
IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 1

USING UML SCENARIOS IN B2B SYSTEMS

A. JAKIMI, A. SABRAOUI, E. BADIDI, A. SALAH AND M. EL KOUTBI

E.N.S.I.A.S, Laboratory SI2M, University Mohammed V-Souissi,

B.P. 713 Rabat, Morocco

elkoutbi@ensias.ma

ABSTRACT: Scenarios has become a popular technique for requirements elicitation
and specification building. Since scenarios capture only partial descriptions of the system
behavior, an approach for scenario composition and/or integration is needed to produce
more complete specifications. The Unified Modeling Language (UML), which has
become a standard notation for object-oriented modeling, provides a suitable framework
for scenario acquisition using Use Case diagrams and Sequence or Collaboration
diagrams. In this paper, we suggest an algorithmic and tool support for composing and
integrating scenarios that are represented in form of sequence diagrams. We suggest four
operators (;: sequential operator, ||: concurrent operator, ?: conditional operator and
* :iteration operator) to compose a set of scenarios that describe a use case of a given
system. In this paper, we suggest also to apply the scenario approach to B2B systems
(Business to Business). We propose to develop B2B systems as a three activities process
deriving formal specifications and code skeletons from UML scenarios. Activities of this
proposed process are generally automatic and are supported by a set of developed
algorithms and tools.

KEYWORDS : Scenario engineering, Scenario composition, Scenario integration, Model
transformation, UML.

1. INTRODUCTION

Over the past years, scenarios have received significant attention and have been used

for different purposes such as understanding requirements, human computer interaction
analysis, specification generation, and object-oriented analysis and design. Notably, they
have been identified as a promising technique for requirements engineering.

Scenarios have been evolved according to several aspects, and their interpretation

seems to depend on the context of use and the way in which they were acquired or
generated. In a survey, Rolland [1] proposed a framework for the classification of
scenarios according to four aspects: the form, contents, the goal and the cycle of
development.

The form view deals with the expression mode of a scenario. Are scenarios formally or

informally described, in a static, animated or interactive form? The contents view concerns
the kind of knowledge which is expressed in a scenario. Scenarios can, for instance, focus
on the description of the system functionality or they can describe a broader view in which
the functionality is embedded into a larger business process with various stakeholders and
resources bound to it. The purpose view is used to capture the role that a scenario is

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 2

aiming to play in the requirements engineering process. Describing the functionality of a
system, exploring design alternatives or explaining drawbacks or inefficiencies of a
system are examples of roles that can be assigned to a scenario. The lifecycle view
considers scenarios as artefacts existing and evolving in time through the execution of
operations during the requirements engineering process. Creation, refinement or deletion
are examples of such operations.

The UML is an expressive language that can be used for problem conceptualization,

software system specification as well as implementation. It covers a wide range of issues
from use cases and scenarios to state behaviour and operation declarations. Scenarios
describe partial views of the system. To obtain a global view, we need to define an
approach to merge or to compose these partial views. We aim, in this paper, to provide an
automatic support for this operation of scenarios composition. There are several related
works in this field but most of them have addressed this operation using formal techniques
(like Statecharts, Petri Nets, Z schemas, etc.). In this paper, we suggest to compose
scenarios that describe a given system in a natural way based directly on sequence
diagrams.

Section 2 of this paper gives a brief overview of the UML diagrams relevant for our

work. Section 3 describes in detail the algorithm of merging several scenarios (of a given
use case) in form of sequence diagrams into a global sequence diagram corresponding to
the behaviour of that use case. Section 4 discusses the scenario approach applied to B2B
systems. Finally, Section 5 provides some concluding remarks and points out to future
work.

