parallel concatenation of two Circular Recursive 

Systematic Convolutional (CRSC) codes as the encoder [13-15] separated by an 

interleaver which uses a two-level interleaving. Let Nc be the size of each couple at the 

input of the duo-binary Turbo encoder. At the first level, an intra-symbol permutation 

takes place and at the second level an inter-symbol permutation takes place. The two 

levels of interleaving are well described in [5]. 

The modulation scheme used in duo-binary Turbo codes for the DVB-RCS standard 

is gray-coded Quadrature Phase Shift Keying (QPSK) modulation as depicted in Fig. 1. 

The constellation mapping for the gray-coded QPSK modulation used is shown in Fig. 2. 

The couples {𝐴𝑡 , 𝐵𝑡}, {𝑌1𝑡 , 𝑊1𝑡} and {𝑌2𝑡 , 𝑊2𝑡} are mapped onto the modulated 

symbols 𝑥0𝑡, 𝑥1𝑡and 𝑥2𝑡 respectively. 
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Fig. 2: Bit-mapping of Gray-coded QPSK modulation [20, 22].  

After modulation of the symbols, the stream is multiplexed and transmitted over a 

complex AWGN channel. The received noisy symbol vectors are intercepted at the 

receiver side and fed to the Turbo decoder. r0, r1 and r2 are the received noisy vectors of 

the systematic and parity information. 𝑟0̅̅ ̅ is the interleaved version of the received noisy 

vector of the systematic information. 
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The conventional decoding process for duo-binary Turbo codes is performed with the 

exchange of symbol-level extrinsic information in an iterative manner between the two 

turbo decoders after each half-iteration as depicted in Fig. 3. In this work, the Max-Log 

MAP algorithm has been used for decoding. Let the branch transition probability 

associated with input symbol Ct = i, (where i can take values 0, 1, 2 and 3 for duo binary) 

from state St-1 = l’ to St = l  and at time t be denoted by 𝛾𝑡
1,𝑖(𝑙′, 𝑙) for decoder 1. 
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Fig. 3: Non-binary Turbo decoder. 

In Fig. 3, 𝛬1,𝑖(𝑡) is the a-posteriori LLR for decoder 1, 𝛬2,𝑖(𝑡) is the a-posteriori LLR 

for decoder 2, 𝛬1,𝑒
𝑖 (𝑡)is the extrinsic LLR for decoder 1, �̅�1,𝑒

𝑖 (𝑡) is the interleaved extrinsic 

LLR from decoder 1, 𝛬2,𝑒
𝑖 (𝑡)is the extrinsic LLR from decoder 2 and �̅�2,𝑒

𝑖 (𝑡)is the de-

interleaved extrinsic LLR from decoder 2. 

The Trellis diagrams for each symbol input of the duo-binary Turbo codes are shown in 

Fig. 4.  

𝑥0𝑡1 is the noiseless modulated symbol of the systematic information at time 

instant 𝑡1. 

𝑥1𝑡1 is the noiseless modulated symbol of the parity information from the first 

encoder at time instant 𝑡1. 

𝑟0𝑡1 is the noisy received symbol of the systematic information from the 

transmission of 𝑥0𝑡1 through the AWGN channel at time instant 𝑡1. 

𝑟1𝑡1 is the noisy received symbol of the parity information from the first 

encoder after the transmission of 𝑥1𝑡1 through the AWGN channel at time 

instant 𝑡1. 

The components which are used in the decoding equations are the in-phase and 

quadrature phase of these complex symbols which are described as follows: 

𝑥0𝑡
𝐼(𝑖)(𝑙) and 𝑥0𝑡

Q(𝑖)(𝑙) are the modulated in-phase and quadrature components 

of the complex systematic symbol 𝑥0 at time 𝑡 which is associated with the 

transition 𝑆𝑡−1 = 𝑙′ to 𝑆𝑡 = 𝑙 and input symbol 𝑖 

𝑥1𝑡
𝐼(𝑖)(𝑙) and 𝑥1𝑡

Q(𝑖)(𝑙) are the modulated in-phase and quadrature components 

of the complex parity symbol 𝑥1 at time 𝑡 which is associated with the 

transition 𝑆𝑡−1 = 𝑙′ to 𝑆𝑡 = 𝑙 and input symbol 𝑖 
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𝑥2𝑡
𝐼(𝑖)(𝑙) and 𝑥2𝑡

Q(𝑖)(𝑙) are the modulated in-phase and quadrature components 

of the complex parity symbol 𝑥2 at time 𝑡 which is associated with the 

transition 𝑆𝑡−1 = 𝑙′ to 𝑆𝑡 = 𝑙 and input symbol 𝑖 

𝑟0𝑡
𝐼  and 𝑟0𝑡

Q
 are the in-phase and quadrature components of the complex 

received symbol 𝑟0 at time 𝑡 

𝑟1𝑡
𝐼  and 𝑟1𝑡

Q
 are the in-phase and quadrature components of the complex 

received symbol 𝑟1 at time 𝑡 

𝑟2𝑡
𝐼  and 𝑟2𝑡

Q
 are the in-phase and quadrature components of the complex 

received symbol 𝑟2 at time 𝑡. 

Note that the trellis diagram for the second decoder is similar except that the decoder 

uses 𝑟0̅̅ ̅ and 𝑟2 as channel inputs. The following subsections describe three decoding 

algorithms that can be used with duo-binary Turbo codes. The first two are variants of 

symbol level decoding algorithms while the third one is a symbol-level decoding scheme 

with bit-level LLRs as inputs. 

The parameters shown in Fig. 4 can be defined as follows: 

𝛼𝑡
1 is the forward recursive variable for decoder 1 and 𝛽𝑡

1 is the backward 

recursive variable of decoder 1. 
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Fig. 4: Trellis diagram. 
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2.1  Decoding for Duo-Binary Turbo Codes using Method 1 

The decoding Method 1 from [20] is a symbol level decoding scheme used in the 

DVB-RCS standard. The decoding equations are presented next. The first decoder’s 

branch metric is given as: 

𝛾𝑡
1,𝑖(𝑙′, 𝑙) = 𝑙𝑜𝑔 (𝑃(𝑢𝑡

2 = 𝑖)) − ([𝑟0𝑡
𝐼 − 𝑥0𝑡

𝐼(𝑖)(𝑙)]
2

+ [𝑟0𝑡
Q

− 𝑥0𝑡
Q(𝑖)(𝑙)]

2

+ [𝑟1𝑡
𝐼 −

𝑥1𝑡
𝐼(𝑖)(𝑙)]

2

+ [𝑟1𝑡
Q

− 𝑥1𝑡
Q(𝑖)(𝑙)]

2

)                            (1) 

Where, 𝑙𝑜𝑔 (𝑃(𝑢𝑡
2 = 𝑖)) is the a-priori logarithmic symbol probability of symbol i 

obtained from the second decoder and the value is set to zero at the beginning of the 

decoding process. 

