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ABSTRACT: Retinal damage caused due to complications of diabetes is known as a 
Diabetic Retinopathy (DR). In this case, the vision is obscured due to damage of tiny 
retinal blood vessels. These tiny blood vessels may cause leakage that affect the vision 
and can lead to complete blindness. Identification of these new retinal vessels and their 
structure is an essential for analysis of DR. Automatic blood vessel segmentation plays a 
significant role to assist subsequent automatic methodologies that aid to such analysis. In 
literature, most authors have used computationally-hungry strong preprocessing steps 
followed by a simple thresholding and postprocessing steps. This paper proposed an 
arrangement of simple preprocessing steps that consist of Contrast Limited Adaptive 
Histogram Equalization (CLAHE) for contrast enhancement and a difference image of 
green channel from its Gaussian blur filtered image to remove local noise or geometrical 
objects. The proposed Modified Iterative Self Organizing Data Analysis Technique 
(MISODATA) has been used for segmentation of vessel and non-vessel pixels based on 
global and local thresholding. Finally, postprocessing steps have been applied using 
region properties (area, eccentricity) to eliminate the unwanted regions/segments, non-
vessel pixels, and noise. A novel postprocessing steps are used to reject misclassified 
foreground pixels. The strategy has been tested on the openly accessible DRIVE (Digital 
Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the REtina) 
databases. The average accuracy rates of 0.952 and 0.957 with average sensitivity rates 
0.780 and 0.745 along with average specificity rates of 0.972 and 0.974 were obtained on 
DRIVE and STARE datasets, respectively. The performance of the proposed technique 
has been assessed comprehensively. The acquired accuracy, robustness, low complexity, 
and high efficiency make the method an efficient tool for an automatic retinal image 
analysis. The proposed technique perform well as compared to the existing strategies on 
the online available databases in term of accuracy, sensitivity, specificity, false positive 
rate, true positive rate, and area under receiver operating characteristic (ROC) curve.  

ABSTRAK: Kerosakan retina yang disebabkan oleh komplikasi diabetes dikenali 
sebagai Diabetic Retinopathy (DR). Dalam kes ini, penglihatan menjadi kabur 
disebabkan oleh kerosakan saluran darah kecil retina. Saluran darah kecil boleh 
menyebabkan ketirisan yang menjejaskan penglihatan dan boleh mengakibatkan buta 
sepenuhnya. Mengenal pasti saluran retina baru dan struktur mereka adalah penting 
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untuk DR analisis. Segmentasi saluran darah secara automatik memainkan peranan 
penting untuk membantu kaedah automatik berikutnya dan ini akan membantu analisis 
tersebut. Dalam literatur, kebanyakan orang telah menggunakan pengiraan langkah pra 
pemprosesan yang kuat diikuti dengan langkah ambang dan pos pemprosesan yang 
mudah. Kami mencadangkan susunan langkah pra pemprosesan mudah yang terdiri 
daripada Contrast Limited Adaptive Histogram Equalization (CLAHE) untuk 
mempertingkatkan kontras dan imej perbezaan saluran hijau daripada imej kabur 
Gaussian yang ditapis untuk membuang bunyi tempatan atau objek geometri. Modified 
Iterative Self Organizing Data Analysis Teknik (MISODATA) yang dicadangkan telah 
digunakan dalam membuat segmentasi piksel saluran dan bukan-saluran berdasarkan 
pengambangan global dan tempatan. Akhir sekali, langkah pos pemprosesan telah 
digunakan dengan menggunakan ciri-ciri kawasan (kawasan, kesipian) untuk 
menghapuskan wilayah / segmen, piksel bukan saluran dan bunyi bising yang tidak 
diingini. Kami telah menggunakan langkah pos pemprosesan baru untuk menolak piksel 
latar depan yang silap dikelaskan. Strategi ini telah diuji pada pangkalan data terbuka 
yang boleh diakses iaitu DRIVE (Digital Retinal Images for Vessel Extraction) dan Stare 
(STructured Analysis of the REtina). Kadar purata ketepatan 0.952 dan 0.957 dengan 
kadar purata sensitiviti 0.780 dan 0.745 bersama dengan kadar purata kekhususan 0.972 
dan 0.974 telah diperolehi pada DRIVE dan Stare dataset, masing-masing. Prestasi 
teknik yang dicadangkan itu telah dinilai secara menyeluruh. Ketepatan yang diperolehi, 
kekukuhannya, kerumitan yang rendah dan kecekapan yang tinggi membuat kaedah ini 
alat yang berkesan untuk analisis imej retina automatik. Teknik yang dicadangkan 
menunjukkan prestasi yang baik berbanding dengan strategi tersedia ada pada pangkalan 
data dalam talian terkini dari segi ketepatan, kepekaan, kekhususan, kadar positif palsu, 
kadar positif benar dan kawasan di bawah lengkungan ciri operasi penerima (ROC).  

