
IIUM Engineering Journal, Vol. 6, No. 1, 2005 A. F. Alfahaid et al. 

 41

NATURAL CONVECTION HEAT TRANSFER IN 
CONCENTRIC HORIZONTAL ANNULI CONTAINING A 

SATURATED POROUS MEDIA 

AHMED F. ALFAHAID*1, R.Y. SAKR1 AND M. I. AHMED2 
1- Department of Mechanical Technology, Riyadh College of Technology, Saudi Arabia. 

P.O. Box 91471 Riyadh 11633, Saudi Arabia 

*alfahaid@gotevot.edu.sa 

2- Department of Mechanical Engineering, International Islamic University Malaysia. 

Abstract: Natural convection in horizontal annular porous media has become a 
subject receiving increasing attention due to its practical importance in the problem of 
insulators, such as ducting system in high temperature gas-cooled reactors, heating 
systems, thermal energy storage systems, under ground cable systems, etc. This paper 
presents a numerical study for steady state thermal convection in a fully saturated porous 
media bounded by two horizontal concentric cylinders, the cylinders are impermeable to 
fluid motion and maintained at different, uniform temperatures.  The solution scheme is 
based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq 
equations. The finite element method using Galerkin technique is developed and 
employed to solve the present problem. A numerical simulation is carried out to examine 
the parametric effects of Rayleigh number and radius ratio on the role played by natural 
convection heat transfer in the porous annuli. The numerical results obtained from the 
present model were compared with the available published results and good agreement is 
observed. The average Nusselt number at the heating surface of the inner cylinder is 
correlated to Rayleigh number and radius ratio. 

Keywords: Natural convection, numerical investigation, saturated porous media, finite 
element method, concentric horizontal annuli. 

1. INTRODUCTION 

Natural convection in horizontal porous annuli has a wide variety of practical 
applications such as the insulation of aircraft cabin or horizontal pipes, cryogenics, the 
storage of thermal energy, and the underground cable systems. Lui et al. [1] studied 
experimentally the natural convection in a horizontal annulus for a fluid layer and showed 
a multicellular regime for a relatively small radius ratio, (R = 1.15). Later, Bishop and 
Carley [2] provided photographs showing oscillatory flow regime. Grigull and Hauf [3] 
used a Mach-Zehnder interferometer and visualized different convective regimes including 
one where three-dimensional effects were present in the upper part of the layer. Using 
purturbation method, Mack and Bishop [4] solved the steady two-dimensional equations 
and although the analysis is valid only for small Rayleigh numbers, the results revealed the 
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existence of secondary flows in the upper and lower parts of the layer for very small 
Prandtle numbers. Kuehn and Goldstein [5] have conducted an experimental study, which 
included flow visualization and heat transfer measurements. 

The analogous problem of the thermal convection in eccentric annulus containing 
viscous fluid (non-porous medium) has attracted some attention in recent literature. Yao 
[6] developed a purturbation solution for slightly eccentric cylinders, using two-parameter 
expression in terms of eccentricity and Rayleigh number. For this purpose, Yao [6] used a 
special coordinates transformation in which the inner circle was transformed into pole. 
More recently, Prusa and Yao [7] constructed a finite difference method simulation using 
Yao’s [6] transformed coordinates. Projahn, et al. [8] and by Cho et al. [9] provided 
numerical simulations of viscous fluid in an eccentric annulus. The former applied non-
orthogonal body fitted curvilinear coordinates, while the later used bi-cylindrical 
coordinate. The experimental work of Fant et al. [10] showed that at fairly high Rayleigh 
numbers, thermal instability for air appears as steady counter rotating cells near the top of 
the annulus. Perhaps their most interesting result is that the same flow exhibits hysteresis 
behavior for small gap widths. As Prandtle number tends to zero, unsteady hydrodynamic 
instability was demonstrated at high Grashof numbers in the middle of the annulus. 
Cheddadi et al. [11] solved the same equations using the artificial compressibility method 
to obtain the pressure field. The tangential velocity component was measured using Laser 
Doppler anemometry in air-filled annular space. Experimental and numerical values agree 
well; hysteresis behavior was also reported. 

