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ABSTRACT: Electroencephalography (EEG) is a non-invasive method for measuring 

electrical activity in the brain, which reflects the underlying neural activity of the brain. In 

recent years, portable EEG devices become more ubiquitous in domestic uses, research and 

clinical applications due to their compact design and ease of use in various settings. Like 

many other bio signal modalities, EEG devices are prone to the interference of physiological 

artifacts, mainly from eye blinking. However, since portable EEGs are equipped with only a 

few channels at most or sometimes just contain a single channel, removing the eye blink 

artifact from the EEG data is a challenge. The conventional artifact removal method using 

source separation cannot be applied to a single-channel EEG signal. Eye blink artifact removal 

is important because its spectrum overlaps with the EEG’s theta and delta frequency bands, 

which can be confused with brain activity. Univariate-based removal method is compatible 

with EEG data with few channels. This paper presents a method to remove eye blink artifact 

based on single-channel EEG processing using Empirical Mode Decomposition (EMD) and 

Adaptive Noise Cancellation (ANC) system. By applying energy thresholds in EMD, there is 

no need to incorporate EMD with other methods to extract eye blink component accurately. 

ANC is used to converge the extracted eye blink component for effective eye blink artifact 

removal with very minimal changes to affected EEG data. The proposed method was tested 

on simulated EEG signals, and the result showed a good Root Mean-Square Error (RMSE) 

average value of the cleaned EEG (0.3211 ± 0.2738) and a high Correlation Coefficient (CC) 

average value of the cleaned EEG (0.9430 ± 0.0839). 

ABSTRAK: Electroensefalografi (EEG) adalah kaedah bukan invasif untuk mengukur aktiviti 

elektrik di dalam otak, yang mencerminkan aktiviti saraf dalam otak. Kebelakangan ini, 

peranti EEG mudah alih menjadi lebih meluas dalam kegunaan domestik, penyelidikan dan 

aplikasi klinikal kerana reka bentuknya yang padat dan kemudahan penggunaan dalam 

pelbagai tetapan. Seperti kebanyakan modaliti biosignal yang lain, peranti EEG terdedah 

kepada gangguan artifak fisiologi, terutamanya daripada kerdipan mata. Walau 

bagaimanapun, memandangkan EEG mudah alih dilengkapi dengan paling banyak pun hanya 

beberapa saluran, atau kadangkala hanya satu saluran, mengalih keluar artifak kerdipan mata 

daripada data EEG adalah satu cabaran. Kaedah penyingkiran artifak konvensional 

menggunakan pemisahan sumber tidak dapat digunakan pada alat EEG satu saluran. 

Penyingkiran artifak kerdipan mata adalah penting kerana spektrumnya bertindih dengan jalur 

frekuensi teta dan delta EEG, maka boleh dikelirukan dengan aktiviti otak. Kaedah 

penyingkiran berasaskan univariat adalah serasi untuk data EEG dengan  saluran yang sedikit. 

Kertas kerja ini membentangkan kaedah untuk membuang artifak kelipan mata berdasarkan 

pemprosesan EEG saluran tunggal menggunakan Penguraian Mod Empirikal (EMD) dan 

Pembatalan Bunyi Adaptif (ANC). Dengan menggunakan ambang tenaga dalam EMD, tiada 
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keperluan untuk menggabungkan EMD dengan kaedah lain bagi mengekstrak komponen 

kerdipan mata dengan tepat. ANC digunakan untuk menumpu komponen kerdipan mata yang 

diekstrak bagi penyingkiran artifak kerdipan mata yang berkesan dengan perubahan yang 

sangat minimum pada data EEG yang terjejas. Kaedah yang dicadangkan telah diuji pada 

signal EEG yang disimulasi, serta hasilnya menunjukkan nilai purata Ralat Min Kuasa Dua 

Purata (RMSE) yang baik bagi EEG yang dibersihkan (0.3211±0.2738), dan nilai purata 

Pekali Korelasi (CC) yang baik bagi EEG yang dibersihkan (0.9430±0.0839). 

