
 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 45

DEVELOPING AN INTELLIGENT GENERATOR FOR SEMI-ACTUAL
TEST DATA

S. A. Hameed, A. M. A. Al-Abbasi

Centre of Measurement and Evaluation, University of Bahrain,Bahrin
shihab@iiu.edu.my, amajid@iiu.edu.my

Abstract: The actual test data generation is one of the
difficult and expensive parts of applying software-
testing techniques. Many of the current test data
generators suffer from the reduction of user’s
confidence in generated test data and testing process.
This is because of focusing on developer and database
administrator viewpoints regardless of users concerns
and focusing on data type and structure regardless of
meaning. This paper proposes a model of an intelligent
generator for semi-actual test data with the aim of
increasing users confidence in software testing. The
model uses samples of real data as a resource data and a
set of efficient generation techniques based on statistical
methods such as permutations, combination, sampling,
and statistical distributions. The selection of the suitable
structure and generation technique is based on one of
the intelligent soft computing techniques such as fuzzy
logic, neural network, heuristic, or genetic algorithm.
The generated test data is validated according to the
data specifications then tested by one of the normality
testing techniques to be close to the real world or
environment of the testing processes. This model offers
the ability of simulating real environments.

Keywords: Software Testing, Test Data Generation,
Semi-Actual Data, Intelligent Generator, Simulation.

1. INTRODUCTION

During the 1990’s, the primary challenge and goal of
software engineering was the production of quality
software and the reduction cost of computer-based
solutions that can be implemented with software [1, 2]. To
improve software quality, software testing is one of the
essential tools. It is one of the complicated problems in
the life cycle of software development, which is
expensive (40-50% of the total software development
cost) and labor intensive [3, 4]. Software is now being
applied in critical situations to control valuable
machinery, handle money, and safeguard human lives.
The failure in such situations can be disastrous;
therefore there is much need for efficient software
testing to reduce the risk of software [5, 6]. Software
testing requires set(s) of test data. The automation and
improvement of test data generation will reduce the cost
of software development and testing. Unfortunately,
automatic test data generation still faces many
problems. These problems can be summarized as
follows:

 Shortage and inefficiency of some test data
generation techniques or tools.

 Duplicated or conflicting descriptions of the same
or similar data items used in applications that
have similar goals.

 The generated data holds high ratio of
meaningless items, which may not reflect the
specifications, culture, and environment of the
population under test.

 Using inefficient set of generation technique(s)
based mainly on random number generator
(RND) or similar functions.

 Focusing on developer or database administrator
viewpoints regardless of user concerns.

 Minimum participation of the user in test data
generation process.

 Lack of user’s confidence in the generated test
data, testing process, and consequently in
application under test.

To overcome these problems this paper proposes a

model of an intelligent generator for semi-actual test
data. It is an improvement on a previous work [7]. The
proposed model uses intelligent, soft computing,
approaches such as fuzzy logic, neural network,
heuristic, or genetic algorithm [8] to provide approximate
solutions to selected problems. These approaches are
suitable for selecting the suitable data item’s structures
and generation technique for the proposed model. The
generated test data is then checked according to the
normality test(s) to satisfy the required specifications.

2. GOAL AND OBJECTIVES

The main goal is to generate suitable set(s) of semi-
actual test data to support the software testing process,
and to improve user confidence in testing software
applications. The function of this generator to:
 Generating different volumes, types, and structures

of test data.
 Generate different sets of test data that contains

high ratio of meaningful and semi-actual items,
which reflects the specifications or environment of
the population under test.

 Offer a unified description of meaningful data items
to eliminate duplication or conflicting description
of data items.

 Develop a set of efficient and powerful generation
techniques based mainly on several statistical

 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 46

methods. These techniques offer good flexibility to
the user to generate different types and structures of
meaningful data.

 Offer a set of test normality techniques to insure the
efficiency of the generated data.

 Use a suitable intelligent soft computing such as
fuzzy logic, neural network, or genetic algorithm in
selecting the suitable data item structure and data
generation technique.