The number of computations required for the branch metric given in Eqn. (1) is shown in 

Table 1. The information provided in Table 1 will be used in the analysis part of section 3. 

Table 1: Number of computations for a branch transition metric 

of Decoder 1 with Method 1. 

 Logarithm Operations Additions Subtractions Multiplications Total 

Branch Transition 

Metric 
1 3 5 4 13 

The forward recursive variable for the first decoder is computed as follows [7]: 

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 + 𝛾𝑡
1,𝑖(𝑙′, 𝑙)) , for 0 ≤ 𝑙’ ≤ MS

1 − 1               (2) 

Where, MS
1 is the total number of states for decoder 1. The number of computations 

required for the forward recursive variable shown in equation (2) is shown in Table 2. The 

information provided in Table 2 will be used in the analysis part of section 3. 

Table 2: Number of computations for a forward recursive  

Variable in Decoder 1 with Method 1. 

 Maximum Operations Additions Total 

Forward Recursive Variable 1 4 5 

The backward recursive variable for the first decoder is computed as follows [7]: 

𝛽𝑡
1(𝑙) = max (𝛽𝑡+1

1 + 𝛾𝑡+1
1,𝑖 (𝑙′, 𝑙)) , for 0 ≤ 𝑙’ ≤ MS

1 − 1                                    (3) 

The number of computations required for the backward recursive variable shown in 

equation (3) is shown in Table 3. The information provided in Table 3 will be used in the 

analysis part of section 3. 

Table 3: Number of computations for a backward recursive  

Variable in Decoder 1 with Method 1. 

 Maximum Operations Additions Total 

Backward Recursive Variable 1 4 5 
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The equation for the log likelihood ratio is as follows [7]: 

𝛬1,𝑖(𝑡) = max (𝛼𝑡−1
1 + 𝛾𝑡

1,𝑖(𝑙′, 𝑙) + 𝛽𝑡
1(𝑙)) − max (𝛼𝑡−1

1 + 𝛾𝑡
1,0(𝑙′, 𝑙) + 𝛽𝑡

1(𝑙)) ,   

    for 0 ≤ 𝑙’ ≤ MS
1 − 1                (4) 

Where, 𝛬1,𝑖(𝑡)is the Log-Likelihood Ratio (LLR) of symbol i where, i Є {1, 2, and 3} for 

duo binary turbo codes. The number of computations required for the Log-Likelihood 

Ratio of symbol 𝑖 at time instant 𝑡 shown in equation (4) is shown in Table 4. The 

information provided in Table 4 will be used in the analysis part of section 3. 

Table 4: Number of computations for a LLR of symbol 𝒊 at time instant 𝒕 for 

Decoder 1 with Method 1. 

 Maximum Operations Additions Subtractions Total 

Log-Likelihood Ratio 2 32 1 35 

The a-posteriori LLR comprises of 3 LLRs, namely, the a-priori LLR, the intrinsic 

LLR and the extrinsic LLR related as follows [23]: 

A-posteriori LLR = A-priori LLR + Intrinsic LLR + Extrinsic LLR             (5) 

𝛬1,𝑖(𝑡) =  �̅�2,𝑒
𝑖 (𝑡) +  𝛬1,𝑖𝑛

𝑖 (𝑡) +  𝛬1,𝑒
𝑖 (𝑡)                 (6) 

Where, 𝛬1,𝑖𝑛
𝑖 (𝑡) is the intrinsic LLR for decoder 1. The extrinsic LLR for the decoder 1 is 

thus calculated as follows: 

𝛬1,𝑒
𝑖 (𝑡) =  𝛬1,𝑖(𝑡) −  𝛬1,𝑖𝑛

𝑖 (𝑡) −  �̅�2,𝑒
𝑖 (𝑡)                 (7) 

The number of computations required for the extrinsic LLR of symbol 𝑖 at time instant 𝑡 

shown in equation (7) is shown in Table 5. The information provided in Table 5 will be 

used in the analysis part of section 3. 

Table 5: Number of computations for an extrinsic LLR of symbol 𝒊 at time 𝒕 for 

Decoder 1 with Method 1. 

 Subtractions Total 

Extrinsic Log-

Likelihood Ratio 
2 2 

The intrinsic LLR of decoder 1 associated with the systematic bits:(At, Bt) can be 

represented as: 

𝛬1,𝑖𝑛
𝑖 (𝑡) = 𝑙𝑜𝑔 (

𝑃(𝑟0𝑡 | 𝑢𝑡
1=𝑖)

𝑃(𝑟0𝑡 | 𝑢𝑡
1=00)

)                  (8) 

 

Considering for example the intrinsic LLR 𝛬1,𝑖𝑛
𝑖=01(𝑡) which can be expressed as: 

𝛬1,𝑖𝑛
𝑖=01 = (

𝑃(𝑟0𝑡 | 𝑢𝑡
1 = 01)

𝑃(𝑟0𝑡 | 𝑢𝑡
1 = 00)

) =  𝑙𝑜𝑔 (

𝑃 (𝑟0𝑡 | 𝑥𝑡 =  +
1

√2
, −

1

√2
)

𝑃 (𝑟0𝑡 | 𝑥𝑡 =  +
1

√2
, +

1

√2
)

) 

 =  
1

2𝜎2
[−

4

√2
(𝑟0𝑡

𝑄)] =  [−
2

√2𝜎2
(𝑟0𝑡

𝑄)]                 (9) 

117



IIUM Engineering Journal, Vol. 18, No. 1, 2017 Beeharry et al. 

 

Likewise, similar expressions can be obtained for the intrinsic LLRs for the other symbols. 

𝛬1,𝑖𝑛
𝑖=10 =  [−

2

√2𝜎2
(𝑟0𝑡

𝐼)] ; 𝛬1,𝑖𝑛
𝑖=11 =  [−

2

√2𝜎2
(𝑟0𝑡

𝐼 + 𝑟0𝑡
𝑄)]; 𝛬1,𝑖𝑛

𝑖=00 = 0               (10) 

The number of computations required for the intrinsic LLR of symbol 𝑖 at time instant 𝑡 

shown in equations (9) and (10) is shown in Table 6. The information provided in Table 6 

will be used in the analysis part of section 3. 

Table 6: Number of computations for intrinsic LLRs of symbol 𝒊 at time instant 𝒕. 

