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ABSTRACT: In a Smart Grid (SG) scenario, domestic consumers can gain cost 

reduction benefit by scheduling their Appliance Activation Time (AAT) towards the 

slots of low charge. Minimization in cost is essential in Home Energy Management 

Systems (HEMS) to induce consumers acceptance for power scheduling to accommodate 
for a Demand Response (DR) at peak hours. Many proposed algorithms addressed the 

power scheduling for HEMS but community based optimization has not been the focus. 

This paper presents Community based HEMS (CHEMS) and targets the minimization of 

energy costs of the whole community while keeping a low Peak to Average Ratio (PAR) 
and smooth Power Usage Pattern (PUP). Objective of cost reduction is accomplished by 

finding most favorable AAT by Particle Swarm Optimization (PSO) in conjunction with 

Inclined Block Rate (IBR) approach and Circular Price Shift (CPS). Simulated numerical 
results show that CHEMS can save up to 45.3% electricity cost and achieve 37.98% 

reduction in PAR for a population size of 750 houses.  

ABSTRAK: Dalam senario Smart Grid (SG), pengguna domestik boleh mendapat 

manfaat pengurangan kos dengan menjadualkan  Masa Pengaktifan Perkakasan mereka 
(AAT) ke arah slot caj rendah. Pengurangan kos adalah penting dalam Sistem 

Pengurusan Tenaga Rumah (HEMS) untuk mendorong pengguna menerima konsep 

penjadualan kuasa untuk menampung Sambutan Permintaan (DR) pada waktu puncak. 
Pelbagai algoritma telah dicadangkan untuk mengatasi isu penjadualan kuasa untuk 

HEMS tetapi cadangan in tidak menumpukan penyelesaian kepada pengoptimuman 

melibatkan komuniti. Kertas kerja ini membentangkan HEMS (CHEMS)  berasaskan 
komuniti dan sasarannya adalah  pengurangan kos tenaga seluruh komuniti sambil 

mengekalkan Nisbah Puncak kepada Purata (PAR) yang rendah dan Corak Kegunaan 

Tenaga (PUP) yang lancar. Objektif pengurangan kos tercapai dengan memperoleh AAT 

paling baik menggunakan Particle Swarm Optimization (PSO) bersama dengan 
pendekatan Kadar Inclined Block (IBR) dan Circular Price Shift (CPS). Keputusan 

numerik simulasi menunjukkan bahawa CHEMS boleh menjimatkan kos elektrik 

sehingga 45.3% dan mencapai pengurangan PAR sebanyak 37.98 % untuk saiz 
penduduk sebanyak 750 buah rumah. 

KEYWORDS:  smart grid (SG); particle swarm optimization (PSO); community based 

home energy management (CHEMS); peak to average ratio (PAR); 

incline block rate (IBR) 
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1. INTRODUCTION  

Implementation of demand response (DR) has been the prime focus of researchers 

targeting optimization of smart grids (SG) from the last five years. Surges in power 

requirements at peak hours are inevitable due to evolution in domestic electrical appliance 

industry despite advances in renewable energy alternatives. Residential load optimization 

is a major concern for power utility companies because it constitutes a considerable 

portion of the total power demand. Domestic users’ lack of involvement is one of the 

hurdles in DR setup for peak load reduction [1]. Additionally, electricity supply 

companies (ESC) only run their base power production units and secondary units are 

operated if the power usage pattern (PUP) of the whole grid crosses some threshold. Sharp 

peaks in PUP lead to higher peak to average ratios (PAR) and result in the need for sub 

power units to kick in. Operation of sub units for a short span of time caused by frequent 

peaks in PUP is a technical hassle for ESC, therefore, smooth PUP and reduced PAR is 

primary goal in demand side management (DSM). Home energy management system 

(HEMS) is a principal solution for domestic DSM, which involves automated decisions for 

load optimization [2, 3]. A time-based electricity pricing scheme is an actively used tool 

for both cost and load curtailment [4, 5]. Numerous strategies have been developed to 

curtail the power requirement based on DR. Some of them rely on resident habits hence 

using load prediction models [3, 6, 7] to adjust scheduling, whereas others rely on pricing 

schemes and penalty terms [8, 9].  