 Increase the user’s confidence in test data, testing,
and application under test by allowing more
participation to the user than recent test data
generation tools; through the selection of the
required list and its specifications, resource data
and generation technique.

 Improve software industry by developing reliable
software products.

3. TEST DATA GENERATOR
MODULES

The intelligent generator for semi-actual test data
consists of many modules, which include:

3.1 Setup Specifications
The setup specification is a very important preparation
step before generation. The main activities of this step
are shown in Fig. 1, which can be summarized as:
 Specifying the required list to be generated from

the MDI sub-library.
 Specifying, or selecting, the suitable list structure

from MDI structures sub- library using one of the
intelligent selection techniques.

 Determining the list and fields specifications or
selecting it from default specifications sub-library.

 Specifying the resource data or selecting it from
default values sub-library.

 Specifying, or selecting, the suitable generation
technique(s) using one of the intelligent selection
techniques.

 Specifying the output file and device.
This module reflects the interface between the user and
the meaningful data generation model to setup the
required list and its related specifications and
restrictions. It offers good flexibility and participation to
the different users to select or insert the requirements
for generating list(s) of meaningful data.

3.2 Data Descriptions
This module is used to offer a unified description for the
meaningful data items, which are used by a set of
applications that have the same or similar goal. The
main steps for meaningful data description and library
construction can be summarized as:
 Preparing a unified list by collecting all the data

items and its related structures, from set of
applications that have the same or similar goal, in a
unified list(s).

 Sorting the unified list by sorting the contents of the
unified list of data items.

 Eliminating duplicated items by selecting one data
item from each set of duplicated items and deleting
the others then links all structures for the deleted
items into the selecting one.

 Eliminating similar items by selecting one item
from each set of similar meaning items and deleting
the others then linking all structures from the
deleted items into the selected one. The produced
data item called a pure list.

 Creating a MD library by storing all data items in
the pure list in a MD items sub-library and the
structures in MD item structures sub-library.

The result of this step is a meaningful data library,
which contains:
 Meaningful data items (MDI) Sub-library: contains

a set of possible meaningful data items that could
be generated by this model.

 MDI Structures Sub-library: contains all possible
structures for each element in the previous MDI
sub-library.

The user has the ability to modify the library contents
according to the application goal and environment. The
main advantage of this step is to eliminate the
duplicated or conflicted description(s) for meaningful
data items used by the similar applications. It is a step
towards standardizing the data description used in such
applications.

3.3 Default Specifications and Values
This module represents the second part of the
meaningful data library. It consists of two optional
components that includes a:
 MDI default-specifications Sub-library (optional):

contains the default specifications of each element
in the previous MDI sub-library.

 MDI default samples Sub-library (optional):
contains the default values or samples for each
simple type of the elements in the MDI sub-library.

The importance of the defaults is to help the non-
professional users in selecting the specifications and the
values for the required data item.

3.4 Sample of Resource Data
The data generation process requires a set of resource
data, which could be a sample of real data taken from
the actual environment, set(s) of assumed data prepared
by the expert or professional people who is working in
the environment, default pre-saved data, pre-generated
data, or sets of alphabets or boundary values data.
Resource data is an important factor in this model and
affects the efficiency of the generated data. The model
focuses on using a sample of real or assumed data as a
main resource. This generates data reflecting the
population’s specifications or cultures. The other
resources of data are used as supporting resources. The
resource data should validate according to data
specifications used before by the generation engine. The
main advantages of using a sample of real or assumed
data as resource data can be concluded as increase:

 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 47

 The ratio of meaningful (semi-actual) data, which
reflects the specification, environment and culture
of the population under test.

 The user participation in software development and
testing. This could support the current trend of
giving more participation the user and to eliminate
the developer or database administrator bias in
selecting the test data.

 The user confidence in test data, testing process and
testing results.

