
IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 47

PERFORMANCE EVALUATION OF SDN 
CONTROLLERS: FLOODLIGHT AND 

OPENDAYLIGHT 

SHIVA ROWSHANRAD*, VAJIHE ABDI AND MANIJEH KESHTGARI 

Department of Computer and Information Technology,  
Shiraz University of Technology, Shiraz, Iran. 

*corresponding author: shiva.rrad@gmail.com  

 (Received: 27th Jan. 2016; Accepted: 25th Apr. 2016; Published on-line: 30th Nov. 2016)  

ABSTRACT: Software Defined Networking (SDN) is a new network architecture. One 
of its components is the controller, which is the intelligent part of SDN. Many controllers 
such as Floodlight, OpenDaylight, Maestro, NOX, POX, and others have been released. 
The question is which controller can perform better in which situations. Many works 
have been done to compare these controllers with respect to architecture, efficiency, and 
controllers’ features. In this paper, an evaluation based on some network QoS parameters 
is done. Two of the most popular controllers, Floodlight and OpenDaylight are compared 
in terms of delay and loss in different topologies and network loads. This paper can help 
researchers to choose the best controller in different use cases such as clouds and 
multimedia. The results, with a 95% confidence interval, show that OpenDaylight 
outperforms Floodlight in low loaded networks and also for tree topologies in mid-
loaded networks in terms of latency. Floodlight can outperform OpenDaylight in heavily 
loaded networks for tree topologies in terms of packet loss, and in linear topologies in 
terms of latency. There is no significant difference in performance of Floodlight and 
OpenDaylight controllers in other cases.  

ABSTRAK: Software Defined Network (SDN) adalah seni bina rangkaian baru. Salah 
satu komponennya adalah pengawal, yang merupakan bahagian pintar SDN. Banyak 
pengawal seperti Floodlight, Open Daylight, Maestro, NOX, POX dan lain-lain telah 
dikeluarkan. Persoalannya ialah pengawal yang mana boleh berfungsi dengan lebih baik 
di dalam situasi yang mana. Banyak kajian telah dibuat untuk membandingkan pengawal 
mengenai seni bina, kecekapan dan ciri-ciri pengawal. Tetapi dalam kertas kerja ini, 
penilaian berdasarkan beberapa parameter rangkaian QoS dilakukan. Dua pengawal yang 
paling popular, Floodlight dan OpenDaylight dibandingkan dari segi kelewatan dan 
kehilangan di dalam topologi dan muatan rangkaian yang berbeza. Kertas kerja ini boleh 
membantu para penyelidik untuk memilih pengawal yang terbaik dalam kes penggunaan 
yang berbeza seperti awan dan multimedia. Keputusan mempunyai 95% interval 
keyakinan menunjukkan bahawa prestasi OpenDaylight melebihi pencapaian Floodlight 
dalam rangkaian muatan rendah dan juga untuk topologi pokok dalam rangkaian muatan 
pertengahan dari segi kependaman. Floodlight boleh mengatasi prestasi OpenDaylight 
dalam rangkaian muatan berat untuk topologi pokok dari segi kehilangan paket dan 
dalam topologi linear dari segi kependaman. Tidak ada perbezaan yang signifikan dalam 
prestasi pengawal Floodlight dan OpenDaylight dalam kes-kes lain. 