KEY WORDS:  Adaptive Filter, Eye Blink Extraction, EMD, Energy Thresholding, 

Univariate Processing 

1. INTRODUCTION 

 Electroencephalography (EEG) is one of the brain monitoring modalities that records 

electrical signals that originate from the neuronal activities across the cerebral cortex of the 

brain. These signals correspond to the higher level of the brain functions such as thinking, 

solving problems, memory, learning, feeling and processing emotions, intelligence, behavior 

regulation and body movement to some extent. As such, coupled with EEG equipment that is 

mainly easy to be used, there are many types of research on the matter related to the brain, 

utilizing EEG as a medium or small input data to analyze and explore the exactitude of a 

hypothesis and to synthesize solution for the objective of the research. For example, Jacobsen 

et al. use EEG to study EEG’s beta power variability that corresponds to gait movement 

variability down the terrain [1]. The design of the EEG equipment is relatively of simpler 

implementation, making it possible to be miniaturized into a compact and portable EEG device 

[2]. Likewise, the nature of portable EEG that is simpler and less cumbersome to be set up than 

medical-grade EEG, making it stand out for use. As such, the interest in incorporating the 

portable EEG device into brain related research and application development is becoming 

increasingly ubiquitous [3]–[5]. A review of different brands of portable EEG is also made of 

their respective efficacy on different domains of brain related study [6]. The application of 

EEG in research and domestic use is expected to remain ubiquitous. 

 EEG signals propagate from the cerebral cortex, an outer layer of the brain, then across 

the meninges, skull, and scalp of the subject to the EEG electrodes, making them prone to 

contamination with other signals that are not of brain origin, which are called artifacts. These 

artifacts may be external, meaning they originate from the EEG equipment like electrical 

interference and alternating current artifact, or internal, meaning signals that originate from a 

physiological body such as electrooculogram (EOG), electromyogram (EMG) and 

electrocardiogram (ECG). Although the internal artifacts are of physiological origin, these 

signals may not be desirable for brain-related analysis because they are not implicative to brain 

activity during the EEG recording session. Hence, in most cases, artifacts need to be discarded 

in order to obtain clean, pure EEG data. Unlike internal artifact, external artifacts 

contamination can be avoided by correct equipment set up. While internal artifacts prevention 

is accomplished by limiting the subject movements and making sure the subject is calm during 

EEG recording. Likewise, there have been many techniques being proposed on how to remove 

these internal artifacts. Nevertheless, eye blinks are considered one of the most pervasive 

artifacts contaminating the EEG signals. Eye blink artifact is persistent in its presence during 

EEG recording even with restrictive and controlled experimental design. Ultimately, there 

would be many scenarios where eye blink artifact removal comes in handy when it comes to 

EEG recording.  

 Therefore, with relation to portable EEG, the univariate-based eye blink removal 

method is preferred compared to the multivariate-based method. This is because the portable 
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EEG is only equipped with a few EEG channels. Univariate refers to a single EEG channel use, 

while multivariate refers to the use of multiple EEG channels. The multivariate-based method 

generally needs a larger number of inputs as its performance is linearly proportional to the 

number of inputs. Therefore, the univariate method is more effective than the multivariate 

method in processing EEG data retrieved from portable devices as it only needs one input to 

perform effectively. The univariate method also needs to be able to remove the eye blink 

without affecting the EEG component that is superimposed with the eye blink artifact while 

maintaining its quality of being straightforward in terms of implementation.  

 In this paper, we propose a method of eye blink region identification using five samples 

window-mean and an energy thresholded-Empirical Mode Decomposition (EMD) to extract 

the eye blink component, coupled with Recursive Least-Mean Square (RLS) adaptive filtering 

to remove the eye blinks from single-channel EEG. The proposed method aims to approximate 

the eye blinks artifact within the identified eye blink region with high similarity as a reference 

in the adaptive noise cancellation system. 

2. RELATED WORKS 

 In this section, a few univariate eye blink removal methods are briefly reviewed, along 

with the basis of the proposed technique is elaborated. These includes the eye blink detection 

method, eye blink component extraction and eye blink artifact filtering. 