3.5 Generation Techniques
This module uses a set of efficient generation
techniques based mainly on several statistical methods.
It offers the ability to generate lists of meaningful data,
which are of different structures and volumes. The
techniques include permutation with replacement,
permutation without replacement, permutation with
partial replacement, and permutation from multiple
groups. These different permutation techniques
produces (nk), (N!/(N-K)!), ((N-1)K + (n-1)K+1), and
(N1*N2*N3* ….) permutations respectively [9, 10].
Besides the permutation techniques there are several
statistical distributions, which include discrete binomial
or multinomial distributions and continuous normal or
Gamma distributions, and sampling random, systematic,
or sequential techniques [11, 12]. The generation
procedures are supported by hashing, sorting and
searching techniques [13, 14]. This set of generation
techniques offers flexibility to the users to generate the
suitable volume of data. The generated data could be
numeric, character or Boolean and representing simple,
compound or composite structures. The selection of the
suitable generation technique(s) is based on intelligent
selection techniques. The generation techniques built as
functions or routines are stored in a special library and
ready when called by the generation engine.

3.6 Generation Engine
The generation engine represents the main processing
part in the MD generation model. It generates the
required list(s) of data based on the user setup to the list
specifications and restrictions, which has been
mentioned in setup step. This module uses information
from MD library, resource data, generation techniques,
and output requirements to generate the required data.
There are two main strategies used for data generation.
The first one is called one phase strategy, which is
suitable to generate all types of lists. It requires that all
fields in the selected structure be of simple type so it
uses sampling or permutation techniques directly to
generate the data in one phase. The second strategy is
the multiple-phases, which is suitable to generate
composite lists by generating its components in many
phases. The result of each phase will be used as
resource data for the next phases. The generation will
continue until the required list is produced. The main
steps for the meaningful test data generation phases are
shown in Fig. 2, which can be summarized as:
i. Preparation phase:
 Select the required list to be generated.

 Select the suitable structure for the selected list,
using one of the intelligent selection approaches.

 Setup list specifications.
 Setup field specifications for each field in the

structure.
 Specify or insert the sample data for the field(s).
 Validate the sample data according to the field

specifications.
 Store all specifications and sample data in

temporary files to be used by the next phase.
ii. Generation phase:
 Read the preparation files.
 Call the main generation technique, according to

one of intelligent selection approaches, to generate
list of raw data.

 Filtering the raw list according to list specification.
 Testing the generated data according to the

normality testing techniques.
 Customizing the generated list according to the

customizing techniques to get the exact volume of
data.

 Store the generated list on the specified output file
within the specified output device.

3.7 Validation and Statistical Test
This module is responsible for validating the generated
set(s) of data according to the list and field
specifications. It is a descriptive testing of the generated
data. The second type is statistical testing such as the
normality testing and correlation coefficient. A common
statistical technique judges whether an assumed model
provides us with an adequate description of the
observed data, it is a statistical test of the distributional
assumptions built into the model. The power of any
statistical test depends very much on the amount of
information, which is available. The influence on the
power is the detailed use of the data items, that is the
nature of the test in terms of the criterion and the critical
region. The tests for evaluating the assumed normality
are [15]:
 The W- Test for normality
 An approximate analysis of variance test for

normality.
 The probability plot correlation coefficient test for

normality.
 The D-test for normality.
The multiple correlation coefficient (R) will reflect the
measure of the linear association between the dependent
variable Y and the independent variables x1, x2, .., xk.

3.8 Output
This module is used to store the generated data in
specified form, on the required output file and device
according to specifications inserted by the user. The
output device could be one of the I/O devices such as
hard disk, floppy disk, CD, screen or printer. The
importance of this module is to store the result in the
required file and device for later usage.

 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 48

Fig. 1: Setup specifications for Data Item

Setup List & field specifications

Select List

Select List Structure

Size of Generated List
(Quantity)

Main Generation Technique
Different Sequential,

Systematic, or Random
Sampling, and
Statistical Dist.

