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Abstract: A rational cubic spline, with one family of 
shape parameters, has been discussed with the view to 
its application in Computer Graphics. It incorporates 
both conic sections and parametric cubic curves as 
special cases. The parameters (weights), in the 
description of the spline curve can be used to modify the 
shape of the curve, locally and globally, at the knot 
intervals. The rational cubic spline attains parametric 

2C  smoothness whereas the stitching of the conic 
segments preserves visually reasonable smoothness at 
the neighboring knots. The curve scheme is 
interpolatory and can plot parabolic, hyperbolic, elliptic, 
and circular splines independently as well as bits and 
pieces of a rational cubic spline. 

Key Words: Computer Graphics, Interpolation, Spline, 
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1. INTRODUCTION 

Piecewise rational cubic spline functions provide a 
powerful tool for designing of curves, surfaces and 
some analytic primitives such as conic sections that are 
widely used in engineering design and various 
Computer Graphics applications. These applications 
may be representing some font outline, round corner in 
an object, or it may be a smooth fit to a given data. 
Several segments of curves, to compose a desired curve 
outline, can have different mathematical descriptions. 
For example, a font “S” when designed, appears to have 
straight lines, conics, and cubics as essential parts of its 
outline. Single mathematical formulation for the precise 
definition of various types of geometry shapes is one of 
the major advantages of the rational cubic spline 
functions.  
This research describes the parametric 2C  rational 
cubic spline representation possessing a family of shape 
control parameters. This family of shape parameters has 
been utilized to produce straight line segments, conics, 
and cubics.  The features of maintaing some reasonable 
amount of continuity between conic and cubic arcs, 
estimated end derivatives, conic (circular, elliptical, 

parabolic, and hyperbolic) splines, and circular arcs for 
given radius or center, are further achievements in this 
research. 

There are many schemes in the literature for shape 
control using cubic interpolants. For brevity, the reader 
is referred to work done by various authors [1-14]. The 
presented curve scheme encompasses and extends the 
results of Sarfraz et al. [10]. In Sarfraz et al. [10], a 1C  
rational cubic spline with approximated derivatives at 
control points, was used but continuity between conic 
and cubic arcs was not discussed. Intermediate point 
interpolation scheme and circular arcs, presented in 
Jamaludin [7], are not practical as the space curves and 
exact circular arcs are not possible. In Gregory et al.     
[4-5], end derivatives are based on the assumption of the 
user, which is not convenient. Moreover, the conics 
were not discussed at all. We have estimated most 
suitable end derivatives for more pleasing results. In 
Hoschek [4], rational quadratic spline is used for circular 
spline. We are using very simple technique using 
rational cubic spline for the same circular spline. In 
addition, the scheme has the following properties, which 
may lead to a more useful approach to curve and surface 
design in CAGD: 
 The curve has 2C  continuity between the rational 

cubic arcs and 1G  continuity between cubic and 
conic arcs.  

 Most suitable end derivatives are estimated. 
 The scheme is local, i.e. shape control parameters 

will not significantly affect the adjacent parts of 
the design curve. 

 Any part of the rational cubic spline can be made 
conic (with exact circle and ellipse) or straight 
line using the same interpolant. 

 The method is suitable for space curves and hence 
can also be generalized to surfaces. 

The paper has been organized in such a way that a 
2C  parametric rational cubic spline scheme, together 

with determination of tangents at the knot points, is 
considered in Section 2. Analysis of the designing curve 
has been made in Section 3. Conditions for conics and 
straight line segments are given in Section 4. The 
Section 5 mentions about circular arcs. This section also 
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covers all types of circular arcs in space. In Section 6, 
we have presented a scheme to calculate end derivatives 
(tangents). For practical purposes, an algorithm has bee 
designed in Section 7 where as the demonstration has 
been made in Section 8. The Section 9 concludes the 
paper. 

 
 

 

 

 
 

Fig. 1 Spline curves with various end conditions: 
(a) with distance based derivatives, (b)-(c) with 

exact derivatives. 

