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ABSTRACT: In this paper, higher-order dispersive non-linear Schrodinger equations are 

studied. Their solitary wave-series solutions with continuity of the derivatives and 

specific discontinuity of the derivatives at the crest are presented. Furthermore, 

convergence of the series’ solutions is also validated and discussed with the help of 

graphs.  

ABSTRAK: Kertas ini mengkaji persamaan Schrodinger serakan taklinear turutan tinggi. 

Penyelesaian siri-gelombang tunggalnya dengan kamiran berterusan dan kamiran tak 

berterusan pada maksimum telah dibentangkan. Penumpuan penyelesaian siri juga telah 

diperiksa dan dibincangkan dengan bantuan graf-graf. 

KEYWORDS: Schrodinger equation; solitary wave-series solution; continuity and 

discontinuity of derivatives at crest 

1. INTRODUCTION  

It is well-known that the Schrodinger equation plays an important role in plasma 

physics, quantum mechanics and wave propagation in non-linear media [1-4] . In optical 

fibers propagation of short pulses is governed by the nonlinear Schrodinger equation [5]. 

Azzouzi et al. [6] recently presented Solitary wave solutions for high dispersive cubic-

quintic nonlinear Schrodinger equation. Li Yao et al. [7] presented solution to nonlinear 

Schrodinger equation by variational principle method. The authors [8-11] discussed 

different ways of solutions for nonlinear Schrodinger equations. 

Currently in this paper, first solitary wave technique is applied and then the homotopy 

analysis method (HAM) is employed for the series solution, which was introduced first by 

Liao [12-13] . The HAM is independent of a small or large parameter and has been applied 

successfully to solve nonlinear problems such as viscous flow, heat transfer, nonlinear 

oscillations and Thomas Fermi atom model [14-38]. Further the HAM has certain other 

advantages over the perturbation expansion method, the delta expansion method and the 

Lypanov's expansion method, that HAM allows us great freedom and flexibility: (i) to 

control the region of convergence; (ii) to choose the initial guess; (iii) to choose the 

auxiliary linear operator. 

2. MODEL SCHRODINGER EQUATIONS AND THEIR SOLITARY 

WAVE-SERIES SOLUTIONS   

First consider the non homogeneous linear Schrodinger equation [8] : 
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Where ( )xtu ,  is a complex valued function. For solitary wave solution, under the 

transformation  ,ctx −=η ( ) axtu =, ( )ηf  and ( ) ( )ηgxtF =,  , Eq. ( )1  reads 

( ) ( ) ( ) ( ),  2 ηηγηαη gafifacfia =+′′+′                            (2)  

Where c  is the wave speed, a  the wave amplitude, and the prime denotes the derivative 

with respect to  η . For simplicity in case of ( )xtF ,  amplitude is choosen to be 1. Consider 

the case that ( )ηf  arrives its maximum at the origin. Obviously, ( )ηf  and its derivatives 

tend to zero as +∞→η . The corresponding boundary conditions of the solitary wave 

having discontinuity of derivatives at crest are 

( ) ( )              .0      ,10 =∞+= ff                                     (3) 

We are considering only two cases of forcing function ( )ηg  i.e., ( ) 0=ηg  and 

( ) ηη −= eg  . In order to obtain the series solution for  ( ) 0=ηg  , we choose 

( ) ,0

ηη −= ef                                                    (4) 

,)( fff −′′=L                                                  (5) 

as initial approximation of f  and auxiliary linear operator L  satisfying                                                                

[ ] .021 =+− ηη
eCeCL                                           (6) 

where  C1   and  C2   are arbitrary constants. 

If  ]1,0[∈p  is an embedding parameter and 1η  is auxiliary non zero parameter then 

( ) ( )[ ] )],,([  ),( 1 10 ppfpp ηφηηφ NL η=−−                         (7) 

subject to boundary conditions 

( ) ( ) ,0, ,1,0 =∞′= pp φφ                                          (8) 
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and when  0=p   and  1=p  , then 

( ) ( ) ( ) ),(1,  ,0, 0 ηηφηηφ ff ==                                 (10) 

As the embedding parameter p  increases from 0  to 1  , ( )p,ηφ  varies (or deforms) 

from the initial approximation ( )η0f  to the solution ( )ηf  . Using Taylor's theorem and 

equation )10(  , one obtains 

( ) ( ) ( ) , ,
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in which 
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Clearly, the convergence of the series )11(  depends upon 1η . Assume that 1η  is 

selected such that the series  )11(  is convergent at 1=p  , then due to equation )10(  we 

have 

( ) ( ) ( ).
1

0 ηηη m

m

fff ∑
∞

=

+=                                      (13) 

For the  mth   order deformation problem, we differentiate equations )7(  and )8(  

timesm −  w.r.t p   and then setting 0=p   and finally dividing it by !m  the ordermth −   

deformation equation for 1≥m  is given by 

( ) ( )[ ] ),(  11 ηηχη mmmm ff RL η=− −                          (14) 

( ) ( ) ,0   ,00 =∞+= mm ff                                  (15) 

where 

.)( 11

2

1 −
′′′
−

′
− ++= mmmm afifaciaf γαηR                           (16) 

To obtain the solution of above equation up to first few order of approximations, the 

symbolic computation software MATHEMATICA is used. The series solution up to first 

few order of approximations is 

    
 

                                                                                                                                       (17) 

when  ( ) ηη −= eg   then solitary wave series solution having discontinuity of derivatives 

at crest up to  first few order of approximations is 
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 (18)                                                                                                                         

For continuity of derivatives at crest the boundary conditions are 

( ) ( ) ( ) .0  ,00 ,10 =∞+=′= fff                                        (19) 

Taking the initial guess 

( ) ,2 2

0

ηηη −− −= eef                                    (20) 

the solitary wave series solution, having continuity of derivatives at crest, using Eqs.  