 Additions Multiplications Divisions Total 

𝛬1,𝑖𝑛
𝑖=01(𝑡)  2 1 3 

𝛬1,𝑖𝑛
𝑖=10(𝑡)  2 1 3 

𝛬1,𝑖𝑛
𝑖=11(𝑡) 1 2 1 4 

 

The probability computation to be fed to next decoder is as follows: 

𝑃(𝑢𝑡
1 = 00) +  𝑃(𝑢𝑡

1 = 01) +  𝑃(𝑢𝑡
1 = 10) +  𝑃(𝑢𝑡

1 = 11) = 1             (11) 

𝑃(𝑢𝑡
1 = 𝑖) =  𝑃(𝑢𝑡

1 = 00) . 𝑒𝛬1,𝑒
𝑖 (𝑡)                 (12) 

Therefore, 

𝑃(𝑢𝑡
1 = 00) =  

1

1+ 𝑒
𝛬1,𝑒

01 (𝑡)
+ 𝑒

𝛬1,𝑒
10 (𝑡)

+ 𝑒
𝛬1,𝑒

11 (𝑡)
;𝑃(𝑢𝑡

1 = 01) =  
𝑒𝛬1,𝑒

01 (𝑡)

1+ 𝑒
𝛬1,𝑒

01 (𝑡)
+ 𝑒

𝛬1,𝑒
10 (𝑡)

+ 𝑒
𝛬1,𝑒

11 (𝑡)
          

(13) 

𝑃(𝑢𝑡
1 = 10) =  

𝑒𝛬1,𝑒
10 (𝑡)

1+ 𝑒
𝛬1,𝑒

01 (𝑡)
+ 𝑒

𝛬1,𝑒
10 (𝑡)

+ 𝑒
𝛬1,𝑒

11 (𝑡)
; 𝑃(𝑢𝑡

1 = 11) =  
𝑒𝛬1,𝑒

11 (𝑡)

1+ 𝑒
𝛬1,𝑒

01 (𝑡)
+ 𝑒

𝛬1,𝑒
10 (𝑡)

+ 𝑒
𝛬1,𝑒

11 (𝑡)
         

(14) 

The max approximation is defined as: 

𝑙𝑜𝑔 ∑ 𝑒𝑎𝑗
𝑗  =  max

𝑗
(𝑎𝑗)                  (15) 

Applying the max approximation to the computation of the log probabilities: 

𝑙𝑜𝑔(𝑃(𝑢𝑡
1 = 00)) =  −𝑚𝑎𝑥 (0, 𝛬1,𝑒

01 (𝑡), 𝛬1,𝑒
10 (𝑡), 𝛬1,𝑒

11 (𝑡))             (16) 

𝑙𝑜𝑔(𝑃(𝑢𝑡
1 = 01)) =  𝛬1,𝑒

01 (𝑡) − 𝑚𝑎𝑥 (0, 𝛬1,𝑒
01 (𝑡), 𝛬1,𝑒

10 (𝑡), 𝛬1,𝑒
11 (𝑡))             (17) 

𝑙𝑜𝑔(𝑃(𝑢𝑡
1 = 10)) =  𝛬1,𝑒

10 (𝑡) − 𝑚𝑎𝑥 (0, 𝛬1,𝑒
01 (𝑡), 𝛬1,𝑒

10 (𝑡), 𝛬1,𝑒
11 (𝑡))             (18) 

𝑙𝑜𝑔(𝑃(𝑢𝑡
1 = 11)) =  𝛬1,𝑒

11 (𝑡) − 𝑚𝑎𝑥 (0, 𝛬1,𝑒
01 (𝑡), 𝛬1,𝑒

10 (𝑡), 𝛬1,𝑒
11 (𝑡))             (19) 

The number of computations required for the a-posteriori probabilities of symbol 𝑖 at time 

instant 𝑡 shown in equations (16 - 19) is shown in Table 7. The information provided in 

Table 7 will be used in the analysis part of section 3. 

Table 7: Number of computations for a-posteriori probabilities  

for Decoder 1 with Method 1. 

 Maximum Operations Subtractions Total 

A-posteriori Probabilities 4 4 8 
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The equations for decoder 2 are now presented. The branch metric of the second decoder 

is given as follows: 

𝛾𝑡
2,𝑖 = 𝑙𝑜𝑔(P(𝑢𝑡

1 = 𝑖)) − ([𝑟0̅̅ ̅
𝑡
𝐼 − 𝑥0𝑡

𝐼(𝑖)(𝑙)]
2

+ [𝑟0̅̅ ̅
𝑡
Q

− 𝑥0𝑡
Q(𝑖)(𝑙)]

2

+ [𝑟2𝑡
𝐼 − 𝑥2𝑡

𝐼(𝑖)(𝑙)]
2

+

[𝑟2𝑡
Q

− 𝑥2𝑡
Q(𝑖)(𝑙)]

2

)                  (20) 

The number of computations involved in calculating the branch metric for each transition 

in the second decoder is similar to that shown in Table 1.  

The computation of the forward and backward recursive variables is done as follows: 

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 + 𝛾𝑡
2,𝑖(𝑙′, 𝑙)) , for 0 ≤ 𝑙’ ≤ MS

2 − 1             (21) 

The number of computations involved in calculating each forward transition metric at each 

time instant in the second decoder is similar to that shown in Table 2.  

The backward recursive variables for the first decoder are computed as follows: 

𝛽𝑡
2(𝑙) = max (𝛽𝑡+1

2 + 𝛾𝑡+1
2,𝑖 (𝑙′, 𝑙)) , for 0 ≤ 𝑙’ ≤ MS

2 − 1                                   (22) 

The number of computations involved in calculating each backward transition metric at 

each time instant in the second decoder is similar to that shown in Table 3. The equation 

for the log likelihood ratio is as follows: 

𝛬2,𝑖(𝑡) = max (�̅�𝑡−1
2 + 𝛾𝑡

2,𝑖̅̅ ̅̅ (𝑙′, 𝑙) + �̅�𝑡
2(𝑙)) − max (�̅�𝑡−1

2 + 𝛾𝑡
2,0̅̅ ̅̅ ̅(𝑙′, 𝑙) + �̅�𝑡

2(𝑙)) , for 0 ≤

𝑙’ ≤ MS
2 − 1                   (23) 

Where,  MS
2 denotes the number of states for the second decoder.  

The equations for the extrinsic information output from both decoders for double binary 

and triple binary are explained in [23]. The number of computations involved in 

calculating each LLR at each time instant in the second decoder is similar to that shown in 

Table 4. The extrinsic LLR for the decoder 2 is thus calculated as follows: 

𝛬2,𝑒
𝑖 (𝑡) =  𝛬2,𝑖(𝑡) −  𝛬2,𝑖𝑛

𝑖 (𝑡) −  �̅�1,𝑒
𝑖 (𝑡)               (24) 

The number of computations involved in calculating each extrinsic LLR at each time 

instant in the second decoder is similar to that shown in Table 5. The number of 

computations involved in calculating each intrinsic LLR at each time instant in the second 

decoder is similar to that shown in Table 6. 