From MDI Structures
Sub-library (Default)

 From MD Items
Sub-library

Margin + / -

Supporting Gen. Technique

Is List has a Primary Key Yes /

From a List of
Output Devices

Output device

Output file

Insert required list Name

Select List Type

Field type

Resource of Sample Data Default Sample / Insert By User

Sample Size

Integer, Real,
Character, Boolean

Lower & Upper Limits
For Numeric

Type only

Primary Key Type

Field format

Not-key, Primary
Key, Composite

Relational Level

Relation with other fields Relation Field name

Restriction on the field Constraint Constant / Variable

Field Length For Character
Type only

Relation with other Lists Relation Field name List Name

Relations &
Constraints include
>, >=, <, <=, =, <>

 Not-Related,
Relational, Multiple

Related

 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 49

.

Fig. 2: Flow of semi-actual test data generator

Select Required

Select List

Setup List
Specifications

Setup Field(s)
Specifications

Select or Insert
Sample Data

Validate
Sample Data

Store Preparation
phase Results

MDI
Sub-library

MDI Structures
Sub-library

Call Main
Generation

Filtering Raw
Generated List

Call Seconded GT
to Customize Raw

Output the
Generated Results

Library of
Generation
Techniques
(Routines)

Preparatio
n files

Intelligent
Selection

Fuzzy Logic
Neural NW
Heuristic

Genetic algorithm

Validation

MDI Default
Specifications

Sub-library

MDI Default
Values

Sub-library

Normality Test,
Correlation Cof.

 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 50

Fig. 3: Generation of Different Levels of Test Data

4. CONSTRUCTING DIFFERENT
LEVELS OF DATA

To identify meaningful data there is a need for
describing the different levels that represent the
meaningful data. These levels could be classified mainly
into single list, multiple dimension list, and integrated
lists.

4.1 . Single List Level
The single list is constructed from a set of records that
have the same type and structure. The list will hold the
type of its base record; therefore the lists are classified
into a simple, similar compound, not-similar compound,
composite and relational types. The following is a brief
description of different structures of records:

 Simple record consists of one field of integer, real,
character, or Boolean type.

 Similar-Compound record consists of duplicating
the same simple field many times.

 Not similar-Compound record consists of many
simple fields but of different types.

 Composite record consists of aggregation of many
simple, compound or composite fields.

 Relational record is a compound or composite
record with a relationship(s) between some of its
fields.

The construction of different records is shown in Fig. 3.

4.2 Multiple-Dimension List Level
This level is constructed from a collection of a set of the
same type and structure lists. The table holds the same
type of its base list, therefore the tables are classified
into a simple, similar compound, not-similar compound,

Character

Numeric

Other
Symbols

Simple
Record

Data
Structure &
Specification

Compound
Record

Relational
Record

Relationships
between fields

Alphabet

Sample of
Real-Data

Set of
Semi-Actual Data

Record Level

Composite
Record

Simple
List

Compound
List

Relational
List

List Level

Composite
List

Simple
Multi-D

Table
Compound
Multi-Dim

Table

Relational
Multi-Dim

Table

Multi-Dim Table Level

Composite
Multi-Dim

Table

Relationships
between lists

Set of
Integrated Lists

 IIUM Engineering Journal, Vol. 2, No. 1, 2001 S. A. Hameed and A. A. Abbasi

 51

composite, and relational. The generation of a multi-
dimension table is done by repeating the process of
generating a list for specific times according to the
required table.

4.3 Integrated or Multiple Related Lists
Level

Some of the software applications, specially the
relational database, contain related lists or tables
because there is some relationship(s) between these
lists. The generation of this type requires specifying the
relationships between these lists in accordance to its
usage in the generation process.