2. THE RATIONAL CUBIC SPLINE 

Let m
iF R , i =  0,1,...n, Î  be a given set of data 

points at the distinct knots it RÎ . Also let m
iD RÎ , 

denote derivative values at the knots. Define a 
parametric 0C  piecewise rational cubic 

mP  : R  R  ® as follows:  

( ) ( )
( )

( )
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The following choice of control vertices 
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leads (2.1) to a 1C  piecewise rational cubic Hermite 
spline. The choice of parameters i  >  -1 g  ensures a 
strictly positive denominator in the rational cubic. Thus 
from Bernstein Bezier theory, the curve lies in the 
convex hull of the control points 1{ ,  ,  ,   }i i i iF V W F +  
and is variation diminishing. 

For the construction of a 2C  rational cubic spline in 
Subsection 2.1, we need to manipulate second 
derivative of (2.1), which is as follows: 

( )( )2
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And  

( )1 / .i i iiF F h+D = -  (2.5) 

2.1. Estimation of Tangent Vectors 
There are different choices of the tangent vectors iD  at 

iF , which can be opted for practical implementation for 
the computation of a curve with specific amount of 
smoothness. For 1C  curve methods, some reasonable 
tangent approximation method can be used. The 
distance-based approximations are found reasonably 
good as far as pleasing smoothness is concerned.  
We, now, define the tangent vectors iD at iF .  For open 
curves, the end conditions are defined as: 

( ) ( )
( ) ( )

0 0 01 2

1 2

2 / 2 ,

2 / 2.n n nn n

D F F F F

D F F F F- -

ü= - - - ïïïýï= - - - ïïþ
 (2.6) 

This choice will control the direction of the curve 
properly at the end segments. The tangents at the 
interior knots, for i =  1, 2,..., n-1 , are given by: 

 ( ) ( )( )1 11i i i i ii iD a F F a F F- += - + - -  (2.7) 

Where 

1

1 1
, 0, .. , .ii

i
i ii i

F F
a i n

F F F F
+

+ -

-
= =

- + -
 

For closed curves, the end conditions are defined as: 

1 1 1 1, ,n nF F F F- - += =  

And the tangents at the interior knots are same as in 
(2.7) but   0,  1,  ...,  .i n= . The experiments have 
shown that the use of the distance-based approximated 
derivatives, corresponding to any control polygon (open 
or closed), provides visually pleasing output. Figure 
1(a) is the display of this derivative scheme for an "S" 
shaped data. For further details, the reader is referred to 
Sarfraz et al. [10]. 
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Fig. 2 Curvature plots of Spline curves with 
exact derivatives: (a) with distance based end 

derivatives, (b) with conic compatible end 
derivatives. 

For a higher continuity than 1C , more complicated 
constraints are required to be fit. For example, for 
rational cubic spline, the constraints lead to a tridiagonal 
linear system of Eq.s. This system is diagonally 
dominant and hence provides a unique solution. This 
system can be solved using some tridiagonal linear 
system solver like LU decomposition method. Their 
details are as follows: 

1C  constraints 

(1) (1)( ) ( ), 1, ...,i iP t P t i n+ -= =  

give 

1 1 1( ) ,i ii i iD F F Dg - - -= - -  

and 2C  constraints 

(2) (2)( ) ( ), 1, .., 1i iP t P t i n+ -= = -  

lead to the following system of equations: 

( ) ( )( )1 1 1 11 1i i i ii i i ih D h h h Dg g- - - ++ - + - +

1 _ 1, 1,.., 1i ii i i ng g-= D + D = -  (2.8) 

For the need of graphical results, exact derivatives may 
be computed from (2.8) together with the end conditions 
in (2.6). Figure 1(b) is the demonstration for this 
derivative scheme. The end conditions used here may 
not be appropriate for the objectives of this paper. 
Therefore, a reasonable choice has been made in 
Section 5, which demonstrates the "S" shaped data in 
Fig. 1(c). The difference can be seen in Fig. 2 
demonstrating curvature plots of Figures 1(b) and 1(c) 
in Figures 2(a) and 2(b) respectively.  