The probability computation to be fed to next decoder is [21]: 

𝑃(𝑢𝑡
2 = 00) +  𝑃(𝑢𝑡

2 = 01) +  𝑃(𝑢𝑡
2 = 10) +  𝑃(𝑢𝑡

2 = 11) = 1             (25) 

𝑃(𝑢𝑡
2 = 𝑠𝑦𝑚) =  𝑃(𝑢𝑡

2 = 00) . 𝑒𝛬2,𝑒
𝑖 (𝑡)               (26) 

Therefore, 

𝑃(𝑢𝑡
2 = 00) =  

1

1+ 𝑒
𝛬2,𝑒

01 (𝑡)
+ 𝑒

𝛬2,𝑒
10 (𝑡)

+ 𝑒
𝛬2,𝑒

11 (𝑡)
 ; 𝑃(𝑢𝑡

2 = 01) =  
𝑒𝛬2,𝑒

01 (𝑡)

1+ 𝑒
𝛬2,𝑒

01 (𝑡)
+ 𝑒

𝛬2,𝑒
10 (𝑡)

+ 𝑒
𝛬2,𝑒

11 (𝑡)
     (27) 

𝑃(𝑢𝑡
2 = 10) =  

𝑒𝛬2,𝑒
10 (𝑡)

1+ 𝑒
𝛬2,𝑒

01 (𝑡)
+ 𝑒

𝛬2,𝑒
10 (𝑡)

+ 𝑒
𝛬2,𝑒

11 (𝑡)
; 𝑃(𝑢𝑡

2 = 11) =  
𝑒𝛬2,𝑒

11 (𝑡)

1+ 𝑒
𝛬2,𝑒

01 (𝑡)
+ 𝑒

𝛬2,𝑒
10 (𝑡)

+ 𝑒
𝛬2,𝑒

11 (𝑡)
      (28) 
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Applying the max approximation to the computation of the log probabilities: 

𝑙𝑜𝑔(𝑃(𝑢𝑡
2 = 00)) =  −𝑚𝑎𝑥 (0, 𝛬2,𝑒

01 (𝑡), 𝛬2,𝑒
10 (𝑡), 𝛬2,𝑒

11 (𝑡))             (29) 

𝑙𝑜𝑔(𝑃(𝑢𝑡
2 = 01)) =  𝛬2,𝑒

01 (𝑡) − 𝑚𝑎𝑥 (0, 𝛬2,𝑒
01 (𝑡), 𝛬2,𝑒

10 (𝑡), 𝛬2,𝑒
11 (𝑡))            (30) 

𝑙𝑜𝑔(𝑃(𝑢𝑡
2 = 10)) =  𝛬2,𝑒

10 (𝑡) − 𝑚𝑎𝑥 (0, 𝛬2,𝑒
01 (𝑡), 𝛬2,𝑒

10 (𝑡), 𝛬2,𝑒
11 (𝑡))            (31) 

𝑙𝑜𝑔(𝑃(𝑢𝑡
2 = 11)) =  𝛬2,𝑒

11 (𝑡) − 𝑚𝑎𝑥 (0, 𝛬2,𝑒
01 (𝑡), 𝛬2,𝑒

10 (𝑡), 𝛬2,𝑒
11 (𝑡))            (32) 

The number of computations involved in calculating each a-posteriori probability at each 

time instant in the second decoder is similar to that shown in Table 7.  

2.2  Decoding for Duo-Binary Turbo Codes: Method 2 [6] 

A variant of the decoding algorithm for duo-binary Turbo codes is described in [6]. 

The main difference as compared to Method 1 lies in the computations of the branch 

transition metrics and the intrinsic LLRs. The equations for the decoding algorithm are 

presented next. The branch transition metric is computed as: 

𝛾𝑡
1,𝑖(𝑙′, 𝑙) =  �̅�2,𝑒

𝑖 (𝑡) +  
𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖)(𝑙))] + [(𝑟0𝑡

Q) .  (𝑥0𝑡
Q(𝑖)(𝑙))] +

[(𝑟1𝑡
I ) .  (𝑥1𝑡

I(𝑖)(𝑙))] +  [(𝑟1𝑡
Q) .  (𝑥1𝑡

Q(𝑖)(𝑙))])                                                  

(33) 

Where, 𝐿𝑐 is the channel reliability estimate. The number of computations required for the 

branch metric shown in Eqn. (33) is shown in Table 8. The information provided in Table 

8 will be used in the analysis part of section 3. 

Table 8: Number of computations for a branch transition metric 

in Decoder 1 with Method 2. 

 Additions Multiplications Divisions Total 

Branch Transition Metric 4 5 1 10 

The forward recursive variables for the first decoder are computed in the same way as 

for Method 1, which is shown in Eqn. (2). The number of computations involved in each 

forward recursive variable at each time instant is as shown in Table 2. The backward 

recursive variables for the first decoder are computed as shown in Eqn. (3). The number of 

computations involved in each backward recursive variable at each time instant is as 

shown in Table 3. The equation for the log likelihood ratio is the same as shown in Eqn. 

(4). The number of computations involved in each log likelihood ratio at each time instant 

is as shown in Table 4.  

The a-posteriori LLR comprises of 3 LLRs, namely, the a-priori LLR, the intrinsic 

LLR and the extrinsic LLR are related as shown in Eqns. (4), (5) and (6) [23]. The 

intrinsic LLRs are computed as follows: 

𝛬1,𝑖𝑛
𝑖=00 =  

𝐿𝑐

2
([(𝑟0𝑡

I ). (𝑥0𝑡
I(𝑖=00)(𝑙))] + [(𝑟0𝑡

Q). (𝑥0𝑡
Q(𝑖 =00)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I ). (𝑥0𝑡
I(𝑖 =00)(𝑙))] +  [(𝑟0𝑡

Q). (𝑥0𝑡
Q(𝑖 =00)(𝑙))])                                                            

(34) 
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𝛬1,𝑖𝑛
𝑖=01 =  

𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖=01)(𝑙))] + [(𝑟0𝑡

Q) .  (𝑥0𝑡
Q(𝑖 =01)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖 =00)(𝑙))] +  [(𝑟0𝑡

Q) .  (𝑥0𝑡
Q(𝑖 =00)(𝑙))])             (35) 

𝛬1,𝑖𝑛
𝑖=10 =  

𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖 =10)(𝑙))] + [(𝑟0𝑡

Q
) .  (𝑥0𝑡

Q(𝑖 =10)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖 =00)(𝑙))] +  [(𝑟0𝑡

Q) .  (𝑥0𝑡
Q(𝑖 =00)(𝑙))])            (36) 

𝛬1,𝑖𝑛
𝑖=11 =  

𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖 = 11)(𝑙))] + [(𝑟0𝑡

Q) .  (𝑥0𝑡
Q(𝑖 = 11)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I ) .  (𝑥0𝑡
I(𝑖 =00)(𝑙))] +  [(𝑟0𝑡

Q) .  (𝑥0𝑡
Q(𝑖 =00)(𝑙))])            (37) 

The number of computations required for each intrinsic LLR of symbol 𝑖 at time instant 𝑡 

shown in Eqn.  (34) to (37) is shown in Table 9. The information provided in Table 9 will 

be used in the analysis part of section 3. 