2. SCENARIOS IN UML

OO analysis and design methods offer a good framework for scenarios. In our work,

we have adopted the Unified Modeling Language, which is a unified notation for OO
analysis and design. Scenarios and use cases have been used interchangeably in several
works meaning partial descriptions. UML [2] distinguishes between theses terms and
gives them a more precise definition. A use case is a generic description of an entire
transaction involving several objects of the system. A use case diagram is more concerned
with the interaction between the system and actors (objects outside the system that interact
directly with it). It presents a collection of use cases and their corresponding external
actors. A scenario shows a particular series of interactions among objects in a single
execution of a use case of a system (execution instance of a use case). A scenario is
defined as an instance of a given use case. Scenarios can be viewed in two different ways
through sequence diagrams (SequenceDs) or collaboration diagrams (CollDs). Both types
of diagrams rely on the same underlying semantics. Conversion from one to the other is
possible.

2.1 Use Case Diagram

The UsecaseD [3] in UML is concerned with the interaction between the system and

external actors. One use case can call upon the services of another use case using some
relations (include, extends, etc). An example of the include relation is given in Fig. 2. This

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 3

relation is represented by a directed dotted line and the label <<include>>. The direction
of an include relation does not imply any order of execution. Figure 1 gives an example of
UsecaseD.

Service2

Service4

Service1

Service3

<<include>>

<<extend>>

<<use>>

User

Fig. 1: Example of Use Case diagram.

2.2 Sequence Diagram

In this work, we chose to use sequence diagrams (SequenceDs) because of their wide

use in different domains. A SequenceD shows interactions among a set of objects in
temporal order, which is good for understanding timing and interaction issues. It depicts
the objects by their lifelines and shows the messages they exchange in time sequence.
However, it does not capture the associations among the objects. A SequenceD has two
dimensions: the vertical dimension represents time, and the horizontal dimension
represents the objects. Messages are shown as horizontal solid arrows from the lifeline of
the object sender to the lifeline of the object receiver. A message may be guarded by a
condition, annotated by iteration or concurrency information, and/or constrained by an
expression. Each message can be labeled by a sequence number representing the nested
procedural calling sequence throughout the scenario, and the message signature. Sequence
numbers contain a list of sequence elements separated by dots. Each sequence element
consists of a number of parts, such as:

 a compulsory number showing the sequential position of the message, and
 a letter indicating a concurrent thread (see messages (m3, m4 and m5), and
 an iteration indicator * (see message m2) indicating that several messages of the same

form are sent sequentially to a single target or concurrently to a set of targets.

In B2B systems, several information systems ISi interacts between then to realize a
scenario. In Fig. 2, objects are prefixed by the name of ISi where they evolve.

2.3 Constraints in Sequence Diagram

To ease elicitation of non-functional requirements, some new constraints have been

defined. In this work, we focus more on time and security requirements that are very
important for B2B systems.

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 4

Fig. 2: Example of a SequenceD.

2.3.1 Time Constraints

To model real-time constraints in early stages of development, we defined eight

additional constraints [4] which can be are summarized in Table 1. The four first
constraints are applied to a single message, while the remaining time constraints concern
two or more messages. This range of time constraints gives a good modelling framework
for several communication and distributed real-time systems.

Table 1: Real-time constraints associated to messages in a SequenceD.

Constraint Significance

M{At(a)} The message m will occur at the time a

M{After(a)} The message m will occur after the time a

M{Before(b)} The message m will occur before the time b

M{Between(a,b)} The message m will occur at the time a, and will takes at most b-a seconds

M1{Starts(m2)} The messages m1 and m2 start at the same time

M1{Ends(m2)} The messages m1 and m2 finish at the same time

M1{Equals(m2)} The messages m1 and m2 start and finish at the same time

M1{Meets(m2)} m1 starts before the end of m2

1:m1

2*:m2

2 1A:m3

2.1B.1:m4

2.1B.2:m5
2.2:m6

IS1.O1 IS2.O2 IS1.O4 IS2.O3

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 5

2.3.2 Security Constraints

Today, security has become a major issue for information systems (e-business, e-trade,

etc.). It will be convenient to be able to define and represent these constraints in the step of
requirement engineering. We were interested to the major security aspects: authenticity
and confidentiality. Authenticity means the proof of identity and confidentiality relates to
the privacy of information. Using UML, when a message is sent from a source to a target
object, it can carry some information (message parameters). We aim to express that the
exchange is private using some encryption algorithms (RSA, AES, 3DES, etc). This can
be specified as a parameter of the constraint. The two constraints defined to model security
aspects are given below:

Table 2: Security constraints.