In HEMS optimization, the main goal is finding a suitable solution subject to the 

constraint of electricity PAR reduction. Researchers have formulated a lot of home-based 

optimum solutions for this problem, some of them are based on game theory [10, 11], 

mixed integer linear programming [12], genetic algorithm (GA) [8, 13],  non-dominated 

sorting GA [14], particle swarm optimization (PSO) [15], gradient based repair PSO [16], 

and artificial bee colony optimization [17].  

Literature available is based on minimizing the PAR and electricity cost of domestic 

consumers only based on DR signals. We believe that in a SG paradigm, optimization 

must be made with regard to small sized communities. A smaller community strengthens 

the case of SG because it offers relatively shorter paths for renewable energy sharing, 

which renders low line losses. When a set of houses in a community is subjected to an 

optimization algorithm, peaks in PUP of whole community are anticipated. Now if some 

of the houses have renewable energy sources around peaks, they must share their excess 

energy with houses of the same community due to two reasons: a) it can easily be 

distributed with less line losses, b) computationally less complicated for optimization 

algorithm to decide when and with whom to share the excess energy. 

In this paper, a community based home energy management system (CHEMS) is 

proposed, which is better practical for renewable energy sharing between residents of 

close vicinity. The proposed scheme ensures a reduced PAR and smooth power usage 

pattern (PUP) for sharp peaked PUPs with reduced electricity cost. CHEMS is based on 

modification of electricity pricing scheme called Circular Shifted Real Time Price 

(CSRTP), which scatters consumer device operation slots to achieve reduced PAR. 

The remaining paper is structured as follows: Section 2 shows the framework of 

CHEMS. Section 3 shows the proposed methodology of CHEMS in conjunction with 

inclined block rate (IBR) and PSO. In Section 4, results are presented. Section 5 is 

allocated to discussion and analysis, followed by the conclusion in Section 6. 
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2.   FRAMEWORK OF CHEMS 

The main aim to develop CHEMS is to lower electricity costs while keeping a 

reduced PAR. Overall conceptual structure of CHEMS is as shown in Fig. 1. Power is 

distributed from main grid (MG) to micro grids (MCG) and then each MCG delivers 

electricity to different communities of equal/variable no. of houses. MCGs can 

communicate to communities/houses through wired or wireless medium [18] to transmit 

DR signal. Each house is connected to the MCG via an electricity management controller 

(EMC) and a smart meter (SM). MCGs have arrangement called as an automatic metering 

infrastructure (AMI) that can establish two way communications between ESC and 

consumer. MCGs use AMI to communicate demand response (DR) and other controlling 

signals to HEMS at peak load time. 

Main Grid (MG)

Micro Grid 

1 (MCG1)

Micro Grid 

2 (MCG2)

Micro Grid 

N (MCGN)...

Community 

1A (C1A)

Community 

1B (C1B)

Community 

1C (C1C) ...

House 1A1 

(HEMS1A1)

House 1A2 

(HEMS1A2)

House 1A3 

(HEMS1A3)
...

CEMS1A

CHEMSMCG1  

Fig. 1: CHEMS conceptual diagram. 

A typical HEMS structure is shown is Fig. 2. In a HEMS setup, there are two types of 

devices, one regarded as Manually Operated Devices (MODs) and other as Automatically 

Operated Devices (AODs). In this paper, we consider economizing the operation of AODs 

only, as the operation timing of MODs cannot be known a day ahead or prior to its 

operation. Examples of MODs are fluorescent lights, computers, television etc. Such 

devices are operated manually by the users, hence cannot be used in power scheduling 

mechanisms. Their power requirements can be used by the SM to be sent to the MCGs for 

DR computations. AOD comprises the devices that can be activated without supervision, 

for example air conditioners, rice cookers, water pumps, etc. Electricity Management 

System (EMS) is fed with the Device Operating Timing (DOT) of each AOD at the start 

of the day. In this study, it is assumed that the DOT of AODs are previously identified and 

fed to the HEMS by the residents. Dedicated Interface Devices (DID), computers or smart 

phones can be used to provide the schedule of AODs to EMS, which can decide the 

activation of device operation based on the optimization algorithm. Aforementioned 

knowledge of DOTs is used for scheduling electricity utilization individually at each user 

EMS. EMS can communicate and control AODs through any currently available solutions 

such as Zigbee, LonWorks, Z-Wave, X10, INSTEON, KNX or a wired communication 

link [18]. 
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Fig. 2: HEMS structure. 