Table 9: Number of computations for intrinsic LLRs of symbol 𝒊 at time 𝒕  

for Decoder 1 with Method 2. 

 Additions Multiplications Divisions Subtractions Total 

Intrinsic LLRs 2 4 1 1 8 

The branch transition metric for the second decoder is computed as: 

𝛾𝑡
2,𝑖(𝑙′, 𝑙) =  �̅�1,𝑒

𝑖 (𝑡) +  
𝐿𝑐

2
([(𝑟0𝑡

T̅̅ ̅̅ ̅) .  (𝑥0𝑡
T(𝑖)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) .  (𝑥0𝑡

Q(𝑖)(𝑙))] +

[(𝑟2𝑡
T) .  (𝑥2𝑡

T(𝑖)(𝑙))] +  [(𝑟2𝑡
Q) .  (𝑥2𝑡

Q(𝑖)(𝑙))])               (38) 

The number of computations for the branch transition metrics of the second decoder is 

similar to that for decoder 1, as shown in Table 8. The forward recursive variables for the 

second decoder are computed in the same way as for Method 1 which is shown in Eqn.  

(2). The number of computations for the forward recursive variable is the same as shown 

in Table 2. The backward recursive variables for the second decoder are computed as 

shown in Eqn.  (3). The number of computations for the backward recursive variable is the 

same as shown in Table 3. The equation for the log likelihood ratio is the same as shown 

in Eqn.  (4). The number of computations for the a-posteriori LLR is the same as shown in 

Table 4.  

The a-posteriori LLR comprises of 3 LLRs, namely, the a-priori LLR, the intrinsic 

LLR and the extrinsic LLR are related as shown in Eqn. (32) [23]. 

The number of computations for the extrinsic LLR is the same as shown in Table 5. The 

intrinsic LLR of decoder 2 associated with the interleaved systematic bits (𝐴𝑡
𝐼𝑛𝑡, 𝐵𝑡

𝐼𝑛𝑡) can 

be represented as: 

𝛬2,𝑖𝑛
𝑖=00 =

𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ). (𝑥0𝑡
I(𝑖=00)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) . (𝑥0𝑡

Q(𝑖 =00)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ). (𝑥0𝑡
I(𝑖=00)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) . (𝑥0𝑡

Q(𝑖 =00)(𝑙))])                                                             

(39) 

𝛬2,𝑖𝑛
𝑖=01 =  

𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ) .  (𝑥0𝑡
I(𝑖=01)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) .  (𝑥0𝑡

Q(𝑖 =01)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ). (𝑥0𝑡
I(𝑖=00)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) . (𝑥0𝑡

Q(𝑖 =00)(𝑙))])             (40) 
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𝛬2,𝑖𝑛
𝑖=10 =  

𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ) .  (𝑥0𝑡
I(𝑖 =10)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) .  (𝑥0𝑡

Q(𝑖 =10)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ). (𝑥0𝑡
I(𝑖=00)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) . (𝑥0𝑡

Q(𝑖 =00)(𝑙))])              (41) 

𝛬2,𝑖𝑛
𝑖=11 =  

𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ) .  (𝑥0𝑡
I(𝑖 = 11)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) .  (𝑥0𝑡

Q(𝑖 = 11)(𝑙))]) −

 
𝐿𝑐

2
([(𝑟0𝑡

I̅̅ ̅̅ ). (𝑥0𝑡
I(𝑖=00)(𝑙))] + [(𝑟0𝑡

Q̅̅ ̅̅ ̅
) . (𝑥0𝑡

Q(𝑖 =00)(𝑙))])              (42) 

The number of computations for the intrinsic LLR is the same as shown in Table 9. 

2.3  Decoding for Duo-Binary Turbo Codes using Method 3 [24] 

The Turbo decoding equations to perform symbol-level decoding with bit-level LLRs 

as input was proposed by the authors of [24]. The encoding structure and gray coded 

modulation for the double binary Turbo codes are as shown in Fig. 1 and Fig. 2 

respectively. The systematic and parity information are modulated based on the Gray-

coded QPSK bit-mapping constellation of Fig. 2. The modulated symbols are then 

transmitted over an AWGN channel. The noisy versions of 𝑥0𝑡 , 𝑥1𝑡  and 𝑥2𝑡 are 

intercepted at the receiver side as 𝑟0𝑡 , 𝑟1𝑡  and 𝑟2𝑡  respectively. A soft de-mapping 

algorithm is employed to extract the bit-level LLRs from the received noisy symbols. The 

modulation and soft-demapping processes are as shown in Fig. 5. 
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SOFT-

DEMAPPER

trA

trB

trY1

trW1

trY 2

trW2

AWGN

CHANNEL

tx0

tx1

tx2

QPSK 

MODULATOR
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tB

tY1

tW1

tY 2

tW2
 

Fig. 5 Modulation and Soft De-mapping 

The soft-demapping equations are follows: 

𝑟𝐴𝑡 = real(𝑟0𝑡); 𝑟𝐵𝑡 = imag(𝑟0𝑡); 𝑟𝑌1𝑡 = 𝑟𝑒𝑎𝑙(𝑟1𝑡); 𝑟𝑊1𝑡 = imag(𝑟1𝑡); 𝑟𝑌2𝑡 =
𝑟𝑒𝑎𝑙(𝑟2𝑡); 𝑟𝑊2𝑡 = imag(𝑟2𝑡)                (43) 

Where, real() and imag() denote the real and imaginary parts of the input complex 

arguments: 𝑟0𝑡, 𝑟1𝑡 and 𝑟2𝑡. The Turbo decoder is as shown in Fig. 6. 

The parameters shown in Fig. 6 are defined as:  

𝑟𝐴𝑡 and 𝑟𝐵𝑡 are the soft-bit de-mapped LLRs of the received complex 

systematic symbol 𝑟0𝑡 at time t, 

𝑟𝐴𝑡
̅̅ ̅̅ ̅  and  𝑟𝐵𝑡

̅̅ ̅̅ ̅ are the soft-bit de-mapped LLRs of the received complex 

interleaved systematic symbol 𝑟0𝑡
̅̅ ̅̅  at time t, 

𝑟𝑌1𝑡 and 𝑟𝑊1𝑡  are the soft-bit de-mapped LLRs of the received complex 

systematic symbol 𝑟1𝑡 at time t, 

𝑟𝑌2𝑡 and 𝑟𝑊2𝑡  are the soft-bit de-mapped LLRs of the received complex 

systematic symbol 𝑟2𝑡 at time t and  

𝑥𝐴𝑡, 𝑥𝐵𝑡, 𝑥𝑌1𝑡, 𝑥𝑊1𝑡 , 𝑥𝑌2𝑡  𝑎𝑛𝑑 𝑥𝑊2𝑡  𝜖 {+1, −1} depending on whether the bits  

𝐴𝑡, 𝐵𝑡, 𝑌1𝑡 , 𝑊1𝑡 , 𝑌2𝑡  𝑎𝑛𝑑 𝑊2𝑡  𝜖 {1, 0} respectively. 
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Fig. 6: Turbo Decoder with bit-level input LLRs. 