Constraint Signification

m{Auth} The message m must be signed by the sender object to proof its
identity to the receiver object.

m{Crypt(algo)} The message content (message parameters) must be encrypted using
the algorithm (algo).

These defined constraints are very useful for the purpose of code generation [5, 6] from UML models.

3. COMPOSITION UML SCENARIOS

UML scenarios are considered as partial descriptions. To obtain a global description of

a given service of the system or the description of the whole system, an operation of
integration or composition is needed. The operation of integration will be described in
section 4.3. The difficulty of scenarios composition comes in the fact that the scenarios are
being described independently one to another. Figure 3 gives an overview of the merging
algorithm based on scenarios represented in the form of sequence diagrams.

Scénario résultant
Scénario 1

Scénario 2
Algorithme de Algorithme de

compositioncomposition

Fig. 3: Composing UML Scenarios.

In this paper, we consider four operators (;: sequential operator, ||: concurrent operator,
* :iteration operator and if-else operator) to compose a set of scenarios that describe a use
case of a given system. Our developed algorithms can automatically produce a global
SequenceD representing any way of composing scenarios. For example, we can compose
three scenarios S1, S2 and S3 to obtain the resulting scenario Sr. Sr = (S1 ; S2 || S3)

*[5], means
to compose S1 and S2 sequentially, the obtained scenario will be composed concurrently

Composition
Algorithm

Resulting Scenario

Scenario 1

Scenario 2

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 6

with S3, then the obtained scenario will be iterated five times. Given a set of scenarios, our
algorithms can produce any composing form of the given scenarios.

We can also visualize the scenarios at different levels of detail: IS level where objects
of an IS are hidden behind it, object level which is the detailed level, or any set of objects.
The abstraction/refinement operator has been developed for this purpose.

3.1 The Sequential Operator

This operator is the simplest one to implement. The interactions between objects (or

actor and objects) of two SequenceDs are ordered in such a way that the interactions of
first SequenceD (sd1) will occur before those of the second SequenceD (sd2). To compose
sequentially two SequenceDs, they need to have at least one common object. The principle
of composing two scenarios using this operator is described as follows:

 Put initially the resulting SequenceD sdf equal to the first sequenced sd1.
 Calculate the maximum sequence numbers (maxns) in sd1.
 Add this number (maxns) to all sequence numbers in the second SequenceD sd2 before

merging them in sdf.
 Add to sdf objects that only belong to sd2.

An example of composing sequentially two scenarios sd1 and sd2 is shown in Fig. 4.

(a) (b) (c)

Fig. 4 : (a) SequenceD sd1, (b) SequenceD sd2 and
(c) Resulting SequenceD sdf = sd1 ; sd2.

3.2 The Alternative Operator

This operator acts as the sequential operator. All messages in the second scenario Sc2

(IF cond Sc1 ELSE sc2) will be prefixed by the condition cond.

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 7

3.3 The Concurrency Operator

This operator allows us to define a competition between scenarios. This kind of

composition can be used to describe the independence or the interleaving between two
sequences of interaction. Two cases have to be considered. The first case, when the two
scenarios have some common objects. The second case relates to two scenarios having
different objects acting for separate sub systems. In this approach, we were interested by
the first case which is more complex to implement than the second.

We need to review sequence numbers of the two SequenceDs that will be merged by the
concurrent operator (||) :

 Update all sequence numbers of sd1 by adding a letter, that is not yet used in sd1 or sd2,
representing a new thread of execution.