3. DESIGN CURVE ANALYSIS 

The parameters ig  are mainly meant to be used freely to 
control the shape of the curve. At the same time, for the 
convenient of the designer, it is also required that the 
ideal geometric properties of the curve are not lost. The 
geometric properties, like variation diminishing, convex 
hull, and positivity, are the ones which need to be 
presented in the description of the design curve.  
 For the constraints, 1,i ig ³ - " , it is very 

obvious that the rational cubic is characterized as 
of Bernstein Bezier form.  

 Thus following the Bernstein Bezier theory, the 
piece of curve ( )iP t  lies in the convex hull of 

{ }1, , ,i i i iF V W F +  
It also follows the variation diminishing property within 
the convex hull. That is any straight line crossing the 
control polygon of { }1, , ,i i i iF V W F +  does not cross 

the curve more than its control polygon. 
For the practical implementation, we choose i  -1g ³ . 
The interval tension properties are apparent for the 
rational Hermite form and are explained in the 
following subsections. 

3.1. Interval Tension 
The interval shape property is obvious from the 
following limit behaviour. That is, the increase in the 
shape parameter in any interval tightens the curve 
towards the line segment joined by the control points. 

( ) ( ) 10
1 i i

i
P t F F

g
q q +®

= - +lim . 

3.2. Global Tension 
Applying the interval property above successively, the 
design curve converges to the control polygon as the 
derivatives, either being distance-based or computed 
from the system of equations, are bounded.  

4. CONIC AND LINEAR SEGMENTS 

Conic and straight line are the most important parts in 
designing which can be achieved through rational cubic 
interpolant, so that we can use the same interpolant for 
all types of curves. The procedure is as follows: 
Let iU  be taken as the point of intersection of tangents 
at IF  and 1IF +  (in case the tangents are parallel, 

i  U can be taken as the point where the arc is desired to 
be splitted, for example, it may be the inflection or the 
middle point, etc.) Then, we have: 

1

,
1

1

i i i
i

i

i ii
i

i

F U
V

F U
W

g
g

g
g

+

+ üïï= ï+ ïïïý+ ïï= ïï+ ïïþ

  (4.1) 

It can be noted that the ratioanl cubic Eq. (2.1) is the 
generalization of the following rational quadratic: 
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- + - + ,                    0, 1, ...., 1,i n= -   (4.2)  

By raising the degree of (4.2), by multiplying the numerator and denominator by ( )1 q q- + , one can :obtain the 
following rational cubic form 

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

3 2 2 3
1

3 2 2 3

1 1 1 1 1

1 1 1 1 1
i i i i i i

i i i
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q q q g q q g q

q q q g q q g q
+- + - + + - + +

º =
- + - + + - + + ,   

 0, 1, ...., 1,i n= -          (4.3) 

This form is similar to (2.1) as 

( ) ( ) ( ) ( )( ) ( ) ( )3 2 22 3 21 1 1 1 1 1 1i i iiq q q g q q g q q q q g q- + - + + - + + = - + - +
 

In a similar way, by degree raise, one can also observe 
that the rational quadratic (4.2) is the generalization of 
the following linear interpolant: 

( ) ( ) ( ) 11 i iL t L t F Fi q q +º = - +
,

 0,1, ...., 1i n= -  (4.4) 

This linear interpolant will be used for the drawing of 
straight line segments later on.) Hence, for conic section 
properties and choice of shape parameters, various 
conics are recovered depending upon the nature of 
weights (see [12]). That is, the ith arc will be: 
 parabolic if i  >  2 g   
 hyperbolic if i  >  2 g  
 elliptic if i  >  2 g  
 straight line: i  = 0 g  (can be considered as a 

second method for straight line segment) 
 circular if 

 cos2i  (4.5) 

where   is the angle between 1 - iiF F+  and -  i iU F  
and 

i i i iU F Tm= +  (4.6) 

where iT  is the unit vector along iD  and 

2
1

1

( )
2( ).

ii
i

i ii

F F
F F T

m +

+

-
=

-
 (4.7) 

is determined by the condition  

1i i i iU F U F +- = -  

Now we are imposing continuity conditions so that both 
segments can share same tangent direction at knot to 
ensure 1G  continuity. For this we are changing the 
direction of exact derivatives with same magnitude. 
Thus, to preserve continuity at Fi, we take 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Spline curves: (a) Circular spline, (b) 
Elliptic spline, (c) Parabolic spline, (d) 

Hyperbolic spline. 