Few results for porous layer are present. Caltagirone [12] visualized the thermal field 
using the Christiansen effect and observed a fluctuating three-dimensional regime in the 
upper part of the layer even though the lower part remained strictly two-dimensional. Both 
a perturbation method and finite difference technique were used to solve two-dimensional 
Boussinesq equations. Burns and Tien [13] examined the variations of the overall heat 
transfer coefficients with the external heat transfer coefficient and radius ratio by steady-
state two-dimensional analyses with the finite difference method and purturbation method. 
It was indicated that a maximum value of overall heat transfer coefficient existed 
depending upon the radius ratio. Using finite difference method, Echigo et al. (14) also 
obtained two-dimensional steady state numerical results taking into account the radiation 
effect. Bau [15], in recent works, took eccentricity into consideration and demonstrated 
that heat transfer in the annulus could be optimized by a proper choice of eccentricity.  

As mentioned above although several works have been done on the problem, most of 
them were restricted to one flow pattern, the unicellular one, except for the case of narrow 
annulus. However, the experimental measurements of Caltagirone [12] show, the flow 
pattern is unlike and not as simple as unicellular one and mainly because of this, the 
overall heat transfer rates predicted numerically disagree in a margin with those 
experimental data.  

Rao el al. [16] investigated analytically with the Galerkin method steady and transient 
analyses of natural convection in horizontal porous annulus heated from the inner surface. 
They obtained three families of convergent solutions appearing one after the other with 
increasing modified Rayleigh number corresponding to different initial conditions. Their 
predictions were limited to modified Rayleigh number up to 300.  They also determined 
numerically the bifurcation point, which coincide very well with that from the 
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experimental observations of Caltagirone [12]. Mota and Saatdjian [17] solved two-
dimensional Boussinesq equations using finite difference scheme with an ADI method and 
successive under relaxation to a very fine grid. They showed that for very small radius 
ratio and on increasing the Rayleigh number, the steady state regime changes from two to 
four to six to eight cells without exhibiting a hystresis loop. For radius ratio above 1.7 
approximately, closed hystersis loops between ranges containing 2 or 4 cells are obtained.  
Mota and Saatdjian [18] used an accurate finite difference code to solve two-dimensional 
Darcy-Boussinesq equations for eccentric, horizontal annulus filled with a saturated 
porous medium. They showed that reducing the radius ratio or increasing the eccentricity 
has the same impact on the geometry in the top part of the layer where the convective 
effects are more pronounced.  

2. MATHEMATICAL FORMULATION  

The problem considered here is a porous layer bounded between two horizontal 
concentric cylinders of radii Ri and Ro as shown in Fig. (1). The two cylinder walls are 
assumed to be impermeable. The surfaces of the two cylinders are assumed to be 
maintained at a constant temperatures Ti and To respectively with Ti To. The governing 
equations for steady state natural convection with Oberbeck-Boussinesq approximation, 
Darcy flow are given as follows: 
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Non-dimensionalizing the variables as defined below; 
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where, Ra* = Ra . Da, Ra* is the modified Rayleigh number and is given by: 
feioiffr f

* k/R)TK(T c  gRa   Ra; is Rayleigh number and given by: 

fe
3
ioiffr f k/R)T(T c  gRa   and Da; is Darcy number and given by 2

iR/K Da   

2.1 Boundary Conditions 

The problem is assumed to be symmetric about the vertical axis, and as a result, 
only one half of the flow domain will be considered in this analysis. The boundary 
conditions are handled as follows:- 

a- Plane of symmetry: 

0 
X

     , 0 = 



                (10a) 

b- Inner cylinder surface 

1.0      , 0 =                 (10b) 

c- Outer cylinder surface 

0      , 0 =                         (10c) 

2.2 Heat Transfer 

The local Nusselt number at the inner and outer cylinders surfaces can be calculated 
from the following equations respectively: 
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where n: represent the direction normal to the cylinders surfaces. 