KEYWORDS: vessel segmentation; fundus imaging; denoising; drive; stare;  
diabetic retinopathy  

1.   INTRODUCTION  
Retinal blood vessel segmentation mainly focuses on the presence of the DR illness. 

Retinal anomalies are commonly caused by DR and hypertensive retinopathy, which are 
the significant reasons for visual deficiency and impairment these days. To analyze retinal 
variation, fundus imaging is progressively used as a part of the screening process. The 
retinal vein elements like microaneurysms, scratching, and narrowing have been 
connected to the systemic sickness of retinopathy in its earliest stages [1]. Visual 
deficiency usually caused by DR is irreversible even a recuperation procedure would not 
enable the patient to have earlier vision capacity. Consequently, the early identification of 
DR on a retinal image will save the patient from having irreversible visual impairment. 

Segmentation is considered one of the fundamental stages in an image processing. It 
divides a digital image into numerous locales to make it easy for investigation. Analysis of 
the retinal veins can uncover early phases of cardiovascular ailment, hypertension, 
arteriosclerosis, diabetes, and stroke [2]. It alerts patients, enabling them to take 
anticipatory measures when the infection is in its initial stages. It is additionally used to 
recognize objects in an image of diverse nature. Object shape, edges, and correlation are 
three principle factors that impact segmentation of an object in the image. Object edges 
and object correlation is greatly influenced by noise or reproduction artifacts because they 
land on image attributes. Moreover, they are methodology dependent parameters. The 
advancement of image segmentation techniques are influenced by the knowledge of object 
shape, object correlation, and object edges. Segmentation methods attempt to identify 
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edges and correlated areas in the images and consolidate shape data to confine the 
subsequent state segmentation more precisely [3]. 

Retinal images permit doctors to examine the retina and its inside segments, including 
the optic disk, vasculature, fovea, and so on [4]. Retinal veins provide data that is very 
helpful in a few applications such as restorative analysis and sorting of cardiovascular and 
ophthalmological ailments. The vessel segmentation can be utilized to portray 
hypertensive retinopathy along with the estimation of vessel width, which is used to 
analyze hypertension [5]. Symptoms of DR can be detected by changes in the vasculature 
distribution [4]. In addition, vessels are utilized to help laser surgeries [6] and can be used 
as landmark for image registration [7]. Retinal vessel segmentation is necessary for all of 
these operations.  

In the typical scenario, trained experts do manual segmentation [2]. However, retinal 
blood vessel segmentation requires training and expertise to be manually segmented, 
which is also a tediously prolonged and exhausting task. It is usually acknowledged by 
medical experts that an automatic detection of vessels structure is the initial phase in the 
improvement of a computer-assisted indicative framework for ophthalmic problems. The 
performance can be examined by accuracy (Acc), specificity (Sp), sensitivity (Sn) and 
ROC curve on the distinctive databases like DRIVE and STARE. Therefore, a retinal 
vessels segmentation approach that is accurate and presents shorter computation time is 
necessary for denoising images in order to recognize DR and other ophthalmologic 
illnesses.  

2.   RELATED WORK 
The automatic discovery of retinal vessels structure is an essential in the improvement 

of automated framework for the scrutiny of vasculature distribution. A mechanism, which 
can be utilized to help with the conclusion of DR and ought to consequently recognize all 
retinal image elements is necessary. The retinal image elements are optic disk, blood 
vessels, fovea, and all irregularities in the retinal image, which can be microaneurysms, 
cotton-wool spots, edema, and hemorrhages [8].  

Automatic segmentation of retinal fundus images is considered one of the basic steps 
of vessel extraction from background. Bad quality retinal images having some noise, 
variable width of vessels, and changes of brightness which make segmentation a 
challenging task. Vessel structure in retinal fundus images can be extracted by numerous 
vessel detection techniques that have already been suggested in literature [8, 9]. These 
techniques can be comprehensively partitioned into supervised and unsupervised 
classifications. Supervised strategies segregate between vessel and non-vessel pixels using 
pixel-based attribute vectors to train a classifier, while unsupervised techniques do not 
utilize classifiers but depend on thresholding filter responses to reduce false responses to 
online edges [10]. 