 

1
1
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i
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D
D U F

U F
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üïï= - ïï- ïïýïï= - ïï+ ïïþ

 (4.8) 
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To achieve a straight line, one needs to replace iU  with 

1iF + . Similarly, for continuity at 1iF + , we take 

( )1
1 1

1

1 1 1
1

,

1
1

i
ii i

ii

i i i
i

D
D F U

F U

V F D
g

+
+ +

+

+ + +
+

üïï= - ïï- ïïýïïï= + ï+ ïïþ

 (4.9) 

and replacement of iU  with iF  leads to a straight line. 

5. CIRCULAR ARCS 

This section is devoted for the construction of circular 
arc. The cases, for a given radius and given center, are 
independently discussed in Subsections 5.1 and 5.2 
respectively.  

5.1. Circular Arc For Given Radius 
Let r  be the given radius of the circular arc such that 

1
2

iiF F
r + -

>  (4.10) 

 
 
 
 
 
 
 
 

Fig. 4 Curvature plots of Fig. 3: (a) Circular 
spline, (b) Elliptic spline, (c) Parabolic spline, (d) 

Hyperbolic spline. 

Then, the center M  can lie anywhere on the circle 
centered at 

( )1

2
i iF F

N ++
= , (4.11) 

and having radius b as follows: 

2
12
2

iiF F
b r +

æ ö- ÷ç ÷ç= - ÷ç ÷ç ÷ç ÷è ø
. (4.12) 

It will be preferred that it should lie on the plane passing 
through, 1,i iF F +  and '

iU , where '
iU  is the intersection of 

1 ,  i iF F + iD  and 1iD + . Therefore circular arc should 

lie on the side of '
iU . 

Let e1 be the rotation of Fi+1 around N by an angle  on 
the plane passing through 1,i iF F + and '

iU . Where 
090q = for anti-clockwise rotation and 090q = -  for 

clockwise rotation of circular arc. Now 

1

1

e N
e

e N
-

=
-

 

is a unit vector passing through N  and perpendicular to 
1 - iiF F+ .  Then  M N be= +  will be the center of 

the circular arc. Let   be the angle between -  N M  
and -iF M , then 

2 cosig f=  

Take  =  -  f f  for anti clockwise rotation of circular 
arc. Let T ¢ be the rotation of 1iF + around iF  through 

angle   on the plane passing through 1,i iF F +  and iU ¢. 
Then 

i
i

i

T F
T

T F
¢-

= ¢-
 

is a unit tangent vector at iF . 
Now use Eq. (4.6) to find iU , Eq. (4.1) to find control 
points iV  and iW , Eq. (4.8) for continuity at iF , Eq. 
(4.9) for continuity at 1iF + and finally use rational cubic 
interpolant in Eq. (2.1) for required circular arc. In this 
scheme, the radius  r  can be used as a shape control 
parameter. 

5.2. Circular Arc For Given Center 
let M  be the given center of the circular arc such that 

1i iM F F M+- = -  

Let M ¢ be the rotation of M  by iF  through angle q   
on the plane passing through 1,i iF F + and M . Where 

090q =  for clockwise rotation of circular arc and 
090q = -  for anti-clockwise rotation. Then 

i
i

i

M F
T

M F
¢-

= ¢- 2nF -  

is a unit tangent vector at iF .  Let  be the angle 
between 1  -  iiF F+  and  iT , therefore 

2 cosig f=  
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Now use Eq. (4.6) to find iU , Eq. (4.1) to find control 
points iV  and iW  Eq. (4.8) for continuity at iF , Eq. 
(4.9) for continuity at 1iF + . Finally, we use rational 
cubic interpolant, in Eq. (2.1), for required circular arc. 