KEYWORDS: floodlight; mininet; opendaylight; SDN  



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 48

1.   INTRODUCTION  
The idea of programmable networks was introduced to meet the challenges that were 

faced by traditional networks and to facilitate network evolution. As a result, Software 
Defined Networking (SDN) is a new paradigm that revolutionized traditional network 
architecture [1]. Actually, SDN is a framework for automatically controlling large devices, 
services, topologies, traffic paths, policies, and APIs in a network [1]. The main idea of 
SDN is related to the physical separation of two parts of the networks: the control plane 
and data plane. The control plane is separated from the data plane and is moved to a 
centralized server called the controller. This decoupling abstracts infrastructure from 
applications and causes flexibility, programmability, cost efficiency, and novel network 
architecture. In this case, the main role of a controller is to set up rules or make decisions 
for packets and the main role of data plane is to direct or forward packets based on the 
rules coming from controller. The controller is the intelligent part of network and the data 
plane is the slave to the controller’s orders. Southbound and northbound interfaces are two 
other components in a software defined network. A southbound interface connects 
switches (data plane) to the controller and a northbound interface offers APIs for network 
controlling and services [2]. One of the most famous implementations of the southbound 
interface is OpenFlow [3] protocol. According to [3, 4] OpenFlow is an open interface that 
is used to control the forwarding tables remotely in switches, routers, and access points. 
Many controllers are developed based on OpenFlow such as POX [5], NOX [6], Beacon 
[7], OpenDaylight [8], Floodlight [9] and so many others. Choosing the best controller can 
be problematic for network administrators and researchers. There are existing works to 
compare controllers in architectural and efficiency aspects such as scalability and 
availability, and also from the feature parameters viewpoint such as productivity, 
language, and Interface and platform support. In this paper, two common controllers, 
Floodlight and OpenDaylight, are compared to each other using Mininet [10], an SDN 
emulator, in terms of QoS parameters such as delay and loss. The comparison is done for 
different topologies and network loads. The results can help to choose the best controller 
for networks that have QoS requirements, such as networks that carry multimedia traffic, 
or for other special use cases, such as datacenters and clouds. 

The rest of this paper is organized as follows: In Section 2 related works are 
presented. Section 3 introduces the controllers that are compared in this paper. There is 
also a short introduction to Mininet and its supported topologies in this section. Emulation 
and analysis are presented in Section 4. The motivation for this, and future, works are 
discussed in Section 5. Finally, Section 6 concludes the paper.  

2.   RELATED WORKS   
In recent years, many works have been done to compare SDN controllers, a review of 

some of which is presented in this section. In [11], four open-source OpenFlow controllers 
including NOX, Beacon, Maestro, and Floodlight, were compared from architectural 
aspects, on a shared memory multi-core machine. Four key performance bottlenecks are 
considered, including multi-core support, switch partitioning, packet batching, and task 
batching. Architectural designs, including static switch partitioning and static batching are 
employed by Beacon, NOX-MT, and Floodlight, while shared-queue and adaptive-
batching are employed by Maestro. The performance evaluation results show that static 
switch partitioning and packet batching designs are best for controllers in high throughput 
networks.  Packet batching and task batching designs are good for controllers with delay-
sensitive control plane applications. The results also show that sending control messages 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 49

out individually can improve the latency performance. Based on these results, a controller 
was proposed whose performance was better than the compared controllers. 

In [12], five controllers named POX, Ryu, Trema, Floodlight, and OpenDaylight are 
compared to each other. According to Khondoker et al. [12], choosing a controller is a 
Multi-Criteria Decision Making (MCDM) problem because several properties of a 
controller are important for users. The authors chose an Analytic Hierarchy Process (AHP) 
in management science because of pair-wise prioritization and an integrated consistency 
checking mechanism [12]. POX, Ryu, Trema, Floodlight, and OpenDaylight were 
compared based on available interfaces, supporting of virtual switching, GUI, supporting 
of REST API, productivity, being open source, having documentation, age, modularity, 
supporting language, platform, TLS, OpenFlow and OpenStack networking. The results 
show that Ryu got the best value (0.287) in this priority vector. Floodlight, OpenDaylight, 
Trema, and Pox got the next best results respectively. It is noticeable that the priority 
vector values of Floodlight and OpenDaylight (0.275, 0.265) were very close to that of 
Ryu. 

Shalimov et al. [13] proposed a method to test and compare different open-source 
SDN/OpenFlow controllers including NOX, POX, Beacon, Floodlight, Mul, Maestro, and 
Ryu. Performance metrics including throughput and latency, scalability, reliability, and 
security were considered for comparison. The test of scalability and performance were 
done with Cbench. Reliability and security test were performed with hcprobe. In three 
experiments of finding average throughput with different number of threads, different 
number of switches, and different number of hosts, Beacon achieved the maximum 
throughput. For the average response time of controllers with 105 hosts, Mul, Beacon and 
Floodlight achieved minimum latency. In determining reliability between controllers, all 
except Mul and Maestro coped with the test load. For security measurements, five tests 
were performed including incorrect message length, invalid OpenFlow version, incorrect 
OpenFlow message type, malformed packet-In message, and malformed port status 
message. Ryu best coped with these four cases across these five tests.  