2.1  Supervised Methods 
The requirement for this methodology is that an arrangement of important 

distinguishing features must be extracted for training from good quality images. For 
example, Ricci and Perfetti [11] utilized Support Vector Machine (SVM) to learn a feature 
vector extraction. Becker et al. [12], presented supervised method to learn feature vector 
recognition utilizing gradient boosting framework. Neural network and Principal 
Component Analysis (PCA) concepts were utilized for pixel classification and edge 
detection respectively by Sinthanayothin et al. [13]. Green plane was used for feature 
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vector extraction of each pixel and k-Nearest Neighbor (kNN) was utilized to classify 
vessel pixels [14]. Staal et al. [15], proposed a primitive-based supervised method to 
extract a feature vector for each pixel based on characteristics of the segments and the line 
components. The feature vectors were grouped utilizing a kNN and successive forward 
feature selection techniques. Soares et al. [16], used the pixel’s intensity to extract a 
feature vector and two-dimensional (2D) Gabor wavelet transform was used to separate 
true positive and false positive pixels with the final segmentation by a Gaussian Mixture 
Model (GMM) classifier. In [17], various concavity modeling approaches were used for 
blood vessel segmentation. Bright lesions were handled by techniques utilizing 
differentiable concavity measures where dark scrapes were removed by line-shape 
concavity measures and random noise was managed by locally normalized concavity 
measures. These concavity measures were consolidated together as per their statistical 
distributions to distinguish vessel and non-vessel pixels. Joshi et al. [18], presented an 
automated technique for detection and segregation of retinal vessel structure using a graph 
search method. 

2.2  Unsupervised Methods 
In comparison, unsupervised techniques perform the segmentation of retinal vessels 

without utilizing trained information, or any classification methods. This class 
incorporates most segmentation methods in the literature. For instance, in [19], the authors 
proposed an active contour model to detect vessel borders and sustain vessel width 
consistency. Zhang et al. [20], learned a multi-dimensional feature vector by 
morphological operation, pixel clustering by Self Organizing Map (SOM), and 
classification of vessel and non-vessel pixels through Otsu’s method. Lupaşcu and Tegolo 
[21], utilized SOM and a k-means clustering algorithm for training and division of map 
units. A hill-climbing strategy has been used for postprocessing of the segmented image. 
Chaudhuri et al. [22], presented a 2D matched filter using a Gaussian-shaped curve. They 
achieved very low average accuracy because of the low identification of retinal vessels. 
Hoover et al. [23], used local and global vessel characteristics collectively by applying a 
thresholding and matched filter response (MFR) to segment the vessel system. In [24], 
second order derivative Gaussian MFR has been used to find the centroid and vessel 
diameter, and an extended Kalman filter for excellent predication of subsequent vessel 
regions. Mendonca and Campilho [25], used outputs of four differential filters with 
morphological operators for centerline detection, vessel features and morphological 
characteristics for filling vessel structures. Zana and Klein [26], employed cross-curvature 
evaluation and morphological filters together to segment vessel structure. However, their 
presented method was inadequate to segment thinner vessels. In [27], retinal blood vessel 
segmentation has been performed by a multiscale feature extraction and region growing 
algorithm. Matinez-Perez et al. [28] utilized first and second-spatial derivatives of the 
image intensity that give details of vessel structure to control the inherent issue of contrast 
variations in these images. This approach additionally empowers the analysis of vessels of 
variable lengths, widths and orientations. Fraz et al. [29], used centerline detection 
techniques and morphological bit plane slicing for retinal vessel segmentation. Bankhead 
et al. [30], utilized wavelets and edge location refinement method for retinal vessel 
segmentation. Related works are summarized in Table 1. 
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Table 1: Classification of retinal vessel segmentation techniques. 

Method year Proposed 
methodology 

Performance 
parameters Limitations 

Ricci et al. 
[11] 

2007 Line operators and 
SVM 

Acc and AUC High false positive rate and 
inadequate for noise removal. 

Sinthanayothin 
et al. [13] 

1999 PCA and neural 
network 

Sn and Sp Inadequate for geometrical object 
e.g. fovea removal. Missed tiny 

blood vessels. 
Niemeijer et al. 