2.1 EEG Eye Blink Artifact Detection 

 Eye blink artifact is constituted of the overlapped frequency spectrum with EEG theta 

and delta frequency band (0.3 Hz to 7 Hz) that is indicated by 10 to 100 times bigger amplitude-

wise deflections within the EEG data [7]. Occurrences of eye blink artifact contamination in 

EEG data can be traced by abrupt prominent EEG magnitude change. Therefore is a foolproof 

way of detecting the eye blink artifact. This is because the propagation of potential from 

corneal-retinal dipole by the eye lid during eye blinking activity exhibits abrupt deflective 

spikes in EEG recording [8]. The specific EEG recording brand may influence the temporal 

characteristic of the deflections. For example, a voluntary eye blink artifact captured using an 

OpenBCI amplifier, as shown in Fig. 1. (a) has different morphology when compared to an eye 

blink artifact that is captured using g.Tec amplifier in Fig. 1. (b), and Emotiv device in Fig. 1. 

(c). 

 

Fig. 1. Example of voluntary eye blink captured in frontal channel of three different 

EEG devices (a) OpenBCI, (b) g.Tec cap-type device, (c) Emotiv   

 Nevertheless, the consistency of the recorded eye blink artifact characteristic across any 

EEG equipment brand is shown temporally by the huge deflective spike in any EEG data that 

(a) 

(b) 

(b) (c) 
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contains the eye blink artifact. As such, most eye blink detection methods use amplitude-based 

quantification as means for non-eye blink and eye blink region segregation. This may be in 

terms of windowed amplitude mean as proposed by authors of [9], highest amplitude as 

reference for eye blink temporal span approximation as posited in [7], amplitude power, as 

demonstrated in [10], and amplitude energy as being presented in [11].  

 Therefore, amplitude-based quantification is suitable to be incorporated in detecting the 

EEG segment of interest. For the proposed method in this paper, amplitude-based thresholding 

based on five samples window-mean is used to gauge the EEG data amplitude differences to 

dismiss the samples with amplitude lower than the threshold but retain the samples that are 

higher than the threshold to mark the eye blink region, as being demonstrated in [12]. This 

approach is independent of any assumption on the duration of the eye blinking activity to avoid 

including clean EEG region with the identified eye blink region or excluding any portion of 

the eye blink region. 

2.2 Eye Blink Component Extraction 

 Decomposition-based univariate signal processing is a popular class of methods for eye 

blink removal. Lately, Singular Spectrum Analysis (SSA), with various implementation 

designs, has been proposed to remove eye blink artifact from a single EEG channel. However, 

the number of components or subspaces that an input can be composed into must be preset by 

mapping the single-channel EEG into a multivariate data matrix before decomposition by SSA 

is executed. Subsequently, the appropriate workaround is introduced to ensure satisfactory eye 

blink component reconstruction. For example, Maddirala et al. use Hjorth mobility as a 

threshold to choose the SSA subspaces for the eye blink reconstruction [13]. While in [14], the 

eigenvalue ratio is used as the threshold to select the subspaces that correspond to the eye blink 

component for eye blink reconstruction. Nevertheless, different temporal lengths of the 

recorded EEG and also possibly inconsistent morphology of the eye blink artifact due to 

different use of EEG devices may cause the variability on the suitable number of subspaces 

(M) to be preset for the signal decomposition that yields good component separation, which 

ultimately, causes variability to the threshold value for SSA subspaces selection. The ambiguity 

of the value that needs to be used in the parameters setting requires preparatory testing, which 

may complicate the implementation of the proposed methods. In contrast, EMD may bypass 

this problem for its empirical way of decomposing a signal. Therefore, EMD is adaptable to 

variable eye blink morphology and EEG temporal length without any respective parameters’ 

adjustment. 

 EMD is a data-driven method that decomposes signals in the time domain by a sifting 

process. This process identifies all local extrema in the input signal, starting with those 

corresponding to the smallest oscillation period. Then, the identified oscillatory mode is 

extracted, which also yields the intermediate residual, as shown in Fig. 2. This oscillatory mode 

is called the intrinsic mode function (IMF). The identified extrema are used to construct upper 

and lower envelopes before being averaged to find the mean envelope. The mean envelope is 

then subtracted from the signal to acquire the oscillatory mode that consists of a spectral that 

is higher than the spectral of the derived mean envelope. A thorough explanation of how EMD 

operates is well presented by Zeller et al. in [15]. Generally, EMD segregates signal 

components locally and separates the data into locally non-overlapping time scale components.  