Al-Somaidai and Yahya [14] discussed five different versions of OpenFlow switch 
standard including 1.0, 1.1, 1.2, 1.3 and 1.4, four different platforms for simulation and 
emulation of SDN including Mininet, EstiNet, NS-3 and Trema, seven types of controllers 
including NOX, POX, Floodlight, OpenDaylight, Ryu, Mul and Beacon, and also different 
switch software and tools. They mentioned floodlight and OpenDaylight as the controllers 
with good documentation and flexibility. 

Kaur et al. [15] used POX controller and Mininet to emulate a SDN and verified the 
behavior of network applications in POX. Also, the top five controllers including POX, 
Ryu, Trema, Floodlight, and OpenDaylight were compared to each other with six features 
including language support, OpenFlow support, being open-source, having a GUI and 
REST API, and also platform support. 

Govindraj et al. [16] stated that in the comparison of different switches, OpenFlow 
based switching provides load balancing and reduces bandwidth wastage (due to use of the 
loop-free topology), so that this kind of switch has better utilization in data centers and 
enterprises. They also concluded that the usability of OpenFlow can be increased. Several 
other comprehensive SDN surveys [17-19] are available. 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 50

3.   FLOODLIGHT, OPENDAYLIGHT AND MININET 
As presented in section 2, many works have been done to compare SDN controllers. 

Among the controllers, Floodlight and OpenDaylight were two controllers with closely 
similar results. Also recently, these controllers were the focus of more research and papers 
than other controllers, especially in Cloud computing, QoS, and Multimedia fields. The 
performance of these controllers were compared in terms of network QoS parameters 
using Mininet. In this section, Floodlight and OpenDaylight are reviewed and also a short 
introduction to Mininet is presented. 

3.1  Floodlight 
This controller is based on the Beacon controller from Stanford University and works 

with physical and virtual OpenFlow switches. Some of the features of this controller are as 
follows: apache-licensed, Java-based (non-OSGI), modular, event-driven, asynchronous 
application framework, thread-based, and using a synchronized lock. Components of this 
controller are topology management, use for discovery of both OpenFlow and non-
OpenFlow endpoints (LLDP), device management including MAC and IP tracking, path 
computation, infrastructure for web access which is used for management, counter store 
used for OpenFlow, BigDB (NoSQL, Cassandra-based database) and Quantum plug-in 
that causes interoperation with element agents supporting OpenFlow. These components 
are loadable services; and Floodlight Provider is the core module that handles inputs and 
outputs receives from and sends to switches. This module also translates OpenFlow 
messages into Floodlight events. There are REST APIs in controller for getting and setting 
the controller’s state, event notification systems, and passing emitted events by Java Event 
Listeners. Floodlight also has sample applications including learning switch, hub 
application and static flow pusher, Firewall and load balancer [9]. 

3.2  OpenDaylight 
In 2013, the OpenDaylight Project consortium was formed as a Linux Foundation 

project. This controller creates a de facto northbound API standard so that different 
southbound protocols, like OpenFlow, I2RS, and NETCONF can be programmed. Some 
of the features of this controller are as follows: Java-based (OSGI), modular, pluggable 
and supporting of multiple southbound protocols. OpenDaylight supports the 
programming of a bidirectional REST and OSGI framework that supports applications 
running in the same address space as the controller. Internal and external requests for 
services will be mapped by a service abstraction layer to the appropriate southbound plug-
in and a basic service abstraction that higher-level services are built upon, will be 
provided; this feature depends on the capabilities of the plug-ins. Topology abstraction and 
discovery, PCE-P (and CSPF), OpenFlow, I2RS (as it evolves), and NETCONF are other 
built-in services within in OpenDaylight [8]. According to [8, 9, 12] a comparison of these 
two controllers is done and shown in Table 1. 

3.3   Mininet 
Mininet is a network emulator, which has been used by developers, teachers, and 

researchers to create virtual networks and SDN implementation. It was developed by the 
Mininet Team to run controllers, switches, and hosts in a virtual network on a single 
machine. The default topology in Mininet consists of an OpenFlow kernel switch 
connected to two hosts and an OpenFlow controller. Hosts on Mininet are able to run 
underlying Linux and file system commands [10]. For example, “ipref” parses bandwidth 
between a client and server and “topo” makes topologies with the Python API for custom 
virtual networks. There are also three predefined common topologies in Mininet which are  



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 51

Table 1:  A comparison of Floodlight and OpenDaylight [8, 9, 12] 

Feature Floodlight OpenDaylight 
Developer Big Switch Networks Linux Foundation 

Supporters Big Switch Networks Cisco, HP, IBM , Juniper, 
VMWare, etc. 