 

The first decoder’s branch transition metric is given as: 

𝛾𝑡
1,𝑖(𝑙′, 𝑙) =  �̅�2,𝑒

𝑖 (𝑡) +  
𝐿𝑐

2
([(𝑟𝐴𝑡) .  (𝑥𝐴𝑡)] + [(𝑟𝐵𝑡) .  (𝑥𝐵𝑡)] + [(𝑟𝑌1𝑡) .  (𝑥𝑌1𝑡)] +

 [(𝑟𝑊1𝑡) .  (𝑥𝑊1𝑡)])                  (44) 

The number of computations required for the branch metric shown in Eqn.  (58) is shown 

in Table 10. The information provided in Table 10 will be used in the analysis part of 

section 3. 

Table 10: Number of computations for intrinsic LLRs of symbol 𝒊 at time 𝒕  

for Decoder 1 with Method 2. 

 Additions Divisions Multiplications Total 

Branch Transition Metric 2 1 5 10 

The forward recursive variables for the first decoder are computed in the same way as 

for Method 1 which is shown in Eqns. (3) and (4). The number of computations for the 

forward recursive variable is the same as shown in Table 2. The backward recursive 

variables for the first decoder are computed in the same way as for Method 1, which is 

shown in Eqns.  (5) and (6). The number of computations for the backward recursive 

variable is the same as shown in Table 3. The log-likelihood ratios for the first decoder are 

computed in the same way as for Method 1, which is shown in Eqn. (4). The number of 

computations for the a-posteriori LLRs is the same as shown in Table 4. The a-posteriori 

LLR comprises of 3 LLRs, namely, the a-priori LLR, the intrinsic LLR and the extrinsic 

LLR are related as shown in Eqns.  (4), (5) and (6) [23]. The number of computations for 

the extrinsic LLR is the same as shown in Table 5. The intrinsic LLRs are computed as 

follows: 

𝛬1,𝑖𝑛
𝑖 =  

𝐿𝑐

2
([(𝑟𝐴𝑡). (𝑥𝐴𝑡

(𝑖)
)] + [(𝑟𝐵𝑡). (𝑥𝐵𝑡

(𝑖 ))])               (45) 

The number of computations required for each intrinsic LLR of symbol 𝑖 at time instant 𝑡 

shown in Eqn. (45) is shown in Table 11. The information provided in Table 11 will be 

used in the analysis part of section 3. 

The operation of the second decoder can now be started. The branch transition metric 

for the second decoder is computed as: 
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𝛾𝑡
2,𝑖(𝑙′, 𝑙) =  �̅�1,𝑒

𝑖 (𝑡) +  
𝐿𝑐

2
([(𝑟𝐴𝑡

̅̅ ̅̅ ̅) .  (𝑥𝐴𝑡)] + [(𝑟𝐵𝑡
̅̅ ̅̅̅) .  (𝑥𝐵𝑡)] + [(𝑟𝑌2𝑡) .  (𝑥𝑌2𝑡)] +

 [(𝑟𝑊2𝑡) .  (𝑥𝑊2𝑡)])                   (46) 

The number of computations for the branch transition metrics of decoder 2 is the same as 

shown in Table 10.  

The forward recursive variables for the first decoder are computed in the same way as for 

Method 1, which is shown in Eqn. (2). The number of computations for the forward 

recursive variable of decoder 2 is the same as shown in Table 2. The backward recursive 

variables for the second decoder are computed as shown in Eqn. (3). The number of 

computations for the backward recursive variable of decoder 2 is the same as shown in 

Table 3. The equation for the log likelihood ratio is the same as shown in Eqn. (4). The 

number of computations for the a-posteriori LLR of decoder 2 is the same as shown in 

Table 4. The a-posteriori LLR comprises of 3 LLRs, namely, the a-priori LLR, the 

intrinsic LLR and the extrinsic LLR are related as shown in Eqn. (5) [23]. The number of 

computations for the extrinsic LLRs of decoder 2 is the same as shown in Table 5. The 

intrinsic LLR of decoder 2 associated with the interleaved systematic bits:(𝐴𝑡
𝐼𝑛𝑡, 𝐵𝑡

𝐼𝑛𝑡) can 

be represented as: 

𝛬2,𝑖𝑛
𝑖 =  

𝐿𝑐

2
([(𝑟𝐴𝑡

̅̅ ̅̅ ̅). (𝑥𝐴𝑡
(𝑖)

)] + [(𝑟𝐵𝑡
̅̅ ̅̅̅). (𝑥𝐵𝑡

(𝑖)
)])               (47) 

The computational equations for the intrinsic LLRs are as follows: 

𝛬2,𝑖𝑛
0 =  

𝐿𝑐

2
([(𝑟𝐴𝑡

̅̅ ̅̅ ̅). (−1)] + [(𝑟𝐵𝑡
̅̅ ̅̅̅). (−1)])                (48) 

𝛬2,𝑖𝑛
1 =  

𝐿𝑐

2
([(𝑟𝐴𝑡

̅̅ ̅̅ ̅). (−1)] + [(𝑟𝐵𝑡
̅̅ ̅̅̅). (+1)])                (49) 

𝛬2,𝑖𝑛
2 =  

𝐿𝑐

2
([(𝑟𝐴𝑡

̅̅ ̅̅ ̅). (+1)] + [(𝑟𝐵𝑡
̅̅ ̅̅̅). (−1)])                (50) 

𝛬2,𝑖𝑛
3 =  

𝐿𝑐

2
([(𝑟𝐴𝑡

̅̅ ̅̅ ̅). (+1)] + [(𝑟𝐵𝑡
̅̅ ̅̅̅). (+1)])                (51) 

The number of computations for the intrinsic LLRs of decoder 2 is the same as shown in 

Table 11. 

2.4  Computational Complexity Analysis 

In this section, the computational complexities for the three decoding methods have 

been compared. The break-down of the number of computations at each half-iteration for 

Methods 1, 2, and 3 are shown in Tables 12, 13, and 14 respectively. The values obtained 

for the metrics computed over one half-iteration for Method 1 are explained next. The 

number of computations for the branch transition metric of Eqn. (1) shown in Table 1 is 

for a single branch transition metric. Each transition in the trellis consists of 32 branch 

transition metrics and in all, there are Nc transitions in the trellis. These explain the 

multiplication by 32 and Nc for the computations of the branch transition metrics. The 

number of computations for the forward recursive variable of Eqn. (2) and backward 

recursive variable of Eqn. (3), as shown in Tables 2 and 3 respectively, are multiplied by 8 

and Nc since there are 8 states for each transition over a total couple length of Nc.The 

computations for the a-posteriori LLRs of Eqn. (4) as shown in Table 4 are multiplied by 4 

and Nc for the 4 symbols over the whole couple length. The computations of the extrinsic 

LLRs of Eqn. (7) as shown in Table 5 are also multiplied by 4 and Nc. The computations 

of the intrinsic LLRs of Eqns. (9) and (10) as shown in Table 6 cater for the 4 symbols and 

thus are only multiplied by the couple length, Nc. Similarly, the computations of the a-
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posteriori probabilities of Eqns. (11 - 14), as shown in Table 7, are only multiplied by the 

couple length, Nc. 