 

3. PROPOSED METHODOLOGY OF CHEMS USING PSO, IBR 

AND COMMUNITY BASED PRICING 

This section presents the tactic for AODs power scheduling based on PSO combined 

with IBR and enhanced with CSRTP to accommodate community electricity load 

curtailments. CSRTP is only used to reduce PAR and make the PUP smooth, unchanged 

RTP is used for electricity cost evaluation of all communities. An algorithm used for 

power scheduling AODs is elaborated based on a Real Time Price (RTP) model that 

charges different rates to each hour of the day. RTP data shown in Fig. 3. is taken from 

Ameren Illinois Power Company [19]. 

In an RTP model, the electricity charge to residents is based on one-hour time slots. 

We have used this data with each hour divided into 6 timeslots of 10 minutes each, such 

division is made to increase the degree of freedom for power scheduling optimization. Sub 

divisions of one hour into 6 time slots will result in a 144-slot day. Any AOD can operate 

for any number of sub divided time slots. For example, if a device has to run for 1.5 hours, 

it will consume 9 time slots. Each hour can also be subdivided into further smaller time 

slots, but it is a tradeoff between better optimization results and computational complexity. 

Smaller size of time slots produces better results as each AOD has more possibilities of 

being staggered to numerous Activation Time Slots (ATS). A large number of candidate 

solutions for ATS is a better prospect for cost and PAR reduction but more parameters for 

optimization consume enormous time for algorithm convergence. On the contrary, if we 
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choose large size of time slots, ATS opportunities are reduced, costs increased, and PAR is 

inevitable. 

 

Fig. 3: Real-time electricity prices.  

Domestic users are supposed to provide the EMS with the length and possible 

operating interval of each AOD. Nine devices are considered for a sample house, where 

some devices may or may not run, and some may run repeatedly on a given day of the 

month. PUP of all devices will take the form given as a vector: 

 
(1) 

Where consumption of power by ith device is given by:  

 (2) 

Each device has the power rating in the form of: 

 (3) 

Once the EMS has received the ATS, Operation Termination Slot (OTS), Operation 

Time Length (OTL), Device Operation Time Start (DOTS), and Device Operation Time 

End (DOTE) of every device, it will create a Power Usage Pattern (PUP) of (1) for each 

AOD using: 

 
(4)

 

Where 0 represents the AOD being inactive and 1 represents the AOD being active at 

corresponding time slot. ATS of each device is constrained by the house resident defined 

limits as: 

 (5) 

Then the PUP for whole house is calculated as: 

 (6) 
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Here we have summed up the power consumptions of AODs. Cost of Electricity can 

be calculated by taking an inner product of (6) and RTP mapped onto 10 minutes time slot. 

The final objective function of problem at hand is given by: 

 (7) 

We need to minimize (7) subject to (5). When this problem is subjected to any 

optimization technique, OTL vector of AODs looks for an optimum permissible slot in the 

day, and it tends to move towards lower rate slots. Likewise all AODs shift towards the 

time slots with lowest rates, which result in reduced electricity cost but also create higher 

PAR, which should be avoided. One solution to this problem is a penalty term, which is 

also used by researchers in the form of IBR [8].  

3.1  Particle Swarm Optimization (PSO) 

PSO is an iterative process that initiates its optimization by assigning the initial values 

of particles and their velocities. PSO is applied to this problem for optimization of all ATS 

for a given house subject to the constraint of “OTL must be covered up with in the range 

of DOTS and DOTE”. Initial values of particles for this optimization are used as the 

provided DOTS. Cost function is evaluated and the location of the best particle is saved. 

At the next iteration, new velocities are evaluated, followed by cost function assessment 

and best particle storage. This process is continued until a termination condition is 

reached. 