6. END CONDITIONS 

A compatible choice, which is quite appropriate for the 
curve scheme of this paper, is presented here. For 
tangent at first point, let 0q  be the angle between 

01  -  F F  and 02  -  F F . Take 0 0q q= -  for anti-
clockwise rotation of points 0 1,   F F  and 2F . Let T0 be 
the rotation of 1  F  around 0  F  by an angle 0q  on the 
plane passing through 0 1,   F F and 2F . Then Equation 

Section 6 

2
01

0 0 0 0 0
0 01

0 0
0 0 0 0

( )
,

2( ).
2

, 3( )
3

F F
U F T

F F T
F U

V D V F

m m
ü- ïï= = + ïï- ïïýï+ ïï= = - ïïïþ

 (6.1) 

where 0m  is determined by the condition  

0 0 0 1U F U F- = -  

and 0 0 &   V D  are taken from (4.1) & (2.3) 
respectively. 

 

 

 
 
 
 

Fig. 5 (a) Rational Cubic Spline with second last 
interval as circular arc piece, (b) the 

corresponding curvature plot. 

Similarly for tangent at last point, let 0q  be the angle 
between 1 nnF F- -  and 2 nnF F- -  . Take n nq q= -  
for anti-clockwise rotation of points 1,n nF F -  and 

2nF - . Let nT  be the rotation of 1nF -  around nF  by an 
angle 0q  on the plane passing through 1,n nF F -  
and 2nF - . Then 

2
1

1 1 1
1

1
1 1

( )
,

2( ).
2

, 3( )
3

nn
n nn n n

n nn

n n
n nn n

F F
U F T

F F T
F U

W D F W

m m-
- - -

-

-
- -

ü- ïï= = + ïï- ïïýï+ ïï= = - ïïïþ
 (6.2) 

where n-1 is determined by the condition  

1 1 1nn n nU F U F- - -- = -  

and -1  &   nnW D  are taken from (4.1) & (2.3) 
respectively. 

 

 

 

 

 

Fig. 6 (a) A rational cubic spline with 2nd interval 
as circular arc for radius  16r = , (b) the 

corresponding curvature plot. 

 
 

 

 

 

 
 

Fig. 7 (a) A cubic spline with its 2nd interval as 
circular arc for center (0,10, 2.5)M = , (b) the 

corresponding curvature plot. 

7. ALGORITHM 

In this section a high-level description of an algorithm 
for generating an interpolating curve, which modifies its 
shape interactively according to the proposals described 
in above sections, is given. The algorithm is presented 
in C-like pseudo code. 
//----- Construction of exact derivatives 
ExactDerivatives 
{ 
     Calculate D[0] using (6.1); 
     Calculate D[n] using (6.2); 
     Find exact derivatives D[i], i=1..n-1, using (2.5). 
} 
//----- To preserve continuity at F[i] & F[i+1] 
PreserveContinuity 