[14] 
2004 Pixel classification 

based on kNN-
classifier 

Acc and AUC Under-segmentation around the 
boundary of the optic disk. Smaller 

vessels not detected properly. 
Staal et al. [15] 2004 Image ridges and 

kNN-classifier 
Acc and AUC False detection of vessels at 

boundaries, optic disk and for 
pathological images. 

Soares et al. 
[16] 

2006 2D Gabor 
wavelet transform and 

GMM classifier 

Acc and AUC Incorrect recognition of noise and 
other artifacts. Unable to detect some 

of the thinnest vessels. Disregard 
useful information from shapes and 

structures present in the image. 
Lam et al. [17] 2010 Multiconcavity 

modeling 
Acc and AUC Lesion detection problem. 

Al-Diri et al. 
[19] 

2009 Ribbon of twin active 
contour model 

Sn and Sp Failed in edge identification and to 
accurately detect overlaps or closely 

parallel vessels. 
Zhang et al. 

[20] 
2015 Morphological 

operation and SOM 
Acc Need to test on STARE dataset and 

also must compute its Sp and AUC. 
Lupaşcu et al. 

[21] 
2010 SOM and k-means 

clustering 
Sn, Sp and Acc Greater time complexity. 

Chaudhuri  et 
al. [22] 

1989 2D Gaussian Matched 
Filter (MF) 

Acc and AUC False detection of edge on different 
retinal abnormal images. 

Hoover et al. 
[23] 

2000 Threshold probing and 
MF 

Sn, Sp and Acc Improvement in the vessel detection 
rate required. 

Mendonca et 
al. [25] 

2006 Detection of 
centerlines and 
morphological 
reconstruction 

Acc and AUC Under-segmentation of several vessel 
regions. False detection of vessels. 

Fractional, or complete, omission of 
thin vessel segments. 

Zana and Klein 
[26] 

2001 Mathematical 
morphology and 

curvature evaluation 

TPR, Acc and 
AUC 

It generates linked linear structures 
that are uncontaminated but not 

always connected to each other. Tiny 
vessels of low contrast are 
incompletely identified. 

Palomera-
Perez et al. 

[27] 

2010 Region growing 
technique and parallel 

multiscale 
implementation 

TPR, FPR  and 
Acc 

Not suitable for high resolution 
images. 

Martinez-Perez 
et al. [28] 

2007 Multiscale feature 
extraction, two 

geometric properties 
and region growing 

TPR, FPR and 
Acc 

Incapable to remove geometrical 
objects e.g. hemorrhages, 

microaneurysms in mixture with the 
detection of blood vessels. 

Fraz et al. [29] 2011 Bit planes and 
centerline detection 

TPR, FPR, Sp, 
Acc and Sn 

Not appropriate for pathological and 
those retinal images where arterioles 

show clear light reflexes e.g. in 
images of younger applicants. 

Bankhead et al. 
[30] 

2012 Wavelets and edge 
location refinement 

TPR, FPR and 
Acc 

If the image contrast diminishes then 
proper zero-crossings may not be 

detected at all areas along the vessel. 

Performance measures: Sn– sensitivity, Sp – specificity, Acc – accuracy, AUC – area under curve. FPR – 
false positive rate. TPR – true positive rate. 
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The work in this paper proposes a fast and precise unsupervised technique to identify and 
measure retinal vessels. The proposed method consists of CLAHE [31], modified 
ISODATA [32] and a novel postprocessing steps. CLAHE has been utilized to enhance 
the local contrast and prevent the uncorrelated areas in retinal image analysis. Further, 
MISODATA technique has been applied to find the global threshold of the entire image 
which is compared with the individual local threshold of each segment in order to detect 
vessels. Finally, postprocessing steps have been applied to obtain the resulting segmented 
image. The proposed method is demonstrated to be equipped for acquiring an enhanced 
state of accuracy and low estimation error both for low and high resolution images, as 
compared to other blood vessel segmentation techniques. 

3.   PROPOSED TECHNIQUE 
Retinal images are usually corrupted with noise due to illumination and contrast 

variation that make challenging the extraction of a vessel map. An efficient preprocessing 
method is required to fix this problem. This section illustrates distinctive preprocessing 
steps, thresholding techniques, and postprocessing steps to enhance and segment the 
retinal blood vessels. The flow diagram of the proposed technique is shown in Fig. 1. 

       
Fig. 1: Flowchart of the proposed method. 