Written language Java Java 
Supporting language Java, Python and any language 

supports Rest API 
Java 

REST API Yes Yes 
OpenStack networking 

(Quantum) 
Yes Yes 

TLS supporting Yes Yes 
Open-source Yes Yes 
OF version Full support for 1.0 and 1.3, 

experimental support for OpenFlow 
1.1 and 1.2 

1.0 , 1.3 

User interface web, Java Web 
Interfaces southbound (OpenFlow), northbound 

(Java, REST) 
southbound (OpenFlow and 

other SB protocols), northbound 
(Java RPC, REST) 

Virtualization Mininet, OpenVswitch Mininet, OpenVswitch 
Platform Linux, Mac, Windows Linux, Windows 

Active community Yes Yes 
Age 4 years 3 years 

Documentation Good (documentations exist in 
official website or other developers 

sites) 

Medium 

Mailing list activity Very high Medium 
Handling mixed none-

OpenFlow and OpenFlow 
networks 

Yes Yes 

Installation Very easy Easy 
Loop supporting Topologies Topologies and OF islands 

 

  

 
  (a) Single topology (b) Linear topology (c) Tree topology 
 

Fig. 1: Three common topologies in Mininet. 

presented in Fig. 1: single, linear, and tree. A single topology has 1 controller, 1 switch, 
and a definable number of hosts. A linear topology has serial connections with definable 
number of switches and hosts. A tree topology consists of multiple topology levels with a 
definable number of levels (depth and fan-out). Remote controllers also can be used in 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 52

Mininet. Therefore, a virtual network will be connecting to any remote controller in VM, 
local machine, or anywhere else. Some other advantages of using Mininet are system-level 
regression test supporting, complex topology testing and CLI which is topology-aware and 
OpenFlow-aware. Developed code for an OpenFlow controller, modified switch, or host 
on Mininet, can move to a real system with minimal deployment. So a network design in 
Mininet can usually move directly to hardware switches for line-rate packet forwarding 
[10]. 

4.   PERFORMANCE EVALUATION 
All network instances were installed and implemented on Ubuntu 14.0.4 with 4 GB 

RAM. Native installation from Source on Ubuntu is considered for Mininet installation. 
Floodlight and OpenDaylight both supports OpenFlow version 1.3. OpenVswitch 2.0.1 
with link status of up to 10 Mbps FDX is used as OpenFlow switches. Number of switches 
and hosts considered for each topology is shown in Table 2. Three different scenarios for 
each topology are considered. In the first scenario, no cross traffic was generated; while in 
the second scenario, nearly half of the bandwidth was cross traffic; and in third scenario, 
almost the whole bandwidth was filled with cross traffic. Each scenario was repeated 10 
times. To have a near-real experience, the production of some cross traffic was based on 
different rates of YouTube video transmission for H264 [20] and Skype video 
conferencing [21]. Other cross traffic production was on a random basis to simulate any 
other traffic which can exist in a network. 

  Table 2:  Number of switches and hosts in single, linear and tree topology 

Topology 
Number of 

Switch Host 
Single 1 8 
Linear 8 8 

Tree (depth=3 , fan-out=2) 7 8 

The general network QoS parameters are: 

 Latency: Also known as delay, is the amount of time that it takes for a packet to 
travel along the network from source to destination. 

 Jitter: The variation of latency. 
 Loss: The percentage of packets that failed to reach their destination. Packet 

loss ratio is measured in percentage of total packets as in Eq. (1).   

푝푎푐푘푒푡 푙표푠푠 푟푎푡푖표 = 푛푢푚푏푒푟 표푓 푝푎푐푘푒푡푠 푙표푠푡 푛푢푚푏푒푟 표푓 푝푎푐푘푒푡푠 푠푒푛푡⁄  (1) 

 Throughput: The ability of network to carry a volume of data over a unit of time 
[22]. 

 Throughput is related to network bandwidth (which is 10 Mbps in all scenarios of this 
paper) and loss ratio. Jitter can also be calculated using latency values. Hence, the other 
two network QoS parameters are considered for evaluating controllers. 