Table 12: Breakdown of the number of computations at 

one half-iteration for Method 1. 

 
Log 

Operations 

Maximum 

Operations 

Additions Sub-

tractions 

Multipli-

cations 

Divisions Total 

Branch 

Transition 

Metric 

1×32×𝐍𝐜  3×32×𝐍𝐜 5×32×Nc 4×32×Nc  416𝐍𝐜 

Forward 

Metric 

 1×8×𝐍𝐜 4×8×Nc    40𝐍𝐜 

Backward 

Metric 

 1×8×𝐍𝐜 4×8×Nc    40𝐍𝐜 

A-Posteriori 

LLR 

 2×4×𝐍𝐜 32×4×Nc 1×4×Nc   140𝐍𝐜 

Extrinsic 

LLR 

   2×4×𝐍𝐜   8𝐍𝐜 

Intrinsic 

LLR 

  1×𝐍𝐜  6×Nc 3×Nc 𝟏𝟎𝐍𝐜 

A-Posteriori 

Probabilities 

 4×Nc  4×Nc   8𝐍𝐜 

TOTAL 32𝐍𝐜 28𝐍𝐜 289𝐍𝐜 176𝐍𝐜 134𝐍𝐜 3𝐍𝐜 𝟔𝟔𝟐𝐍𝐜 

The values obtained for the metrics computed over one half-iteration for Method 2 are 

explained next. The number of computations for the branch transition metric of Eqn. (33) 

shown in Table 8 are multiplied by 32 and Nc as explained for Method 1. The number of 

computations for the forward recursive variable, backward recursive variable, a-posteriori 

LLRs and extrinsic LLRs are exactly as explained for Method 1. The computations of the 

intrinsic LLRs of Eqns. (34 - 37), as shown in Table 9, are multiplied by 4 and Nc to cater 

to the 4 symbols and the couple length. 

Table 13: Breakdown of the number of computations 

at one half-iteration for Method 2. 

 
Maximum 

Operations 

Additions Subtractions Multiplications Total 

Branch Transition Metric  4×32×Nc  5×32×Nc 288𝐍𝐜 

Forward Metric 1×8×Nc 4×8×Nc   40𝐍𝐜 

Backward Metric 1×8×Nc 4×8×Nc   40𝐍𝐜 

A-Posteriori LLR 2×4×Nc 32×4×Nc 1×4×Nc  140𝐍𝐜 

Extrinsic LLR   2×4×Nc  8𝐍𝐜 

Intrinsic LLR  2×4×Nc 1×4×Nc 4×4×Nc 28𝐍𝐜 

TOTAL 𝟐𝟒𝐍𝐜 328𝐍𝐜 𝟏𝟔𝐍𝐜 176𝐍𝐜 544𝐍𝐜 

 

The values obtained for the metrics computed over one half-iteration for Method 3 are 

explained next. The number of computations for the branch transition metric of Eqn. (44) 

shown in Table 10 are multiplied by 32 and Nc as explained for Method 1. The 

computations for the forward recursive variable, backward recursive variable, a-posteriori 
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LLRs and extrinsic LLRs are exactly as explained for Method 1. The computations of the 

intrinsic LLRs of Eqn. (45) as shown in Table 11 are multiplied by 4 and Nc to cater for 

the 4 symbols and the couple length. 

Table 14: Breakdown of the number of computations at 

one half-iteration for Method 3. 

 Maximum 

Operations 

Additions Subtractions Multiplications Total 

Branch Transition Metric  4×32×Nc  5×32×Nc 288𝐍𝐜 

Forward Metric 1×8×Nc 4×8×Nc   40𝐍𝐜 

Backward Metric 1×8×Nc 4×8×Nc   40𝐍𝐜 

A-Posteriori LLR 2×4×Nc 32×4×Nc 1×4×Nc  140𝐍𝐜 

Extrinsic LLR   2×4×Nc  8𝐍𝐜 

Intrinsic LLR  1×4×Nc  3×4×Nc 16𝐍𝐜 

TOTAL 24𝐍𝐜 324𝐍𝐜 𝟏𝟐𝐍𝐜 172𝐍𝐜 532𝐍𝐜 

 

The total number of computations for each half-iteration for Method 1 is given as: 

𝐶𝑀1 = (416 + 40 + 40 + 140 + 8 + 10 + 8) x Nc = 662Nc            (52) 

Where, 𝐶𝑀1 is the total number computations per half-iteration for Method 1. 

The total number of computations for each half-iteration for Method 2 is given as: 

𝐶𝑀2 = (288 + 40 + 40 + 140 + 8 + 28) x Nc = 544Nc                      (53) 

Where, 𝐶𝑀2 is the total number computations per half-iteration for Method 2. 

The total number of computations for each half-iteration for Method 3 is given as: 

𝐶𝑀3 = (288 + 40 + 40 + 140 + 8 + 16) x Nc = 532Nc                      (54) 

Where, 𝐶𝑀3 is the total number computations per half-iteration for Method 3. 

It can be observed that the total number of computations for Method 3 per half-

iteration is lower in comparison to that required for both Methods 1 and 2. In total, 

Method 2 and Method 3 require 118 and 130 fewer computations than Method 1, 

respectively. From the percentage aspect, Method 2 and Method 3 require 17.8 % and 19.6 

% fewer computations than Method 1, respectively, at each half-iteration. However, it is 

assumed that an addition and a multiplication have the same complexity of one 

computation. 

3.   SIMULATION RESULTS 

In this section, the performances of the three different decoding methods for Duo-

Binary Turbo codes both, with and without circular states are compared. 

Q-PSK modulation has been used in all the simulations. 

An interleaver size of couple length Nc has been used in all the simulations. The 

parameters for the duo-binary Turbo code used are as follows [19, 20, 22]: 

Feedback branch: 1 + D + D3 

First set of parity bits: 1 + D2 + D3 

Second set of parity bits: 1 + D3 
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Nc = 48, 212 and 752 

Maximum number of iterations, T = 12. 

Code-rates = 1/3,1/2 and  2/3 

Channel model: Complex AWGN.  

The BER performances for Duo-Binary Turbo codes with Nc = {48, 212 and 752}, code-

rate = 1/3, Q-PSK modulation and the different Decoding Techniques with and without 

circular states are shown in Fig. 7. 

 

Fig. 7: BER performance for duo-binary Turbo codes with Q-PSK Modulation, 

 Nc = {48, 212 and 752} and rate=1/3. 