3.2  Inclined Block Rate (IBR) 

In an IBR approach if a PUP crosses a threshold at any time slot, the rate in RTP is 

scaled with a factor for that particular time slot; otherwise if the PUP remains below 

the predefined threshold, then the rates are unchanged. It works as a controller term to 

keep optimization parameters from making large PAR. Consider the case represented in 

Fig. 4. 

 

Fig. 4: Device ATS constraints. 

The AOD is shown in a rectangular block; its horizontal length shows the OTL of the 

device, DOTS and DOTE marked as vertical lines. When this device is subjected to an 

optimization algorithm; its ATS will tend to move towards DOTS as it will cover its DOT 

over the slots of low Electricity Price (EP). If more than one device for a house operates 

around that specific slot, they will create a peak PUP by converging towards the vicinity 

of lowest EP slot. Same peak PUPs can also be created by other residents when they look 

1 

 .RTPmin PUP
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to run their Floating Operating Time (FOT) based devices to run around the lowest EP 

slots. FOT refer to those devices which have to run for a specific length of time once a 

day, e.g. Water Pumps, Washing Machines, and Dryers. Such situations can be controlled 

by implying IBR. 

3.3  Architecture of CHEMS 

In a practical scenario of actual population, each added residence is a contributing 

factor towards a high/peaked PAR in extension to aforementioned aspects of PAR 

increments. An MCG providing electricity to a large set of consumers can be considered 

for clarification. The majority of the houses will cluster ATS of their AODs around the 

time slots of low EP when subjected to optimization through traditional HEMS. This will 

result in sharp peaks in overall PUP for the corresponding MCG. The core reason for 

traditional HEMS to cluster AODs is that each house is optimized independently without 

any information regarding cluster locations of neighboring residents. This phenomenon is 

not different for any of the available schemes in the literature. Additionally, all of the 

houses cannot be optimized in one go. This is equivalent to one big house with a very 

large quantity of devices, which is not practically realizable from two points of views. i) 

penalty terms for PUP crossing thresholds will not be applicable for separate houses. ii) a 

large quantity of ATS timings will not allow the optimization algorithm to converge due to 

time limitations. 

CHEMS is the solution for electricity cost and PAR reduction for large populations. 

Conceptual setup of CHEMS is shown in Fig. 1. The whole set of users under one MCG is 

divided into several communities. Each community consists of a small number of houses, 

that can be varied based on the objective. The PUP of every house is optimized separately 

with application of PSO, IBR, and CSRTP. Every community is offered the same RTP but 

with a small circular shift, which guides communities to shift their peak loads with small 

steps. When sharp peaks of individual communities are a small step apart, PAR is 

automatically reduced. This process ensures reduced PAR and smoothed PUP.  

Obtain Parameters Pi, 

DOTSi, DOTEi and OTLi 

for each device

Evaluate PUP 

of whole house 

according to eq. 

(6)

Calculate 

particle location 

and velocities

Generate 

parameters ATSi 

for all devices 

subject to constraint 

(5)

RTP for 

Community 

1A

Evaluate Fitness
Update particle 

and global best

Termination 

Criteria Reached?

No

End

Yes

 

Fig. 5: Flowchart of whole optimization process of one house. 
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When the PUP of an entire community set is optimized in this fashion, it results in a 

decreased and smooth curve. Community A is done first and rest of the communities 

follow thereafter. Let us consider the devices with DOTS and DOTE containing TSj, being 

taken as the lowest EP slot in the interval. When the ATS of AODs corresponding to 

community A are subjected to the optimization algorithm, a peak will be created at TSj. 

Then comes the optimization of community B, which being offered a circular shifted RTP 

will find the lowest EP slot TSj
 
shifted by k units and positioned at TSj+k. AODs of 

community B will create a peak at TSj+k
 
 by occupying ATS there. This process goes on 

with rest of the communities and results in a PUP with reduced PAR for the whole MCG. 

Flowchart for overall optimization process is depicted in Fig. 5. 

4.   SIMULATION RESULTS 

This section is dedicated for simulation results to prove the capability of CHEMS to 

produce better results for large populations. As MODs are operated at random by the 

residents, therefore, only AODs are simulated for this demonstration. A maximum of 16 

devices can be operated for one residence and a minimum of 8. Some devices like rice 

cookers may be used more than once a day. A typical residence AOD usage is depicted in 

Table 1. 