IIUM Engineering Journal, Vol. 1, No. 2, 2000  M. Sarfraz and Z. Habib 

 7

{ 
     if (i > 0) // to preserve continuity at F[i] 
 use Eq. (4.8); 
     if (i < n) // to preserve continuity at F[i+1] 
  use Eq. (4.9); 
} 
//----- Control points V[i], W[i] 
ControlPoints 
{ 
     if (Spline==’Line’) 
 use Eq. (4.4); 
     else if (Spline==’Conic’ || Spline==’Circular’) 
     { 
use Eq. (4.3); 
     } 
     else  // for cubic spline 
 use Eq. (2.2); 
} 
//----- Circular, Elliptic, Parabolic and Hyperbolic  spline 
ConicSpline 
{ 
     Calculate D[0] using (6.1); 
     T[0] = (D[0]-F[0])/AbsVec(D[0]-F[0]); 
     for (i=0; i<n; i++) 
     { 
Mu = SqrVec(F[i+1]-F[i]) / (2.0*DotProd(F[i+1]-F[i],T[i])); 
U = F[i] + Mu*T[i]; 
D[i+1] = F[i+1] - U; 
T[i+1] = D[i+1]/AbsVec(D[i+1]); 
if (Spline== ‘Circular’) 
     Gama[i] = 2.0*DotProd(F[i+1]-F[i],U-F[i]) /  
          (AbsVec(F[i+1]-F[i])*AbsVec(U-F[i])); 
 ControlPoints; 
     } 
} 
//----- Circular arc for ith segment 
CircularArc 
{ 
     Spline = ‘Circular’; 
     T[i] = D[i]/AbsVec(D[i]); 
     Mu = SqrVec(F[i+1]-F[i]) / (2.0*DotProd(F[i+1]-
F[i],T[i])); 
     U = F[i] + Mu*T[i]; 
     Gama[i] = 2.0*DotProd(F[i+1]-F[i],U-F[i]) / 
                     (AbsVec(F[i+1]-F[i])*AbsVec(U-F[i])); 
     ControlPoints; 
     PreserveContinuity; 
} 
//----- Circular arc for ith segment when radius is given 
CircularArcForRadius 
{ 
     Spline = ‘Circular’; 
     N = (F[i]+F[i+1])/2.0; 
     b = sqrt( sqr(Radius) - sqr(AbsVec(F[i]-F[i+1])/2.0) ); 
     if (ClockWise) 
      Angle = -Pi/2.0;   // for clockwise rotation of points 
     else 
      Angle = Pi/2.0;   // for anti clockwise rotation of points 
     Ud = PointOfIntersection(F[i],D[i],F[i+1],D[i+1]; 
     e = Rotation(F[i+1],N,Angle,Ud); // Rotation of F[i+1] 
about N through Angle on the  
//  plane of F[i+1], N & Ud. 
     e = (e-N)/AbsVec(e-N); 
     M = N + b*e; 
     Phi = acos(DotProd(N-M,F[i]-M)/(AbsVec(N-
M)*AbsVec(F[i]-M))); 
     Gama[i] = 2.0*cos(Phi); 
     if (!ClockWise) 
Phi = -Phi;    // for anti clockwise rotation of points 

     T = Rotation(F[i+1],F[i],Phi,M);  // Rotation of F[i+1] 
about F[i] through Phi on the  
//  plane of F[i+1], F[i] & M. 
     T = (T-F[i])/AbsVec(T-F[i]); 
     Mu = SqrVec(F[i+1]-F[i]) / (2.0*DotProd(F[i+1]-F[i],T)); 
     U = F[i] + Mu*T; 
     ControlPoints; 
     PreserveContinuity; 
} 
//----- Circular arc for ith segment when center is given 
CircularArcForCenter 
{ 
     Spline = ‘Circular’; 
     if (ClockWise) 
Angle = Pi/2.0;   // for clockwise rotation of points 
     else 
      Angle = -Pi/2.0;   // for anti clockwise rotation of 
points 
     T = Rotation(M,F[i],Angle,F[i+1]); // Rotation of M about 
F[i] through Angle on the  
//  plane of M, F[i] and F[i+1]. 
     T = (T-F[i])/AbsVec(T-F[i]); 
     Phi = acos(DotProd(F[i+1]-F[i],T)/AbsVec(F[i+1]-F[i])); 
     Gama[i] = 2.0*cos(Phi); 
     Mu = SqrVec(F[i+1]-F[i]) / (2.0*DotProd(F[i+1]-F[i],T)); 
     U = F[i] + Mu*T; 
     ControlPoints; 
     PreserveContinuity; 
} 
//----- Main body of the algorithm 
main() 
{ 
     read input data F[i] and shape control parameters 
Gamma[i],  
          i = 0..n; 
     ExactDerivatives; // Exact derivatives D[i], i = 0..n 
     Spline = ‘Cubic’; 
     for(i=0; i<n; i++) 
          ControlPoints; // Control points V[i], W[i] for 
cubic spline 
      