5. CONCLUSION

The proposed model that overcomes some of the current
problems to improve the test data generation. It offers
good flexibility of the users, specially experts or
professionals, to insert or select the required list of data
to be generated, its structure and specifications, its
components and their specifications, the generation
technique(s), and resource of sample data. The usage of
more powerful generation techniques, which are based
on statistical methods besides the usage of real or
assumed sample of data will participate in generating
test data that holds a high ratio of semi-actual and
meaningful items. The generated data will reflect the
specification or environment of population under test.
The intelligent selection of data item’s structure and the
generation technique will increase the model efficiency
in selection, and increase total performance. The
construction of meaningful data library will increase the
efficiency of the test data generation process. The
validation, normality test, and correlation coefficient
will increase the efficiency and reliability on the
generated data. The above results lead to increase the
user confidence in the generated test data, testing
process, testing result, and consequently in application
under test. The ability of generating different types and
structures of data taking in consideration the
relationships between data fields will make this model
suitable for generating test data for different
applications specially the database applications, which
are used in testing control systems.

REFERENCES

[1] B. T. Mynatt, Software Engineering with Student Project
Guidance. USA, Prentice-Hall International Editions,
1990.

[2] R. S. Pressman, Software Engineering: A Practitioner's
Approach. (4th Ed.), Singapore, McGraw-Hill Book
Company, 1997.

[3] R. C. Ferguson and B. Korel, “The Chaining Approach
for Software Test Data Generation”. ACM Transactions
on Software Engineering and Methodology, 5(1), pp.63 –
86, 1996.

[4] A. J. Offutt, Zhenyi J. Zhenyi, J. Pan, The Dynamic
Domain Reduction Approach to Test Data Generation.
Software Practice and Experience, to appear in 1999.

[5] A. J. Offutt, “An Integrated Automatic Test Data
Generation System. Journal of Systems Integration”,
1(3), pp.391-409, 1991,.

[6] S. A. Hameed, A. Deraman and A. Hamdan, A
Framework for Database Test Data Generator, Technical
Report FTSM / MEI LT- 48, University Kebangsaan
Malaysia, 1998.

[7] S. A. Hameed, Meaningful Test Data Generation based
on Statistical Methods, Ph.D. Thesis, Faculty of
Information Science and Technology, University
Kebangsaan Malaysia, 2000.

[8] L. H. Tsoukalas and R.E. Uhrig, Fuzzy and Neural
approaches in Engineering, USA, John Wiley & Sons,
Inc, 1997.

[9] L. Devore Jay, probability and statistics for engineering
and the sciences, US Brooks / Cole Publishing Company,
3rd Edition, 1991.

[10] W. Hamming Richard, The Art of Probability for
Scientists and Engineers. USA, Addison-Wesley
Publishing Company, 1991.

[11] A. Agresti and B. Finlay, Statistical Methods for the
social Sciences. San Francisco: Dellen Publishing
Company, 1986.

[12] L. Lapin Lawrence, Statistics Meaning and Methods,
Harcourt brace Jovanovich Inc, 1975

[13] M. A. Weiss, Data Structures and Algorithm Analysis in
C, 2nd ed., Addison-Wesley Logman, Inc, 1997.

[14] C. A. Shaffer, A Practical Introduction to Data Structures
and Algorithm Analysis. International Edition, Prentice-
Hall International, Inc, 1997.

[15] A. A. Aziz, Simulation Systems for Statistical Tests,
Ph.D. Thesis, University of Essex, UK, 1987.

BIOGRAPHIES

Shihab A. Hameed was Asst. Prof. at Electrical &
Computer Eng. Department, Faculty of Engineering,
IIUM University (currently in University of Bahrain).
He obtained his Ph.D. from UKM university (Malaysia)
in software engineering / SW testing. He has over
twenty year industrial and educational experience in
software development and as academician. He has
published many research papers both locally and
internationally.

Abdulmajid A. Al-Abbasi was Assoc. Prof. at Science
in Engineering Department, Faculty of Engineering -
IIUM University. Currently he is working at University
of Bahrain. He obtained his Ph.D. from Essex
university (UK) in Simulator Systems, 1988. His
research interests are random number generation and
analysis. He has several research papers published
internationally.

 IIUM Engineering Journal, Vol. 2, No. 1, 2001

 52