Since, each scenario was repeated 10 times (less than 30), so the table should be used 
for confidence interval calculation. Mean difference (푥̅) was calculated and then a 95% 
Confidence Interval (with a confidence level of α=0.05) of mean difference was 
determined by use of Eq. (2), where (1 - α/2) is 0.97 and the freedom degree (n – 1) is 9; 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 53

so based on the table, t[0.97, 9] should be used. If the CI range includes zero, it means that 
two controllers have the same performance [23]. 

(푥̅ − 푡 ∝ ;  푠 √푛⁄  , 푥̅+푡[ ∝ ; ] 푠 √푛⁄ )        (2) 

Tables 3 to 5 show the latency in each scenario. The exact comparison of these two 
controllers with 95% confidence intervals, are also shown in the last row of each table.  In 
all topologies, latency of a specific flow between host 1 and host 8 is measured. There is 
no packet loss in first and second scenarios. 

Table 3:  Latency with no cross traffic (low load network) 

 Single Linear Tree 

Min (ms) 
Floodlight 0.079 0.221 0.077 

OpenDaylight 0.078 0.221 0.116 

Max (ms) 
Floodlight 9.593 78.808 9.767 

OpenDaylight 1.824 11.848 2.078 

Average 
(ms) 

Floodlight 0.476 3.279 0.545 
OpenDaylight 0.1 88 0.749 0.254 

  CI of Averages Difference (0.278, 0.298) (1.83, 3.22) (0.219, 0.363) 

 
Table 4:  Latency with half of the bandwidth cross traffic (mid load network) 

 Single Linear Tree 

Min (ms) 
Floodlight 0.409 1.8 2.244 

OpenDaylight 0.418 2.013 0.577 

Max (ms) 
Floodlight 15.142 302.562 134.093 

OpenDaylight 10.99 253.266 17.107 

Average 
(ms) 

Floodlight 2.31 52.778 16.38 
OpenDaylight 2.019 45.831 3.656 

  CI of Averages Difference (-0.393, 0.975) (-3.246, 17.139) (10.124, 15.32) 

 

Table 5:  Latency with almost full bandwidth cross traffic (high load network) 

 Single Linear Tree 

Min (ms) 
Floodlight 1171.316 1143.583 1065.705 

OpenDaylight 1165.575 1159.357 1205.207 

Max (ms) 
Floodlight 1357.046 1488.846 1634.719 

OpenDaylight 1450.293 1995.651 1235.842 

Average 
(ms) 

Floodlight 1232.739 1306.647 1235.627 
OpenDaylight 1213.287 1623.714 1212.662 

  CI of Averages Difference (-7.802, 46.706) (-409.314, -224.793) (-16.609, 62.539) 
 

According to Table 3, maximum latencies in all three topologies belong to Floodlight, 
but there is no significant difference between the results for minimum latency. Maximum 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 54

latency in Table 3 is related to the first packet received by switch which has no entry in its 
forwarding table for the flow. It is noticeable that maximum latency in Floodlight is much 
more than OpenDaylight, it means that Floodlight needs more time to find the route and 
send a decision for newly arriving flows. As the average latencies and their 95% 
confidence intervals in Table 3 show, networks that use Floodlight as their controller have 
more latency while the traffic is low. 

Besides the actual function of each controller among a solitude network, Floodlight 
and OpenDaylight must be responsible against a populated network.  A traffic generator is 
used to generate large traffic (5 Mbps for mid loaded network and about 10 Mbps for high 
loaded network). Unlike the fact that the maximum latency in Table 3 is related to finding 
an action for the first packet by the Floodlight and OpenDaylight controllers, the 
maximum latency measurement in Table 4 and Table 5 is about a time that network traffic 
is high. According to Table 4, for mid loaded networks, in single and linear topologies, 
with 95% confidence intervals there is no difference in the latency results for Floodlight 
and OpenDaylight and both act the same because their CI of average latencies difference, 
includes zero. In a more complicated topology (tree topology), the network with the 
OpenDaylight controller has less latency. For the heavily loaded network, according to 
Table 5, there is no significant difference in single and tree topologies, while in linear 
topology, Floodlight achieves less latency and acts faster. It is also noticeable that packet 
loss happened only in the heavy loaded network and there is no packet loss in low and mid 
load networks. The loss in heavy network happened at time when bandwidth was 
becoming full and caused congestion. The packet loss results are shown in Table 6.  