(5),  (19)  and  (20) , up to first few order of approximations are, when  ( ) 0=ηg  , 

    

        (21) 

when ( ) ηη −= eg  , 
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Consider the nonlinear Schrodinger equation  [ ]8  : 
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where ( )xtu ,   is a complex valued function. For solitary wave solution Eq. (23)  

reduces to 

( ) ( ) ( ) ( ) ( ) ,0  
22 =++′′+′ ηγηηεηαη afiafaffacfai                   (24) 

Under certain assumptions, as in the solution of Eq. (1), the solitary wave-series 

solution up to first few order of approximations at  4/12 −=η  , is of the form, when 

discontinuity of derivatives at crest, 

    

                                                                                                                       (25) 

when continuity of derivatives at crest, 
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                                                                                                                                (26) 

The nonlinear Schrodinger equation as considered by Xu L. and Zhang J.  [ ]10  : 
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where ( )xtu ,  is a complex valued function. 

Under certain assumptions, as in the solution of Eq. (1), the solitary wave-series 

solution up to first few order of approximations at 4/13 −=η  of Eq.(27) is of the form, 

when discontinuity of derivatives at crest, 

    

        (28) 

When continuity of derivatives at crest, 

    
                                                                                                                             

  (29) 
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where ( )xt,ψ  is a complex valued function. 

Under certain assumptions, as in the solution of Eq. (1), the solitary wave-series 

solution up to first few order of approximations at 14 −=η  of Eq.(30) is of the form, when 

discontinuity of derivatives at crest, 

    

  (31) 

when continuity of derivatives at crest, 

    
 

                                                                                                                       (32) 

The equation considered by Azzouzi et al. [6] is 
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 (33) 

The solutions in this case at  4/35 −=η   are, when discontinuity of derivatives at crest, 
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         (34) 

when continuity of derivatives at crest, 

    

  (35) 

3. CONVERGENCE OF THE SERIES SOLUTIONS 

Clearly Eqs. 17, 18, 21, 22, 25, 26, 28, 29, 31, 32, 34 and 35 contains the auxiliary 

parameters 1η , 2η , 
3η , 4η  and 

5η  which gives the convergence region and rate of 

approximation for the homotopy analysis method. For this purpose, the η  -curves are 

plotted for f for different order of approximations. Figures  1 to 12  are plotted for the 

solutions given in Eqs.  17, 18, 21, 22, 25, 26, 28, 29, 31, 32, 34 and 35, respectively. It is 

obvious from Fig. 1 that the range for the admissible value for 1η  is 02.0 1 <<− η . Figure 

2 shows that the range for the admissible value for  1η  is 052.0 1 <<− η  . Figure 3 

depicts that the range for the admissible value for  1η  is 02.0 1 <<− η . 

Figure 4 indicates that the range for the admissible value for 1η  is 4.08.0 1 −<<− η . 

Figure 5 shows that the range for the admissible value for 2η  is 03.0 2 <<− η . Figure 6 
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describes that the range for the admissible value for 2η  is 03.0 2 <<− η . Figure 7 shows 

that the range for the admissible value for 
3η  is 03.0 3 <<− η . Figure 8 indicates that the 

range for the admissible value for 
3η  is 03.0 3 <<− η . Figure 9 shows that the range for 

the admissible value for 4η  is 5.07.1 4 −<<− η . Figure 10 shows that the range for the 

admissible value for 4η  is 7.02.1 4 −<<− η . Figure 11 describes that the range for the 

admissible value for 5η  is 6.07.0 5 −<<− η . Figure 12 shows that the range for the 

admissible value for 5η  is 9.02.1 5 −<<− η . These all prescribed values of 1η , 2η , 3η , 

4η  and 
5η  in their respective intervals shows region of convergence for their respective 

series solutions. 
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4. CONCLUSION 

In this paper, solitary waves-series solutions are obtained with and without continuity 

of the first derivative at crest. The auxiliary linear operator in all the cases is same. The 

initial guess in all the cases of discontinuity of the derivative at the crest are same and for 

the cases having continuity of the derivative at the crest are similar. In all the cases series 

solutions are obtained by taking the values of homotopy parameters 1η , 2η , 
3η , 4η  and  

5η from their interval of convergence. The advantage of this method over the other 

methods is that it itself provides us a convenient way to control the convergence of the 

approximation series, which shows the flexibility and potential of this method to apply it 

to nonlinear problems in engineering and science. 
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