The steady state average Nusselt numbers at the inner or outer cylinders surfaces are 
assumed to be equal ( oNu = iNu = Nu) and given by: 
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3. NUMERICAL SOLUTION 

The solutions of Eqs. (8) and (9) subject to the boundary conditions specified by Eq. 
(10) is obtained numerically by using the Galerkin based finite element method [19, 20]. 
The objective of the finite element is to reduce the system of governing equations into a 
discretized set of algebric equations. The procedure begins with the division of the 
continuum region of interest into a number of simply shaped regions called elements. The 
grid used in the present calculation is illustrated in Fig. (1). The element type which used 
here is linear triangular element.  

 

 

Fig. 1:  Physical geometry and sample grid of the present problem. 
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The approximate expressions of temperature and stream function in an element are 
given by polynomials in terms of the nodal values and interploation functions. The 
interpolation functions are derived from the assumption of linear variation of temperature 
and stream function through the element and are given by the following equation: 





3

1m
mm

e N =   (13a) 





3

1m
mm

e N =   (13b) 

where Nm is the usual interpolation function and is defined by:    

Nm= 1
2A
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where A is the element area and  
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The other components are given by cyclic permutation of the subscripts in the order 1,2 
and 3. If the approximation given by Eq. (13) is substituted in the governing Eqs.(8-9), and 
the global errors are minimized using the above interpolation functions Nm as weighting 
functions, and after performing the weighted inegration over the domain G and the 
application of Green’s theorem, The present model can be written in the equivalent forms: 
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and,  

E = total number of elements, 

G= bounded domain,  

 = domain boundary, 

 
Y

 ,
X YX 







  

Equations (8) and (9) result in two sets of linear equations which have been solved by 
Gauss elemination method. The resulting two sets of  equations have been solved 
iteratively through a computer code written here in FORTRAN langauge. The iterative 
procedure was terminated when the following relative convergence criterion was satisfied: 









 1i

i1i

 10-4  (17) 

where i denote the iteration number performed. 

4. MODEL VALIDATION 

The code was validated by solving the convection problem of two concentric horizontal 
cylinders for which solutions are available. The obtained results compared with the 
available published data. Table 1 shows the average Nusselt Number for different previous 
researchers. A good agreement is found between the present work and the other 
researchers. 

Table 1: Comparison of the average Nusselt number for natural convection for 
convective flow between two concentric cylinders with radius ratio of 2. 

 Caltagirone 
[12] 

Rao et al. 
[16] 

Bau  
[21] 

Facas 
[22] 

Facas & 
Farouk 

[23] 

Present 
Code 

Grid size 49x49 10x10 30x44 50x50 25x25  10x18 
Ra=50 1.328 1.341 1.335 1.342 1.362 1.317 

Ra=100 1.829 1.861 1.844 1.835 1.902 1.865 
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5. RESULTS AND DISCUSSION 

A parametric study of five different radius ratios namely 1.2, 1.4, 1.6, 1.8 and 2 is 
carried out. In Fig. 2, the variation of the average Nusselt Number (Nu) with the Rayleigh 
Number (Ra) for a radius ratio R of 1.2 is illustrated. It is noticed from this figure that, for 
a very small Ra the dominant mode is the pure conduction. As the Ra increases the Nu 
decreases until Ra reaches 400. Above this value, as Ra increases the Nu increases too. 
Also, the figure shows a break point at Ra about 800, which may indicate different flow 
characteristics, as stated by [16-17].   