 Update all sequence numbers of sd2 by adding a letter, that is not yet used in sd1 or sd2,
representing the second thread of execution.

 Compose sequentially the updated SequenceDs sd1 and sd2.

Figure 5 shows an example of a concurrent composition of two scenarios in form of
SequenceDs.

 (a) (b) (c)

Fig. 5: (a) SequenceD sd1, (b) SequenceD sd2 and
(c) Resulting SequenceD sdr = sd1 || sd2.

3.4 The Iteration Operator

This operator gives the possibility to iterate a given scenario many times. The

condition that guards the iteration must be indicated *[cond-iteration] as we do it in an
iterative message in a SequenceD. Sdr = sd1*[3] means that the scenario sd1 will be
executed three times. The condition of the iteration must be propagated globally to all
messages of the scenario sd1. Suppose that sd1 contains two sequential messages m1 and
m2. We note that sd1 = (1:m1 ; 2:m2). If we propagate the iterative condition directly to all

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 8

messages of the scenario sd1, we will obtain the resulting scenario sdr that is equal to
(*[3]1:m1 ;

*[3]2:m2). This means that the message m1 will be iterated three times then the
message m2 will do the same. This is naturally different of what we want sdr = *[3](1:m1 ;
2:m2). To solve this problem, we have considered that the scenario sd1 is represented by
one abstract message m sent by the first object of the scenario to itself and all concrete
messages will be viewed as are refinement of this message m. Thus, sd1 can be seen as
equal to one message sd1 = 1:m and this message is refined with 1.1:m1 and 1.2:m2 (1:m =
1.1:m1; 1.2:m2). The resulting scenario sdr can be seen as equal to *[3] m which is equal to
*[3](1.1:m1; 1.2:m2).

3.5 The Abstraction/Refinement Operator

This operator offers the possibility to visualize a scenario at different levels of detail.

Figure 6 shows an example where all objects of the IS2 is hidden.

(a) (b)

Fig. 6: (a) Detailed view, (b) Corresponding abstract view where objects of IS2 were
hidden.

3.6 Tool Support

To implement the four operators described above, we have used the Eclipse

environment, the TogetherJ plug-in for UML modeling and the application programming
interface (API) JDOM for XML manipulation. Figure 6 gives a picture of how these tools
have been used in this work.

Eclipse has been chosen because of its modular integrated environment of

development (IDE). Many modules (plug-ins) are provided by Eclipse and it is very easy
to add others developed either by the Eclipse community or by software companies. We
used the plug-in for UML diagrams (from Together) which makes it possible for us to
create use case and sequence diagrams. Moreover, our composition algorithm can be used
with any plug-in of UML diagrams as shown in Fig. 7.

Scenarios are first acquired throw the UML diagram plug-in, and then there are

transformed in form XML files. These XML files serve as input to our developed
composition operators that produce a merged XML file related to the resulting composed

1:m1
2*:m2

2.1A:m3

2.1B.1:m4

2.1B.2:m5
2.2:m6

IS1.O1 IS2 IS1.O4

1:m1
2*:m2

2.1A:m3

2.1B.1:m4

2.1B.2:m5
2.2:m6

IS1.O1 IS2.O2 IS1.O4 IS2.O3

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 9

scenario. This XML file can also be imported via the UML diagram plug-in for purposes
of visualization and annotation.

Fig. 7: Tool support for scenario composition.

4. THE SCENARIO APPROACH IN B2B SYSTEMS

In this section, we give an overview of the iterative process that derives a formal

specification for the system from use cases and scenarios. Figure 8 presents the sequence
of activities involved in the proposed process.

S e q u e n c e D s

U s e C a s e D

S p e c if ic a t io n
B u i ld in g

C o d e
G e n e r a t io n

S y s te m
P r o to ty p e

R e a l
W o r ld

S c e n a r io
A c q u is i t io n

P r o to ty p e
E v a lu a t io n

C P N
V e r if ic a t io n

I n te g r a te d
C P N s

Fig. 8: Activities of the proposed process.