     //----- Conic Spline (Circular, elliptic, parabolic, 
hyperbolic) 
     read nature of Spline (Circular, Conic); 
     if (Spline != ‘Circular’) 
 read Gama[i] for i = 0..n-1; 
     ConicSpline;  // Control points V[i], W[i] for 
conic spline, i = 0..n-1. 
     //----- Circular arc for ith segment 
     read position i; 
     CircularArc; // Control points V[i], W[i] for circular 
arc. 
     //----- Circular arc for ith segment when radius is given 
     read position i and Radius; 
     if (Radius <= AbsVec(F[i]-F[i+1])/2.0) 
     cout << “Invalid Radius” << “\n”; 
     CircularArcForRadius;  // Control points V[i], 
W[i] for circular arc. 
     //----- Circular arc for ith segment when center is given 
     read position i and Center M; 
     if (Abs(AbsVec(F[i]-M)-AbsVec(F[i+1]-M)) > 0.01) 
      error("Give correct center...."); 
     CircularArcForCenter; // Control points V[i], W[i] for 
circular arc. 
     //----- Straight line segment 
     Spline = ‘Line’; 
     ControlPoints;  // Control points V[i], W[i] 
     //----- Rational cubic spline 
     for (i=0; i<n; i++) 
 for(j=0; j<=20; j++) 
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 { 
      t = j/20; 
      calculate P(t) using (2.1); 
      plot graph; 
 } 
} // end of main algorithm. 

8. DEMONSTRATION 

The demonstration in this section has used derivative 
end conditions of Section 5. Figure 3 contains a block of 
conic splines where Fig. 3(a) is Circular spline, Fig. 3(b) 
is Elliptic spline, Fig. 3(c) is Parabolic spline, and Fig. 
3(d) is Hyperbolic spline. Fig. 4 represents the 
corresponding curvature plots of the curves in Fig. 3. 
The demonstration of a rational cubic spline when it 
contains conic segments is made in Fig. 5. Figure 5(a) is 
a rational cubic spline with second last curve as circular 
spline, the corresponding curvature plot in Fig. 5(b) 
verifies the result. The demonstration of the spline, 
where some circular arcs with specific radius are to be 
plotted, is given in Fig. 6. The Fig. 6(a) is a rational 
cubic spline with 2nd interval as circular arc for radius 

 16 r =  where as the Fig. 6(b) is its corresponding 
curvature plot. Figure 7 demonstrates the circular arcs at 
some specific center.  The Fig. 7(a) is a cubic spline 
with its 2nd interval as circular arc for center 

(0,10, 2.5) M =  where as the Fig. 7(b) is its 
corresponding curvature plot. 

9. CONCLUSION AND FUTURE WORK 

We have described an interval controlled rational cubic 
interpolation scheme. The scheme offers a number of 
possible ways in which the shape of the corresponding 
curves may be altered by the users. It is therefore felt 
that such a scheme could be a useful addition to an 
interactive design package, with the user having enough 
control over the curve segments. The provision of the 
shape parameters, in the description of the piecewise 
rational functions, provides freedom to modify the 
shape in desirous regions  in a stable manner.  

The rational spline scheme is meant for parametric 
curves and is capable of designing plane as well as 
space curves. It is an interpolatory rational spline 
scheme enjoying all the ideal geometric properties. It 
has features to produce all types of conic curves in such 
a way that the whole design curve may be produced as a 
circular, elliptic, parabolic, or a hyperbolic spline curve. 
In addition, the desired conic pieces may also be fitted 
within the rational cubic spline. 

Overall smoothness of the rational cubic spline is 2C  
whereas the conics are stitched with 1G  continuity. The 
curve scheme is extendable to surfaces and authors are 
lookng to publish it in a subsequent paper.  

Some extra shape control parameters are also 
expected to be included to have some more degrees of 
freedom for designers. These shape parameters may be 
like point, interval, or biased shape control parameters 
used by various authors including Nielson[8], Foley[3], 
Barsky[1], Sarfraz[10-14], Gregory et al[4-5]. 
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