Table 6:  Average loss Measurements in high load network 

 Single Linear Tree 

Floodlight 41.6 41.3 34.4 

OpenDaylight 15.8 32.4 47.2 
CI of Averages Difference (15.659, 35.941) (-5.397, 23.197) (-25.349, -0.251) 

 
Table 7:  Best controller in different situations 

 Latency Loss (high load network) 
Single Low load OpenDaylight (2.5 times better) OpenDaylight (2.6 times better) 

Mid load Same 
Heavy load Same 

Linear Low load OpenDaylight (4.4 times better) Same 

Mid load Same 
Heavy load Floodlight (1.2 times better) 

Tree Low load OpenDaylight (2.1 times better) Floodlight (1.4 times better) 
Mid load OpenDaylight (4.5 times better) 

Heavy load Same 

5.   MOTIVATION AND FUTURE WORKS 
Recently SDN has attracted researchers’ attention as an emerging network 

architecture that can resolve today’s network issues in different cases such as multimedia 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 55

QoS and cloud and datacenter management. Many papers and research for different use 
cases has been done using different controllers, among them OpenDaylight and Floodlight 
were the most popular controllers. Despite this research, there is still a question of which 
controller can perform better in which situations or use cases. According to features listed 
in Table 1 it is difficult to decide which controller is really better unless one exact feature, 
such as supporting non-OpenFlow southbound interfaces, is needed. Therefore, in this 
paper, these two controllers were compared in terms of network parameters like latency 
and loss. The comparison was done in three kinds of topology and different network loads. 
As Table 7 shows, the results can be summarized as bellow: 

(a) OpenDaylight can perform better in networks with low load for any kinds of 
topology.  

(b) Both controllers act the same while the network load is about 50% of actual 
bandwidth, except for the tree topology where OpenDaylight outperforms 
Floodlight. 

(c) For networks with heavy traffic, OpenDaylight outperforms Floodlight only in the 
single topology because of its better performance in terms of loss. 

(d) For networks with heavy traffic, Floodlight can have a better performance than 
OpenDaylight for linear and tree topologies due to less latency and loss. 

(e) OpenDaylight is a better choice for single topologies with various network loads. 
(f) Floodlight is a better choice for linear topologies with various network loads. 

(g) Floodlight is a better choice for tree topologies with heavy network loads and traffic 
sensitive to loss, such as video and voice. 

(h) OpenDaylight is a better choice for tree topologies with various network loads 
except for traffic that is sensitive to loss. 

According to these results, one can choose the best controller based on the network’s 
features. For example, in data centers and clouds, tree topologies are used. According to 
(g) and (h) results which are about the performance of controllers in tree topology, 
OpenDaylight can be a better choice if a module/service for improving its performance in 
terms of loss being added to it. In another case, Floodlight can be the best controller if a 
QoS module for improving latency is added to it.  

For future work, the number of switches each controller can manage at the same time 
in different network loads will be tested. The future results, alongside this paper’s results 
and other features of the controllers, can help to make an optimized decision for choosing 
the best controller. 

6.   CONCLUSION 
Floodlight and OpenDaylight are two common controllers among SDN controllers. 

Each of these two controllers is modular and could be programmed for new network 
services. They are both open-source with support Java language. There are also some 
differences between Floodlight and OpenDaylight. Floodlight has a Java-based user 
interface while OpenDaylight supports non-OpenFlow control protocols and provides an 
abstraction layer, above south-bound protocols. There are works done to compare 
controllers in architectural and efficiency aspects such as scalability and availability and 
also from the feature point of view. In this paper, network latency and packet loss for 
Floodlight and OpenDaylight are measured in Single, linear and tree topologies, in various 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 56

traffic loads. The results with 95% confidence interval show that the controllers have a 
competitive behavior. There are situations where both controllers perform the same. There 
are situations where networks with OpenDaylight have better latency, such as in tree 
topology for a network with half of bandwidth traffic, while floodlight can outperform 
OpenDaylight in terms of packet loss in heavy loaded network in tree topology. 
Comparing of these two controllers in more complicated topologies and with respect to the 
number of switches they can manage is considered for future work. 