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 10

In the Scenario Acquisition activity, the analyst elaborates the UsecaseD, and for each
use case, he or she elaborates several SequenceDs corresponding to the scenarios of the
use case at hand. The analyst then uses some composition operators as defined in section
3.1 to capture interaction at different levels: use cases, scenarios and messages. The
Specification Building activity consists on deriving CPNs from the acquired UsecaseD and
SequenceDs and compose them to obtain a global CPN with three levels of hierarchy. The
Composed CPNs serve as input to both CPN Verification and System Prototype
Generation activities. During Prototype Evaluation, the generated prototype is executed
and evaluated by the end user. In the CPN Verification activity, existing algorithms can be
used to check behavioral properties. In the following subsections, we will focus on the two
first activities this process: scenario acquisition and specification building.

4.1 Scenario Acquisition

In this activity, the analyst elaborates the UsecaseD capturing the system

functionalities, and for each use case, he or she acquires the corresponding scenarios in
form of SequenceDs. Scenarios of a given use case are classified by type and ordered by
frequency of use. We have considered two types of scenarios: normal scenarios, which are
executed in normal situations, and scenarios of exception executed in case of errors and
abnormal situations. To obtain a global description of a given service (use case) of the
system or the description of the whole system, an operation of integration or composition
between use cases and/or between scenarios is needed.

The operation of integration looks like a generalization, where the analyst tries to

identify and abstract some common parts in the system behaviour. Composition constructs
new behaviors from existing ones. This operation (composition) can be applied to different
interaction objects like use cases, scenarios or messages. The difficulty of composition
comes from the fact that interaction objects (use cases or scenarios specially) are being
described independently one to each others.

4.2 Specification Building

This activity consists on deriving hierarchical CPNs from both the acquired and

composed use cases and all of the SequenceDs. The obtained CPN will have three levels
of hierarchy: the first level captures use cases interactions, the second level describes
scenario interactions of the same use case and the third level shows interactions between
messages within a given scenario.

Each use case (a transition in the CPN above) is expended in a CPN handling relations

between its scenarios. Suppose that Service2 is described by three scenarios Sc1, Sc2 and
Sc3 composed as follow: (Sc1; Sc2) || Sc3. The Service2 will be expended as shown in Fig.
9.

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 11

Fig. 9: CPN corresponding to scenario interactions.

The third level concerns scenarios. We first derive the CPN structure, the CPN
semantic is added by the help of the analyst. The CPN structure is automatically obtained
from the graph of messages (Fig. 6b) in the scenario by adding places between each pair
(Fig. 10a) of sequential messages.

m1

m3

m4

m6

m2

m5

m1

m2

m3 m4

m5

m6

(c)

 (a) (b)

Fig. 10: CPN second level of hierarchy (corresponding to message interactions).

For the CPN semantic, the analyst can build an associated table of object states from the
scenario by following the exchange of messages from top to bottom and by identifying the
changes in object states.

4.3 Scenario Integration

In this activity, we aim to merge all CPNs corresponding to the scenarios of a use case

Uci, in order to produce an integrated CPN modeling the behavior of the use case. Our
algorithm is based on a preliminary version presented in [7]. It takes an incremental
approach to integration. Given two scenarios with corresponding CPNs CPN1 and CPN2,

Sc1

Begin_Service2

Sc2

Sc3

End-Service2

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 12

the algorithm merges all places in CPN1 and CPN2 having the same names. The merged
places will have as color the union of the colors of the two scenarios. Then, the algorithm
looks for transitions having the same input and output places in the two scenarios and
merges them with an OR between their guard conditions. In the following, we describe the
algorithm in pseudocode, using the “dot”-notation known from object-oriented languages.