Table 1: Typical Residence usage of AODs 

AOD Power 

(KWH) 

OTL 

(Time 

Slots) 

Operation Slots 

(Scattered B/w) 

Air Conditioner 1.2 4,6,8,… 30 to 144 

Electric Heater 1.5 5,10,15,… 100 to 144 

Washing Machine 0.5 4,8,10 1 to 70 

Clothes Dryer 0.7 4,8,10 71 to 100 

Dishwasher 0.5 2,4,6 120 to 144 

Water Pump 1 3,6,9 70 to 90 

Electric Kettle 1.6 1,2 60 to 70, 

90 to 110 

Rice Cooker 0.5 2,4 1 to 30, 

50 to 70, 

95 to 110 

 

For this research, all simulations are performed in MATLAB. PSO optimization 

parameters are the swarm size of 100, minimum fraction for neighbors 0.25, number of 

variables equal to number of devices, tolerance value for relative change and 

termination after 3200 iterations. 

Results are compared with optimization based on a standalone house with traditional 

RTP, hence it is called traditional HEMS. Traditional HEMS is optimized with PSO & 

IBR applied to each house, whereas, CHEMS use a modified RTP scheme in addition to 

PSO and IBR. In this modeling, we took a total of 500 and 200 houses with randomized 

loads based on Table 1. Altered population sizes were chosen to study the effects of 

community size on different populations. The community size directly affects the final 

PUP, so different sizes of communities are considered and the outcomes are shown in Fig. 

6 for the population size of 500 houses. 

610
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Fig. 6: Simulation with 500 houses a) Traditional HEMS optimization b), c), d), e), and f) 

CHEMS with 10, 20, 30, 40, and 50 houses/community.  

 

Fig. 7: Simulation with 200 houses a) Traditional HEMS optimization b), c), d), e), and f) 

CHEMS with 10, 20, 30, 40, and 50 houses/community.  
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Each sub-figure of Fig. 6 consists of two graphs. One of them is common to all sub-

figures showing PUP without any power scheduling. The second graph, in dotted form, is 

of PSO with IBR only in Fig. 6a. Figure 6b, 6c, 6d, 6e, and 6f represent application of 

CHEMS with community sizes of 10, 20, 30, 40, and 50 houses per community. The same 

procedure is repeated for the population size of 200 and shown in Fig. 7. Reduction in 

PAR is 12.22% and electricity cost is 47.1% for traditional HEMS when a population size 

of 500 houses is considered. Whereas application of CHEMS with 10% houses per 

community, PAR is reduced by 25.56% and electricity cost reduced by 45.94%. Figures 6 

and 7 show that rapid changes in PUP are eliminated by application of CHEMS for both 

population sizes. 

Smaller community size means larger shifts in RTP and results in increased delay 

time for consumer device operations. Therefore, small shifts are used in CSRTP. Results 

are evaluated for different sizes of communities but 10% houses per community is 

recommended to keep the device operation delay time as low as possible. Complete results 

for population sizes of 200, 500 and 750 houses are summarized in Table 2. From Table 2 

it is clearly evident that CHEMS enhances results of optimization by PSO applied in 

conjunction with IBR. CHEMS lags by 1.05% form traditional HEMS in electricity cost 

reduction for population size of 200 houses and it leads traditional HEMS by 2.72% in 

PAR reduction. For a population size of 500 houses, CHEMS lags by 1.17% from 

traditional HEMS in electricity cost reduction and leads it by 13.34% in PAR reduction. 

Finally, for a population size of 750 houses, traditional HEMS is less than 2% better than 

CHEMS in terms of cost reduction, however, CHEMS outsmarts traditional HEMS based 

optimization by 25.08% when PAR reduction is considered. This trend shows that results 

of CHEMS are enhanced with larger populations, which is the case of real world. 

CHEMS produces best results in terms of PAR reduction with community sizes of 2% 

houses/community and optimal results for cost reduction are achieved with a community 

size of 10% houses/community. The tradeoff between electricity cost and PAR reduction 

can easily be managed using variable community size at times of peak power demand. 

