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ABSTRACT: In this paper, we consider the problem of analytical continuation of 

solutions to the system of equations of thermoelasticity in a bounded domain. That is, we 

make a detailed analysis of the Cauchy problem regarding the values of thermoelasticity 

in bounded regions and the associated values of their strains on a part of the boundary of 

this domain.  

ABSTRAK: Di dalam kajian ini, kami menyelidiki masalah keselanjaran analitik bagi 

penyelesaian-penyelesaian terhadap sistem persamaan-persamaan termoelastik di dalam 

domain bersempadan berdasarkan nilai-nilainya dan nilai tegasannya bagi sebahagian 

daripada sempadan domain tersebut, iaitu kami mengkaji masalah Cauchy. 

KEYWORDS: Cauchy problem; system theory of elasticity; elliptic system; ill-posed 

problem; Carleman matrix; regularization  

1. INTRODUCTION  

In this paper, we consider the problem of analytical continuation of the solution of the 

system equations of the thermoelasticity in spacious bounded domain from its values and 

values of its strains on part of the boundary of this domain, i.e., we study the Cauchy 

problem. Since, in many actual problems, either a part of the boundary is inaccessible for 

measurement of displacement and tensions or only some integral characteristics are 

available. Therefore, it is necessary to consider the problem of continuation for the 

solution of elasticity system of equations to the domain by values of the solutions and 

normal derivatives in the part of boundary of domain. 

The system of equations of thermoelasticity is elliptic. Therefore, the Cauchy problem 

for this system is ill-posed. For ill-posed problems, one does not prove the existence 

theorem: the existence is assumed a priori. Moreover, the solution is assumed to belong to 

some given subset of the function space, usually a compact one [1]. The uniqueness of the 

solution follows from the general Holmgren theorem [2]. On establishing uniqueness in 

the article studio of ill-posed problems, one comes across important questions concerning 

the derivation of estimates of conditional stability and the construction of regularizing 

operators. Our aim is to construct an approximate solution using the Carleman function 

method. 

Let x = (x1, ….., xn) and y = (y1, ….., yn) be points of the n-dimensional Euclidean 

space E
n
, D a bounded simply connected domain in E

n
, with piecewise-smooth boundary 

consisting of a piece ∑ of the plane yn = 0 and a smooth surface S lying in the half-space 

yn > 0.  
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 is a vector function which satisfies the 

following system of equations of thermoelasticity in D [3]: 
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δij is the Kronecker delta, ω is the frequency of oscillation and λ, µ, ρ, θ its 

coefficients which characterize the medium, satisfying the conditions 
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The system (1) may be written in the following manner: 







++∆

+−++∆

0,=

0=)( 2

divuiv
i

v

ugradvdivugradu

ωη
θ

ω
ρωγµλµ

 

where ))(),((=)( xvxuxU . 

This system is elliptic, since, its characteristic matrix is 
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 and for arbitrary ),...,(=
1 n

ξξξ  with real components satisfying the conditions  
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Statement of the problem.  Find a regular solution U of the system (1) in the domain D 

by using its Cauchy data on the surface S:  
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where ))(,( yR
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ν∂  is the stress operator, i.e., 
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ννν  is the unit outward normal vector on D∂  at a point y, 
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ggg Κ  are given continuous vector functions on S.  

2. CONSTRUCTION OF THE CARLEMAN MATRIX AND 

APPROXIMATE SOLUTION FOR THE CAP TYPE DOMAIN  

It is well known that any regular solution )(xU  of the system (1) is specified by the 

formula 
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where the symbol −*  means the operation of transposition, Ψ is the matrix of the 

fundamental solutions for  the system of equations of steady-state oscillations of  

thermoelasticity: given by  
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Definition.  By the Carleman matrix of the problem (1),(2) we mean an (n+1)×(n+1) 

matrix Π(y,x,ω,τ) depending on the two points y,x and a positive numerical number 

parameter τ satisfying the following two conditions:  

),,,(),(=),,,(1) τωτω xyGyxxy +−ΨΠ  

where the matrix G(y,x,τ) satisfies system (1) with respect to the variable y on D, and 

Ψ(y,x) is a matrix of the fundamental solutions of system (1); 
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From the definition of Carleman matrix it follows that. 

Theorem 1.  Any regular solution U(x) of system (1) in the domain D is specified by 

the formula 
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where Π(y,x,ω,τ) is the Carleman matrix. 