REFERENCES  
[1] Azodolmolky S. (2013) Software defined networking with OpenFlow. Packet Publishing 

Ltd, UK. 
[2] Nadeau TD, Gray K. (2013) SDN: Software Defined Networks. O'Reilly Media Inc., USA. 
[3] Pfaff B, Lantz B, Heller B. (2012) OpenFlow switch specification version 1.3.0. Open 

Networking Foundation,  http://www-bcf.usc.edu/~minlanyu/teach/csci599-
fall12/papers/openflow-spec-v1.3.0.pdf (2012). Accessed September 2015 

[4] Open Networking Foundation (2012) Software-Defined Networking: The new norm for 
networks. ONF White Paper, https://www.opennetworking.org/images/stories/downloads/ 
sdn-resources/white-papers/wp-sdn-newnorm.pdf. Accessed September 2015 

[5] Mccauley J. (2014) Pox: A python-based Openflow controller. POX.   
http://www.noxrepo.org/pox/about-pox, Accessed: September 2015 

[6] Gude V, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, et al. (2008) NOX: towards 
an operating system for networks. ACM SIGCOMM Comp. Comm. Rev., 38(3):105-110. 

[7] Erickson D. (2013) The Beacon Openflow Controller. Proceedings of the second ACM 
SIGCOMM workshop on Hot topics in software defined networking, 13-18. 

[8] OpenDaylight: Open Source Programmable Networking Platform (2015) OpenDaylight, a 
Linux Foundation Collaborative Project, http://www.opendaylight.org/software. Accessed: 
September 2015. 

[9] Floodlight is an Open SDN Controller. (2015) Project Floodlight.  
http://www.projectfloodlight.org/Floodlight. Accessed: September 2015. 

[10] Mininet an instant virtual network on your laptop (or other PC) (2015). Mininet Team. 
http://Mininet.org. Accessed: September 2015. 

[11] Shah SA, Faiz J, Farooq M, Shafi A, Mehdi SA. (2013) An architectural evaluation of SDN 
controllers. Communications (ICC) 2013 IEEE International Conference, 3504-3508.  

[12] Khondoker R, Zaalouk A, Marx R, Bayarou A. (2014) Feature-based comparison and 
Selection of Software Defined Networking (SDN) Controllers”, World Congress on IEEE 
on Computer Applications and Information Systems (WCCAIS), 1-7 

[13] Shalimov A, Zuikov D, Zimarina D, Pashkov V, Smeliansky R. (2013) Advanced study of 
SDN/OpenFlow controllers. Proceedings of the 9th Central & Eastern European Software 
Engineering Conference, ACM, 1-6. 

[14] Al-Somaidai MB, Yahya E. (2014) Survey of software components to emulate OpenFlow 
protocol as an SDN implementation. Am. J. Software Engin. Appl., 3(6):74-82.  

[15] Kaur S, Singh J, Ghumman NS. (2014) Network programmability using POX controller. 
http://sbsstc.ac.in/icccs2014/Papers/Paper28.pdf. Accessed: September 2015 

[16] Govindraj S, Jayaraman A, Khanna N, Prakash KR. (2012). OpenFlow, load balancing in 
enterprise networks using Floodlight controller; University of Colorado;  
http://morse.colorado.edu/~tlen5710/12s. Accessed: September 2015 

[17] Kreutz D, Ramos F, Verissimo P, Rothenberg CE, Azodolmolky S, Uhlig S. (2014) 
Software-Defined Networking: A comprehensive survey. Proceeding of the IEEE, 103(1): 
14-76  

[18] Mendonca M, Nunes BA, Nguyen X, Obraczka K, Turletti T. (2014) A survey of Software-
Defined Networking: Past, present, and future of programmable networks. Comm. Surveys 
& Tutorials, IEEE, 16(3):1617-1634.  



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Rowshanrad et al. 

 57

[19] Lara A, Kolasani A, Ramamurthy B. (2014) Network innovation using Openflow: A survey. 
Comm. Surveys & Tutorials, IEEE, 16(1): 493-512.  

[20] YouTube advanced encoding settings. (2013) Available online:  
https://support.google.com/youtube/answer/1722171?hl=en, Accessed: September 2015 

[21] How much bandwidth does skype needs? (2015) Available online:  
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need, 
Accessed: September 2015 

[22] De Gouveia F, Magedanz T. (2002) Quality of service in telecommunication 
network. Telecommunication System and Tchnologies, Encyclopeida of Life Support 
Systems(EOLSS). 

[23] Jain R. (2008) The art of computer systems performance analysis. John Wiley & Sons, 
Littleton, Massachusetts. 

 