 Input the RGB retinal image and extract the green channel of an input image. 
 Image localized contrast enhancement through CLAHE. 
 Take difference image of average filtered image and input image for removal of 

abnormalities/geometrical objects, e.g. optic disc, macula, and bigger structures. For 
an average filter, selected kernel size is more than vessel’s diameter size. This also 
makes the edges more prominent than the background. 

 Segmentation based on the implementation of MISODATA. 
 Execution of postprocessing using raster to vector transformation and then 

computation of area and eccentricity to scale down noise and non-vessel regions in 
order to obtain final binary retinal image. 
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3.1  Contrast Limited Adaptive Histogram Equalization (CLAHE) 
In retinal images, it is difficult to differentiate between intensity variations of vessel 

and non-vessel segments. In order to enhance the algorithm result, intensity transformation 
is applied to increase the intensity gap between vessel and non-vessel pixels. Contrast 
enhancement can be achieved in different ways e.g. Histogram Equalization (HE) [33], 
adjustment, equalization, contrast stretching [33], and local Adaptive Histogram 
Equalization (AHE) [34].  

AHE is a well-known contrast enhancement strategy for medical and natural images 
proposed by Pizer [34]. In its fundamental form, the histogram equalization of an image, 
each pixel is mapped on its surrounding pixels (its contextual region). This method is 
slow, and under particular conditions the enhanced image has unwanted components, as 
compared to its other counterparts. An advanced version of AHE known as CLAHE [31] 
is comparatively fast with better localized contrast results. CLAHE was initially designed 
for improvement of low contrast medical images [35]. CLAHE is implemented in the 
following way: 

 Specify a square neighborhood (block) to estimate the histogram in the local block. 
 Generate the transformation function by histogram equalization or specification 

 and perform the gray level mapping for each pixel. 
 Each time, the histogram can be updated without re-computing the histogram over 

all pixels in the new block. 
 Move the center of the block to an adjacent pixel position and repeat the process. 

The discrete approximation of the transformation function T for histogram 
equalization [33] is given by:                                                                         

s = T(r ) = p
 

r  (1) 

For 0 ≤ k ≤ L − 1, p r =  for j = 0, … … . . , L − 1 and n = ∑ n  where n  shows 
the number of pixels with gray levels r  and n is the total number of pixels. L represents 
gray levels. CLAHE differs from normal AHE in constraining the contrast enhancement. 
CLAHE uses a user-defined value called the clip limit to constrain enhancement by 
clipping the histogram [31]. The clipping level specifies the noise level to be smoothened 
and contrast level to be enhanced. 

3.2  Modified Iterative Self Organizing Data Analysis Technique (MISODATA) 
Before using MISODATA, a low pass filter is used for noise removal and computing 

the difference image. MISODATA is a thresholding method that automatically determines 
the optimal threshold value instead of imposing a manual threshold [32]. In general, 
MISODATA initially computes the global mean of an image that can be used as a global 
threshold (GT). Secondly, using GT, all pixels were classified into two clusters called 
Mean Above Threshold (MATG) and Mean Below Threshold (MBTG). In the third step, 
the new cluster mean vectors were computed based on all the pixels in each individual 
cluster. The second and third steps are repeated until the average mean in the third step 
becomes equal to global mean. 

Besides calculating GT, the image is divided into square or rectangular local patches 
and each local patch is used to calculate local mean to set as a local threshold (LT). Each 
patch is further classified into two clusters with a reference to a LT. Using LT, all pixels 
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were classified into two levels having value greater than LT called Mean Above Threshold 
(MATL) and having value lower than LT called Mean Below Threshold (MBTL). MATL 
and MBTL have been computed based on all the pixels in each individual cluster. The 
iterative method is repeated until the local threshold became equal to the average mean 
threshold of both clusters. Further, GT is compared with LT; in case LT>GT and has to be 
updated by LT=GT. If LT≪GT the LT=GT-threshold value is updated. In this way, 
MISODATA is implemented for classification of vessel and non-vessel pixels. Further, the 
postprocessing technique has been applied to obtain a final segmented image. The block 
diagram for the presented MISODATA is shown in Fig. 2. 