Using this matrix, one can easily conclude the estimated stability of solution of the 

problem (1), (2) and also indicate effective method decision this problem as in [4 - 6]. 

With a view to construct an approximate solution of the problem (1), (2) we construct 

the following matrix: 
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K(ω),ω = u + iv (u, v are real), is an entire function taking real values on the real axis 

and satisfying the conditions: 
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The following theorem was proved in [7]. 

Lemma 1.  For function Φ(y,x,k) the following formula is valid   
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Now, in formulas (5) and (6) we set ),(=),,( kxykxy −ΦΦ τ
 and construct the 

matrix ),,,(=),,( τωω xyxy ΠΠ  

From Lemma 1 we obtain, 

Lemma 2.  The matrix Π(y,x,ω,τ)  given by (5) and (6) is Carleman's matrix for 

problem (1), (2). 

Indeed by (5), (6) and Lemma 1 we have  
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By a straightforward calculation, we can verify that the matrix G(y,x,τ) satisfies the 

system (1) with respect to the variable y everywhere in D. By using (5), (6) and (7) we 

obtain 
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The following theorem holds. 

Theorem 2.  Let U(x) be a regular solution of the system (1) in D such that  
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Now on the basis of (8) and (10) we obtain the required estimate. 

Next we write out a result that allows us to calculate U(x) approximately if, instead of 
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y

ν∂  its continuous approximations )( yf δ
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 are given on 

the surface S: 
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From all of the above results we immediately obtain a stability estimate. 

Theorem 4.  Let U(x) be a regular solution of the system (1) in D satisfying the 

conditions: 
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Corollary 1.  The limits  
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3.     REGULARIZATION OF SOLUTION OF THE PROBLEM (1), (2) 

FOR A CONE TYPE DOMAIN 

Let ),,(=
1 n

xxx Κ  and ),,(=
1 n

yyy Κ  be points in 
ρDE

n
,  be a bounded simply 

connected domain in 
n

E  whose boundary consists of a cone surface 

1>0,>,
2

=,=,=: 2

1

2

1

2

11
ρ

ρ

π
τατα ρρ nnn

ytgyyy
−

++Σ Κ  

and a smooth surface S  lying in the cone. Assume ρDxx n ∈)(0,...0,=0 . 
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We construct Carleman matrix. In formula (5), (6) we set 
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Where Eρ(w) is Mittag-Löffer`s entire function [8]. For the functions ),( kxy −Φτ
 

hold Lemma 1 and Lemma 2. 

Further, we may show similar estimate for  Uτ (x) and Uτδ (x) (in cone case) defined 

in (9) and (12), as Theorems 1, 2, 3, and 4. 

For the simplicity let us consider n = 3, since the other cases are considered analogously. 
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We construct Carleman`s matrix. In formulas (5), (6) we take 
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where 
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2= ysuiw ++ . For the functions ),,( kxyτΦ  holds Lemma 1. 

It follows from the properties of  Eρ(w) that for Σ∈y  and ∞<<0 u  the function 
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tends to zero as ∞→τ , for a fixed .ρDx∈  

Then from (5) we find that the matrix Π(y,x,ω,τ) and its stresses 
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Π∂  also converge to zero as ∞→τ  for all ,Σ∈y  i.e., Π(y,x,ω,τ) is 

the Carleman matrix for the domain ρD  and the part Σ  of the boundary. 
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If U(x) is a regular solution of the system (1) then the following integral formula 
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Let us take continuous approximations fδ(y) and gδ(y) of U(y) and )(),( yUR
y

ν∂ , 

respectively,  i. e., 

1<<0,|)()(),(|max|)()(|max δδν δδ ≤−∂+− ygyURyfyU
y

SS

 

and define the following function 

,))()},,,(),(
~

{)(),,,((=)(2 *

yyS
dsyfxyRygxyxU δδδτ τωντω Π∂−Π∫  

Then the following theorem holds. 

Theorem 6.  Let U(x) be a regular solution of the system (1) in the domain Dρ 
 

satisfying the condition (16), then  

,)()(|)()(|
3

000
δ

δρδτ

M
lnxCxUxU

q≤−  

where  ,)(max=,)(=
3

ρρρ

ρ
δ

ττ ysiReR
M

lnR
S

+−  

.
11

=)(,)(=
4

0

3

0

0

3

y
ds

rr
CxC

R

x
q 








+∫Σρρ

ρ  

The theorem is proved analogously as Theorems 3 and 4. 

Corollary 2.  The limits 
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