PAR reduction takes priority when electricity power demand is higher than a threshold; 

hence smaller community size may be used by ESC. Large community size can be 

selected if cost reduction is at ESC precedence. 

Table 2: Simulation with 200, 500 and 750 houses 

Algorithm 

Community 

based on number 

of houses 

(Percentage) 

Percentage PAR Reduction Electricity Cost Reduction 

Percentage 

200 

Houses 

500 

Houses 

750 

Houses 

200 

Houses 

500 

Houses 

750 

Houses 

Traditional 

HEMS 

with PSO 

& IBR 

Nil 14.74 12.22 11.93 47.08 47.11 47.26 

CHEMS 

with PSO 

& IBR 

2% 37.19 36.57 38.61 36.71 38.02 39.27 

4% 27.21 37.97 34.15 41.78 41.45 40.76 

6% 23.13 36.94 37.29 44 42.34 41.92 

8% 18.59 37.13 37.23 45.46 44.56 43.97 

10% 17.46 25.56 37.01 46.03 45.94 45.3 

 

The rest of the comparisons of traditional HEMS with CHEMS are based on 10% 

houses/community. Figure 8 shows the comparison of PAR reduction capabilities against 
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different population sizes. PAR is almost the same for both CHEMS and traditional 

HEMS up to a population size of 100 houses. When the population size is greater than 

100, PAR is almost constant for traditional HEMS. CHEMS reduced PAR with increase in 

population size after 100 houses and stabilized after 650 houses. PAR is reduced to 2 by 

CHEMS, whereas traditional HEMS only reduced it to 2.9 from 3.3. 

 

Fig. 8: PAR Comparisons for population of 10 to 750 houses. 

 

Fig. 9: Percentage cost reduction for population of 10 to 750 houses. 

Figure 9 shows the percentage cost reduction for both schemes. Traditional HEMS is 

slightly better than CHEMS from a percentage electricity price reduction point of view. 

Some lag in cost reduction for the sake of better PAR is obvious because if all consumers 

cluster around low EP, then PAR reduction is limited as is the case of traditional HEMS 

optimization. 

5.   DISCUSSION AND ANALYSIS 

This study has demonstrated a new approach of DSM that is based on division of 

population into communities. Each community is offered a slightly different CSRTP, 

which renders PUP peaks to scatter around slots of low EP such that overall sharp peaks 

are eliminated. The algorithm presented does not require any modification in hardware 

setups available in literature. It can be implemented in HEMS schemes equipped with 
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ZigBee and sensor network-based appliance control/communication architecture like [20, 

21]. 

The main goal of PAR reduction is achieved with a supplementary benefit of smooth 

PUP. PUP is smoother with application of CHEMS than traditional HEMS as shown in 

Fig. 6 and Fig. 7. CHEMS offers more authority to ESC for electricity load shaping and 

curtailment. ESC can guide consumer EMS to shift loads in PAR reducing manner 

seamlessly by CSRTP. Variation in community size allows ESC to prioritize between 

PAR or cost reduction depending upon power generation constraint.  

6.   CONCLUSIONS  

This paper has presented an arrangement for implementing DR in a manner that can 

easily incorporate the resource sharing factor of SG. It has demonstrated through 

simulated results that our proposed technique trims PAR exceptionally well and reduces 

electricity cost with a supplementary benefit of smooth PUP. It is evident from Fig. 6 and 

Fig. 7 that the PUP transitions are much smoother after optimization by CHEMS. Results 

summarized in Table 2 show that the PAR reduction with CHEMS is 24% better than 

traditional HEMS for a community size of 750 houses. Figure 8 shows that CHEMS can 

reduce PAR for large populations in contrast to traditional HEMS. Cost reduction is 

almost equivalent as shown in Fig. 9. Additionally, the community-based setup is very 

suited to localized sharing of renewable energies within the community. 
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NOMENCLATURE  

MOD Manually Operated Devices 

AOD Automatically Operated Devices 

DOT Device Operating Time 

ATS Activation Time Slot 

OTS Operation Termination Slot 

OTL Operation Time Length 

DOTS Device Operation Time Start 

DOTE Device Operation Time End 

PUP Power Usage Pattern  
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