The proposed MISODATA visual and quantitative results have been compared with 
ISODATA [32], Fuzzy C-Means (FCM) also known as fuzzy ISODATA [40] and the k-
means clustering method [41]. Figure 3 shows that the proposed MISODATA produced 
good visual results compared to FCM and k-means methods on the DRIVE [36] dataset. 
The proposed MISODATA also extracts thin vessels along with the wide vessels. Its 
quantitative results are tabulated in Table 2, which clearly indicates that the proposed 
method shows superior performance to other methods. The drawback of basic ISODATA 
is that it fails sometimes to find an optimal threshold while FCM suffers from high 
computation complexity. The disadvantage of the k-means method is that the means of 
clusters are calculated once, then remain unchanged. The proposed MISODATA takes a 
little more computation time than the basic ISODATA algorithm because it has been 
applied once locally and then globally on the entire image. 

 

Fig. 2: MISODATA block diagram. 
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Fig. 3: Visual results comparison of MISODATA with other clustering methods. (a) 
MISODATA segmented image. (b) ISODATA image. (c) FCM image. (d) k-means 

method image. 

Table 2: Performance comparison of MISODATA with other clustering methods. 

Method                   DRIVE  
Acc Sn Sp AUC 

ISODATA [32] 0.957 0.674 0.985 0.829 
FCM [40] 0.913 0.751 0.935 0.843 
k-means [41] 0.959 0.716 0.980 0.848 
Proposed MISODATA  0.952 0.780 0.972 0.876 

 

3.3  Postprocessing: Region Properties Based Non-Vessels Rejection 
The postprocessing consists of a number of distinct steps as shown in Fig. 4. In the 

first step, the binary image produced by MISODATA has been labeled, each separate 
foreground pixel has been assigned specific number. The region properties, like 
eccentricity and area of each distinct patch have been calculated. The vessels patches are 
elongated and have a high area and eccentricity almost equal to one. Based on these 
properties, the noisy parts are rejected. Region properties are used to scale down the 
unwanted region, non-vessel pixels, and noise. The first stage in the raster-to-vector 
conversion process is usually an attempt to remove, or at least minimize the noise. If 
binarization and noise removal are successful, each line in the original drawing will 
generate an elongated region of black pixels in the binary image. The next step is to reduce 
each such region to a one-pixel wide string of pixel locations which is achieved by finding 
the center line of each region (skeletonisation).  Noise can appear in a binary image in 
several forms, e.g.  separated pixels of the opposite sign in an object or background 
regions, often known as salt-and-pepper noise, small holes in objects and/or small spots on 
background areas, distinct lines merging and single lines splitting. Skeletons can be 
achieved either by "thinning", an iterative process of removing black pixels until only a 
unit-width string remains, or via a "medial axis transform". Thinning produces a "thinned" 
binary image in which object pixels lie upon the skeleton of the original object. The 
medial axis transform produces a "medial axis", the locus of the centers of a set of 
maximal discs laid over the object. This is equivalent to the locus of local maxima of some 
distance measure. 

Visual results of retinal blood vessel segmentation with the major processing steps of 
the proposed method using the DRIVE and the STARE databases are shown in Fig. 5 and 
Fig. 6, respectively. 
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Fig. 4: Postprocessing raster-to-vector transformation steps. 

 
Fig. 5: Main processing steps of the proposed technique for retinal blood vessel 

segmentation. (a) RGB image from DRIVE database. (b) Extraction of Green channel for 
later processing. (c) CLAHE used for contract enhancement. (d) Low pass Gaussian blur 
filter for noise removal. (e) Difference image for background elimination. (f) Masking to 
remove unwanted effects. (g) MISODATA for vessel and non-vessel pixels classification. 
(h) Postprocessing steps for scaling down the unwanted regions, non-vessel pixels, noise, 

and removing erroneously detected segments. 

 
Fig. 6: Major processing steps proposed technique for retinal blood vessel segmentation. 

(a) RGB image from STARE database (b) Extraction of Green channel for later processing 
(c) CLAHE used for contract enhancement (d) Low pass Gaussian blur filter for noise 

removal (e) Difference image for background elimination (f) Masking to remove 
unwanted effects (g) MISODATA for vessel and non-vessel pixels classification (h) 

Postprocessing steps for scaling down the unwanted regions, non-vessel pixels, noise and 
removing erroneously detected segments. 
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4.   EXPERIMENTAL RESULTS AND COMPARISONS  
The efficiency of the presented framework has been assessed and compared with the 

latest techniques to evaluate its performance on two openly available the DRIVE [36] and 
the STARE [37] datasets. The STARE and the DRIVE datasets comprise 20 and 40 retinal 
images, respectively. Both databases are isolated into two sets: a training set and a test set. 
In each dataset, the segmentation of the first observer has been utilized as a ground truth 
for assessment while the performance of the second observer has been used as a 
benchmark for comparison. These databases consist of manual segmentation of experts as 
a gold standard. Based on these gold standards, the accuracy, sensitivity, and specificity of 
each method have been calculated. The performance measure for segmentation of retinal 
vessel structure is given in Table 3. 