The variation of Nu with Ra for R=1.4 is illustrated in Fig. 3. A slight decrease of Nu is 
noticed at very low Ra<100, then as Ra increases the Nu increases. A break point at about 
Ra=140 is also noticed. The variation of the Nu with Ra for R=1.8 is depicted in Fig. 4. It 
is noticed from the figure that as Ra increases the Nu increases. Also, two breaking points 
are noticed at Ra=200 and 400 respectively. This may be due to change in flow 
characteristics at these conditions. Figure 5 illustrates the variation of Nu with Ra for R=2. 
The variation of Nu with R for different Ra is shown in Fig. 6.  It can be concluded that 
for small Ra (i.e. Ra ≤ 10), where the conduction is the dominant mode of heat transfer, 
the increase of the insulation thickness (R) leads to decrease of Nu (i.e the decrease of heat 
loss). As Ra increases (where the natural convection becomes the dominant mode)   the 
useful insulation radius ratio (R) becomes smaller. The heat transfer and flow 
characteristics in the porous layer for R = 2 and 1.6 for Ra = 120 are illustrated in Figs. 7 
and 8 respectively. The natural convection is dominant in the top portion of the figure 
while the conduction is dominant at the bottom. 
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Fig. 2: Variation of Nu  and Ra for R = 1.2. Fig. 3: Variation of Nu  and Ra for R = 1.4. 
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Fig. 4: Variation of Nu  and Ra for R = 1.8. Fig. 5: Variation of Nu  and Ra for R = 2. 
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Fig. 6: Variation of Nu  with the Radius Ratios for different Ra. 

The heat transfer and flow characteristics in the porous layer for R=1.2 and Ra=120 are 
illustrated in Fig. 9. Due to the small thickness of the porous layer, the conduction mode is 
dominant mode of heat transfer in the whole layer. Figure 10 shows the comparison 
between the predicted and correlated average Nusselt number. 
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Fig. 7: Temperature filled () and stream function () contours for R = 2 and Ra =120. 
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Fig. 8: Temperature filled () and stream function () contours for R = 1.6 and Ra =120. 
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Fig. 9: Temperature filled () and stream function () contours for R = 1.2 and Ra =120. 
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Fig. 10: The comparison between the predicted and correlated average Nusselt number 
Nu. 

6. CONCLUSIONS 

The numerical solution of natural convection in a porous medium bounded by two 
horizontal isothermal cylinders is obtained. The solution of five different radius ratios 
namely 1.2, 1,4, 1,6, 1.8 and 2.0 are presented. Also, the present code is validated through 
the comparison of its results with those available in the literature.  
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For a small insulation thickness, the dominant heat transfer mode is the conduction 
regardless of Ra. The useful maximum insulation thickness decrease as Ra increases. 
From the data obtained, the average Nusselt number is correlated with Rayleigh number 
and radius ratio as:-Nu = 1.82 Ra0.2018 . R-1.4713  with 6.7 % sum of square errors. 
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NOMENCLATURE 

c        Specific heat of fluid at constant pressure 
Da      Darcy number; 2

iR/K Da   
g        Gravity acceleration  
G       Bounded domain  
h        Heat transfer coefficient       
ke       Effective thermal conductivity of the porous medium  
K       Permeability 
Nu     Nusselt number 
n        Normal direction 
R       Radius ratio, Ro/Ri 
Ri      Inner cylinder radius 
Ro      Outer cylinder radius 
Ra     Rayleigh number;   fe

3
ioiffr f k/R)T(T c  gRa   

T       Temperature 
u       Velocity component in x – direction  
v       Velocity component in y – direction  
x,y    Cartesian coordinates  
X,Y  Dimensionless Cartesian coordinates 
 
Greeks 
        Thermal diffusivity of the porous medium 
        Thermal expansion coefficient of the fluid 
         Circumferential angle 
        Domain boundary 
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        Dimensionless temperature; (T-To)/(Ti-To) 
        Dynamic viscosity 
        Density of fluid 
        Kinematic  viscosity 
       Stream function 
       Dimensionless stream function; / 
 
Subscripts 
e        effective 
f         fluid 
i.        inner 
o        outer  
r         reference 
x,y     Cartesian components 
 
Superscripts 
e        element level 
i         iteration number 
T        transpose  
        average 

 

 