From the decomposing eye blink region perspective, the first IMF is extracted from the 

signal, the intermediate residual is produced, and the sifting process is iterated again using the 

intermediate residual to extract other IMFs until it becomes a monotonic component. 

Consequently, the later extracted IMF has slower oscillatory characteristics than the former. 
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This shows that EMD yields IMF components that start with the highest oscillatory rate to the 

final monotonic residual. Moreover, using the local extrema to derive the IMF allows the 

derivation to be automatic and adaptive time-variant filtering, which results from IMFs that 

exhibit non-stationarity nature with amplitude-frequency modulated (AM/FM) characteristics. 

As such, the nature of EMD sequential operations in filtering out IMFs can be approximated 

as a dyadic filter. This is because, on average, the amount of the extrema is reduced by one-

half from an IMF to the next IMF. 

 

Fig. 2. The simplified sifting process visualization. (a) Extrema identification. (b) Mean 

envelope construction. (c) First IMF. (d) The residual, or the last IMF. 

 Since the advent of EMD, it has been integrated into the process of EOG artifact 

removal and has subsequently been widely disseminated in the academic literature. In [16], the 

correlation coefficient (CC) between the summed up IMFs with the true EEG component is 

used as an indicator for eye blink component presence, which is calculated after every time an 

IMF is added up from the first IMF. When the CC decreases to lower than 0.9, the latest IMF 

that is added up is deemed to have eye blink component. Hence, starting from that latest IMF 

to the residual, the IMFs are added up to reconstruct the eye blink component that can be used 

as a reference for adaptive noise cancellation (ANC). However, this technique needs the ground 

truth pure EEG that is similar in its temporal features to the EEG within the eye blink-

contaminated data in order to calculate the CC value, which is counterproductive. While in 

[17], CC is also used between the artifactual EEG segment and the IMFs. Due to the scale of 

the eye blink component being larger than the EEG signal, the CC value obtained with IMFs 

containing eye blink component is larger. The CC threshold of 0.5 is used to discriminate 

between IMFs representing EEG and eye blink component, of which the IMFs with CC that is 

larger than 0.5 will be discarded before reconstruction. This method is vulnerable to the loss of 

some EEG components, especially the one that lies within the delta band. In [18], the 95% 

confidence interval of log energy of fractional Gaussian noise (fGn) is used as a threshold to 

select IMFs representative of EOG artifact. However, there is no workaround to deal with the 
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potential of EMD’s mode-mixing effect which would possibly cause some EEG component 

removal along with the reconstructed EOG. 

 The ability of EMD to decompose a signal into their respective oscillatory modes also 

makes it possible to employ multivariate data processing for a single EEG channel. For 

example, EMD is incorporated with canonical correlation analysis (CCA) in a way that the 

EMD is made to produce partial separation of eye blink artifact from the EEG data. The CCA 

is used to find the canonical weights that can be used to approximate the eye blink component 

that is free from EEG mixing [19]. Nevertheless, EMD can be utilized solely to extract the eye 

blink component without combining it with other techniques for its empirical method in 

decomposing the input signal. 

 We proposed using five samples window-mean thresholding to identify the eye blink 

regions within the single-channel EEG. Each identified region is then decomposed using EMD 

to extract the eye blink component. Thus, EMD is used only upon the isolated region as 

decomposing a time series with the transient component, which in this case is the eye blink 

component, causes mode-mixing due to over-sifting that may be induced during IMF 

derivation, as discussed by Zeller et al. [15]. Also, the EMD used for the proposed method is 

as proposed by Rato et al. [20], as its implementation addresses the problem of the EMD in 

terms of extrema computation, extrema interpolation, boundary conditions and sifting criterion. 

2.3 Eye Blink Artifact Removal 

 Adaptive filtering is a filter which receives reference input 𝑟1(𝑛) as its input impulse to 

find the least resultant error e(n) between the produced impulse response y(n) and the targeted 

component 𝑟2(𝑛). An adaptive filter can be represented as an impulse filter as the following 

Eq. 1: 

y(n) = ∑ 𝑤𝑘 ∙ 𝑟1(𝑛 − 𝑘)𝐿
𝑘                                                                                                   (1) 

The parameter L is the order of the filter, 𝑤𝐿 is the filter coefficient with span of L, 𝑟1(n) is the 

reference input and y(n) is the impulse response. 