Table 3: Performance measures for segmentation of retinal vessel structure. 
Metrics Explanation 

TPR TP/vessel pixel count 
FPR FP/non-vessel pixel count 
Sensitivity(Sn) TPR or TP/(TP+FN) 
Specificity(Sp) 1-FPR or TN/(TN+FP) 
Accuracy(Acc) (TP+TN)/(TP+FP+TN+FN) 
AUC Sn+Sp/2 

TP, TN, FP and FN show the true positive (accurately detected vessel pixels), true 
negative (accurately detected background pixels), false positive (wrongly detected vessel 
pixels), and false negative (wrongly detected background pixels), respectively. The area 
under a receiver operating characteristic (ROC) curve, also known as area under the curve 
(AUC), has the ability to reflect the trade-offs between the sensitivity and specificity. Note 
that an AUC of 0.50 implies that the classification is equivalent to a pure random guess, 
and an AUC of 1.0 implies that the classifier recognizes class examples perfectly. 

4.1  Accuracy 
The metrics calculated on the two public databases to analyze the efficiency of the 

algorithms are given in Table 4. The parameters of the presented technique are set to 
deliver the highest possible accuracy. This can result decreased in a sensitivity to gain 
specificity in order to increase the overall accuracy. Experimental results demonstrated 
that the proposed method is an efficient for segmentation of retinal blood vessels. The 
effectiveness of proposed method has been validated by comparison of the performance 
results with other existing methods on two openly available DRIVE and STARE datasets.  

The proposed method reaches a highest accuracy compared to other methods as 
shown in Table 4, which presents the performance comparison on the DRIVE and the 
STARE datasets. The results of Mendonça and Campilho [25], Martinez-Perez et al. [28], 
Palomera-Perez et al. [27], Zhang et al. [20], Al-Diri et al. [19], Niemeijer et al. [14], Lam 
et al. [17], Bankhead et al. [30] and Fraz et al. [29] are acquired from their original papers 
while Soares et al. [16] and Staal et al. [15] are obtained from their websites utilizing the 
segmented images. Chaudhuri et al. [22] and Zana and Klein [26] techniques results were 
executed by Niemeijer et al. [14]. The databases contain a second manual segmentation 
made by a human observer, which are also included in the comparison. The exploratory 
results on the DRIVE and the STARE dataset authenticate that the proposed technique is 
more efficient than the other mentioned frameworks. Fig. 7 and Fig. 8 show visual 
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inspection of proposed retinal vessels segmentation method using the DRIVE and the 
STARE databases, respectively.  

Table 4: Performance comparison for various methods. 

Method Type Method DRIVE STARE 
Acc   Sn Sp Acc    Sn   Sp 

Unsupervised Human observer 0.947 0.776 0.972 0.935 0.895     0.939 
 Mendonça and Campilho [25] 0.945 0.734 0.976 0.944 0.699 0.973 
 Martinez-Perez et al. [28] 0.934 0.725 0.965 0.941 0.751 0.955 
 Palomera-Perez et al. [27] 0.922 0.660 0.961 0.924 0.779 0.940 
 Zhang et al. [20] 0.938 0.712 0.973 0.948 0.717 0.975 
 Fraz et al. [29] 0.943 0.715 0.976 0.944 0.731 0.968 
 Bankhead et al. [30] 0.937 0.703 0.971 0.932 0.758 0.950 
 Chaudhuri et al. [22] 0.877 0.336 — — — — 
 Zana and Klein [26] 0.938 0.697 — — — — 
 Al-Diri et al. [19] — 0.728 0.955 — 0.752 0.968 
 Proposed 0.952 0.780 0.972 0.957 0.745 0.974 
Supervised Niemeijer et al. [14] 0.942 0.714 — — — — 
 Staal et al. [15] 0.944 0.719 0.977 0.952 0.697 0.981 
 Soares et al. [16] 0.946 0.723 0.976 0.948 0.723 0.976 
 B.S.Y. Lam et al. [17] 0.947 — — 0.957 — — 
 Marin et al. [39] 0.945 0.706 0.980 0.952 0.694 0.981 

“—” Shows that this content was not available. 