Integrating two scenarios whose CPNs have the colors [sc1] and [sc2], respectively,

will produce a CPN with the list [sc1,sc2] as color. The operation of merging follows the
steps described below:

integrate(uc_cpn,sc_cpn)
 uc_cpn.addPlaces(sc_cpn)
 // adds in uc_cpn places of sc_cpn that do not exist in uc_cpn
 for each t in sc_cpn.getListOfTransitions()
 t' = uc_cpn.LookForTrans(t)
 // t' is a transition of uc_cpn with t=t' and t=t'
 if (t' does not exist)
 uc_cpn.addtrans(t)
 endif
 end
 uc_cpn.addEdges(sc_cpn)
 // adds to uc_cpn edges of sc_cpn that do not exist in uc_cpn
 uc_cpn.mergeColors(sc_cpn)
 // calculates the new color of the integrated CPN (uc_cpn)
 uc_cpn.putColorsOnPlaces(sc_cpn)
 // all places of the net will have the merged color
 uc_cpn.putGuardOnTransitions(sc_cpn)
 // common transitions will be guarded by the merged color,
 // the others will be guarded by their original colors
 uc_cpn.putVariablesOnEdges(sc_cpn)
 // put on edges variables or token expressions
end merge

The resulting specifications derived from scenarios can be verified using exiting tools.
We can check scenario specifications before and after integration to detect easily scenarios
that cause incoherence in the integrated specification. We used the designCPN [6]. to
check and the simulation of the resulting hierarchical CPN.

5. CONCLUSIONS

In this work, we have presented a new approach that produces automatically a global

description or specification of a given service of the system or the whole system. The
developed algorithms permit to derive the behavior of a use case by simply composing the
scenarios describing it. Four operators for composing scenarios have been implemented:
sequential, conditional, iterative and concurrent. One of the most prominent features of our
approach is that it supports many kinds of scenarios (sequential, iterative and concurrent),
whereas most of the other approaches can handle only sequential scenarios. Most of the
related approaches are semi-automatic whereas our approach is fully automatic and offers
either algorithmic or tool support.

We presented the use of the scenario approach in B2B systems. We have discussed the

need of a unified model of interaction that gives a unique syntax to express interactions at
different levels: use cases, scenarios and messages. Five scenario operators have been
implemented: sequential, conditional, iterative, concurrent and abstraction/refinement.

IIUM Engineering Journal, Vol. 11, No. 1, 2010 Jakimi et al.

 13

As future work, we prospect to study the possibility of code generation from scenarios

in from of SequenceDs which will be a good plug-in to add. We plan to generate code
from UML diagrams that describe dynamic and non-functional aspects of a system while
remaining platform independent.

REFERENCES

[1] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M. Maiden, M. Jarke, P.

Haumer, K. Pohl, E. Dubois and P. Heymans. “A Proposal for a Scenario Classification
Framework”. The Requirements Engineering Journal, Volume 3, Number 1, 1998.

[2] OMG: Object Management OMG. Unified modeling language specification version 2.0:
Infrastructure. Technical Report ptc/03-09-15, OMG, 2003.

[3] Jacobson I. Use cases—yesterday, today, and tomorrow. Software Syst. Model. 2004, 3 210–
220.

[4] Bennani M., Elkoutbi M., and Nafil K.; Modelling Real-time Aspects using UML Scenarios
proceedings of the 3rd International Conference on Software Methodologies, Tools and
Techniques, pp. 200-213, Leipzig, Germany, September 2004.

[5] M. Elkoutbi, and R.K. Keller. “ User Interface Prototyping based on UML Scenarios and
High-level Petri Nets,” Application and Theory of Petri Nets 2000 (Proc. of 21st Intl. Conf. on
ATPN), Aarhus, Denmark, June 2000. Springer. LNCS 1825, pp. 166-186.

[6] M. Elkoutbi, Khriss I., R.K. Keller. “Automated Prototyping of User Interfaces Based on
UML Scenarios”. The Automated Software Engineering Journal, 13, 5-40, 2006.

[7] Design CPN: version 4, Meta Software Corp. <http://www.daimi.aau.dk/designCPN>.