It can be observed for Nc = 48 from Fig. 7, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for BERs below 

10-4. For a BER of 10-5, Methods 2 and 3 provide a gain of 0.1 dB compared to Method 1. 

It can be observed from the results with circular states, that decoding Method 3 has better 

error performance than decoding Methods 1 and 2 for BERs below 10-4. For a BER of 10-

5, Method 3 provides a gain of 0.1 dB compared to Methods 1 and 2.  

It can be observed for Nc = 212 from Fig. 7, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for the whole 

BER range. For a BER of 10-6, Methods 2 and 3 provide a gain of 0.1 dB compared to 

Method 1. It can be observed from the results with circular states that decoding Methods 2 

and 3 have better error performance than decoding Method 1 for almost the whole BER 

range. For a BER of 10-5, Method 3 provides a gain of 0.1 dB compared to Method 1.  

It can be observed for Nc = 752 from Fig. 7, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for almost the 

whole BER range. For a BER of 10-7, Methods 2 and 3 provide a gain of 0.2 dB compared 

to Method 1. It can be observed from the results with circular states that decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for almost the 

whole BER range. For a BER of 10-7, Methods 2 and 3 provide a gain of 0.1 dB and 0.2 

dB respectively as compared to Method 1. The BER performances for duo-binary Turbo 
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codes with Nc = {48, 212 and 752}, code-rate = 1/2, Q-PSK modulation and the different 

decoding techniques with and without circular states are shown in Fig. 8. 

 

Fig. 8: BER performance for duo-binary Turbo codes with Q-PSK modulation, 

 Nc = {48, 212 and 752} and rate=1/2. 

 

It can be observed for Nc = 48 from Fig. 8, that without circular states, decoding 

Method 2 has better error performance than decoding Methods 1 and 3 for BERs below 

10-4. For a BER of 10-6, Method 2 provides a gain of 0.2 dB as compared to Method 1. It 

can be observed from the results with circular states that decoding Methods 2 and 3 have 

better error performance than decoding Method 1 for BERs below 10-4. For a BER of 10-6, 

Methods 2 and 3 provide a gain of 0.1 dB and 0.2 dB respectively compared to Method 1.  

It can be observed for Nc = 212 from Fig. 8, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for BERs below 

10-2. For a BER of 10-7, Methods 2 and 3 provide a gain of 0.2 dB as compared to Method 

1. It can be observed from the results with circular states that decoding Methods 2 and 3 

have better error performance than decoding Method 1 for BERs below 10-4. For a BER of 

10-7, Method 2 provides a gain of 0.1 dB as compared to Methods 1 and 3.  

It can be observed for Nc = 752 from Fig. 8, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for BERs below 

10-4. For a BER of 10-6, Methods 2 and 3 provide a gain of 0.1 dB as compared to Method 

1. It can be observed from the results with circular states that decoding Methods 2 and 3 

have better error performance than decoding Method 1 for BERs below 10-2. For a BER of 

10-6, Methods 2 and 3 provide a gain of 0.2 dB as compared to Method 1. The BER 

performances for duo-binary Turbo codes with Nc = {48, 212 and 752}, code-rate = 2/3, 

Q-PSK modulation and the different Decoding Techniques without circular states are 

shown in Fig. 9. 
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Fig. 9: BER performance for duo-binary Turbo codes with Q-PSK modulation, 

Nc = {48, 212 and 752} and rate=2/3. 

It can be observed for Nc = 48 from Fig. 9, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for the whole 

BER range. For a BER of 10-6, Methods 2 and 3 provide a gain of 0.2 dB compared to 

Method 1. It can be observed from the results with circular states that decoding Method 3 

has a better error performance than both decoding Methods 1 and 2 for BERs below 10-4. 

For a BER of 10-6, Method 3 provides a gain of 0.2 dB and 0.1 dB as compared to 

Methods 1 and 2 respectively.  

It can be observed for Nc = 212 from Fig. 9, that without circular states, decoding 

Methods 2 and 3 have better error performance than decoding Method 1 for almost the 

whole BER range. For a BER of 10-6, Method 2 provides a gain of 0.1 dB and 0.2 dB as 

compared to Methods 3 and 1 respectively.  It can be observed from the results with 

circular states that decoding Methods 2 and 3 have better error performance than decoding 

Method 1 for BERs below 10-4. For a BER of 10-6, Methods 2 and 3 provide a gain of 0.3 

dB as compared to Method 1.  

It can be observed for Nc = 752 from Fig. 9, that without circular states, decoding 

Methods 2 and 3 have almost the same error performance as decoding Method 1 for the 

whole BER range. It can be observed from the results with circular states that at a BER of 

10-7, decoding Method 3 outperforms the decoding Methods 1 and 2 by 0.1 dB. 

4.   CONCLUSION  

In this paper, an investigation of the state of the art of different iterative decoding 

techniques for the Max-Log MAP algorithm have been presented for duo-binary Turbo 

codes. Different couple lengths and code-rates have been employed with duo-binary Turbo 

codes with and without the incorporation of circular states have been used for this work. 

Essentially, three different decoding techniques have been identified for this work. The 

identified schemes were implemented in Matlab and all the simulations were carried out 

using an AWGN channel, QPSK modulation and the eight-state double binary turbo 

encoder of the DVB-RCS standard. The computational complexities of the 3 methods 

129



IIUM Engineering Journal, Vol. 18, No. 1, 2017 Beeharry et al. 

 

were analyzed for one half-iteration. It can be observed that Method 2 and Method 3 

require 17.8 % and 19.6 % fewer computations than Method 1 respectively at each half-

iteration with the assumption that an addition and a multiplication have the same 

complexity of one computation. Intensive simulations were then carried out for duo-binary 

Turbo codes with and without circular states for couple lengths: 48, 212 and 752; and 

code-rates: 1/3, ½ and 2/3. In most results, Methods 2 and 3 outperform Method 1 for the 

whole BER range. These results are important when low-complexity decoding algorithms 

for non-binary Turbo codes need to be considered. Compared to previous work, the 

investigation in this paper is geared towards analyzing three different sets of decoding 

equations for the Max Log MAP algorithm used with Duo-Binary Turbo codes. 

Additionally, based on the equations used to compute the different parameters of the 

iterative process, a computational complexity analysis was also performed. Methods 1 and 

2 are variants of a symbol-level decoding mechanism with the symbol-level a-priori LLRs 

as input. However, Method 3 performs symbol-level decoding using bit-level LLRs and 

the results become significant in the sense that the limitation of using only QPSK 

modulation with duo-binary Turbo codes is overcome with this technique. Using higher 

order modulations with duo-binary Turbo codes help achieving higher spectral 

efficiencies. This possibility of using higher order modulations with non-binary Turbo 

codes opens avenues for the incorporation of prioritization constellation mapping and 

other schemes in view to enhance error performance with decoders having low 

computational complexities. 
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