 
Fig. 7: Visual results of vessel segmentation using the DRIVE database. (a) RGB retinal 

input image (b) Manual segmented image (c) Proposed method final image. 

 
Fig. 8: Visual results of vessel segmentation using the STARE database. (a) RGB retinal 

input image (b) Manual segmented image (c) Proposed method final image.  

One important factor of the proposed method is to suppress unwanted regions, non-
vessel pixels  and  noise  that  will  frequently  show up  in  the  anomalous  retinal images 
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through postprocessing steps. In order to assess the performance of the proposed 
technique, in such pathological cases, the results are analyzed by various techniques on the 
normal and abnormal images in the DRIVE and the STARE databases shown in Table 5. 
Experimental results emphasized that for abnormal cases, the proposed technique achieves 
much better efficiency than Chaudhuri et al. [22], Mendonça and Campilho [25], Hoover 
et al. [23] and it performs slightly better than Soares et al. [16]. Fig. 9 and Fig. 10 show 
visual results for abnormal retinal images of DRIVE and STARE databases, respectively. 

Table 5:  Segmentation results comparison of the proposed method with various 
segmentation methods for normal versus abnormal cases 

Image Type Method TPR FPR Acc 
Normal  Human observer 0.9646 0.0764 0.9283 
 Chaudhuri et al. [22] 0.7335 0.0218 0.9486 
 Mendonça and Campilho [25] 0.7258 0.0209 0.9492 
 Hoover et al. [23] 0.6766 0.0338 0.9324 
 Soares et al. [16] 0.7554 0.0188 0.9542 
 Proposed 0.8547 0.0191   0.974 
Abnormal Human observer 0.8252 0.0456 0.9425 
 Chaudhuri et al. [22] 0.5881 0.0384 0.9276 
 Mendonca and Campilho [25] 0.6733 0.0331 0.9388 
 Hoover et al.  [23] 0.6736 0.0528 0.9211 
 Soares et al.  [16]  0.6869  0.0318  0.9416 
 Proposed  0.8510  0.0552  0.9451 

 

 

Fig. 9: Visual segmentation results of an abnormal image of the DRIVE database (a) RGB 
retinal input image (b) Manual segmented image (c) Proposed method final image. 

 
Fig. 10: Visual segmentation results of an abnormal image of the STARE database. (a) 

RGB retinal input image (b) Manual segmented image (c) Proposed method final image.  
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The AUC acquired from the segmentation results attained by the proposed technique 
is shown in Table 6. It shows better AUC results than the previously proposed techniques 
on the DRIVE and the STARE databases.  

Table 6: Performance comparison of AUC with different methods 

Method AUC (DRIVE) AUC (STARE) 
Human observer 0.874 0.917 
Mendonça and Campilho [25] 0.855 0.836 
Martinez-Perez et al. [28] 0.845 0.853 
Palomera-Perez et al. [27] 0.811 0.860 
Bankhead et al. [30] 0.837 0.854 
Fraz et al. [29] 0.846 0.850 
Zhao et al. [38] 0.861 0.881 
Al-Diri et al. [19] 0.842 0.860 
Marin et al. [39] 0.843 0.838 
Staal et al. [15] 0.848 0.839 
Soares et al. [16] 0.849 0.849 
Proposed 0.876 0.861 

 

5.   CONCLUSION 
Precise detection of retinal vessels plays a significant role in the investigation strategy 

of retinopathy. Some current techniques including supervised and unsupervised, can 
achieve good segmentation results for wide retinal vessels. However, for thin retinal 
vessels, these methodologies are unable to recognize them from the background and often 
lose some vessels connectivity. In this paper, a novel technique is presented for retinal 
vessel segmentation based on CLAHE and MISODATA. The former is used for contrast 
enhancement of an image, and the latter is used for retinal vessel detection using global 
and local thresholding. Postprocessing steps are used to eliminate unconnected pixels. 

The proposed framework has been assessed utilizing multiple openly available 
databases with diverging image resolution. In each case, the proposed framework shows 
an increase both in sensitivity and accuracy to segment vessels compared to the results 
from different published papers. Experimental results demonstrated that the presented 
system can segment both wide and thin vessels accurately, reaching the average accuracy 
of 95.21% and 95.69% on the DRIVE and the STARE databases, respectively. Moreover, 
the proposed technique is unsupervised, which does not require any manual segmentation 
for training and also robust for both normal and abnormal images of the both datasets.  
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