 The 𝑟1(n) is useful as it is the essential factor in producing the impulse response that is 

converged to the desired component 𝑟2(n) that is mixed with the input signal s(n). This is 

because the source of 𝑟1(n) comes from the same source as 𝑟2(𝑛). In the context of the interest, 

𝑟1(n) and 𝑟2(𝑛) represent eye blink component. This means the eye blink component must be 

available to remove the respective eye blink artifact from the affected EEG segment.  

 In this paper, the eye blink component is extracted from the identified eye blink region 

in noisy EEG signals, as opposed to relying on the EOG channel which records the eye 

activities such as blinking and movement. The eye blink component extraction method is 

incorporated because of consideration for the ubiquity use of portable EEG in research and 

domestic uses. For the univariate method, eye blink removal is more plausible in its use of EEG 

data recorded using portable EEG devices as it only consists of a few EEG channels and many 

have no EOG electrode. Therefore, the eye blink removal method is designed to operate without 

the requirement for an EOG channel by extracting the eye blink component from noisy EEG. 

This extracted eye blink component is used as the reference 𝑟1 in adaptive filtering. 

 In adaptive filtering, 𝑟2(𝑛) removal is done by producing y(n) that is equivalent to the 

eye blink component within the EEG segment to not affect the EEG component during the 

removal. In order to find y(n), the error e(n) is used as feedback to assist the convergence of 

y(n). As shown in Eq. 2, the e(n) is the difference between the y(n) and 𝑟2(𝑛) that is desired to 
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be as small as possible, as the smaller the e(n) results better converged y(n), as depicted in Eq. 

3.  

e(n) = 𝑟2(𝑛) – y(n)                                                                                                                                                 (2) 

e(n) ≈ 0, y(n+1) ≈ 𝑟2(n+1)                                                                                                                                (3)  

 In order to cater for the next y(n) computation, the current e(n) is used as feedback into 

the adaptive algorithm. The adaptive algorithm optimizes the weight to converge the y(n+1) to 

𝑟2(𝑛 + 1), as being described in the following: 

𝑤𝑘(n+1) = 𝑤𝑘(𝑛) − 2 ∙ 𝜇 ∙ 𝑒(𝑛) ∙ 𝑟1(𝑛 − 𝑘)                                                                    (4) 

The value of 𝜇 is between 0 and 1. 

y(n+1) = ∑ 𝑤𝑘 ∙ 𝑟1(𝑛 + 1 − 𝑘)𝐿
𝑘                                                                                        (5) 

 The weight optimization in Eq. 4 is based on the least mean square error (LMS) 

algorithm. The 𝜇 parameter is a constant to ensure fast adaptation for 𝑤𝑘(n+1) that can 

converge y(n+1) to 𝑥2(𝑛) effectively. 

 In this paper, recursive least mean square error (RLS) is used for weight optimization 

because RLS needs lesser n iteration counts or steps number to converge the y(n) to its 

respective 𝑟2(𝑛), hence a faster convergence rate. Faster convergence impacts its output, 

especially when the input is of a short segment. This applies to the marked eye blink region as 

its temporal length may span at most by only 2 seconds. The RLS algorithm is as the following: 

𝑤𝑘(n+1) = 𝑤𝑘(𝑛) − 2 ∙ 𝜇 ∙ 𝑒(𝑛) ∙ 𝐾(𝑛)                                                                            (6) 

K(n) is the filter coefficient vector given by Eq. 7 as the following.  

𝐾(𝑛) = 
𝑃(𝑛)∙𝑟1(𝑛)

𝜆+ 𝑟1
𝑇(𝑛)∙𝑃(𝑛)∙𝑟1(𝑛)

                                                                                         (7) 

P(k) is the inverse correlation matrix with its initialization as the following: 

P(0) = [

𝛿−1 0 ⋯ 0
0 𝛿−1 ⋯ 0
⋯ ⋯ ⋯ ⋯

0 0 ⋯ 𝛿−1

]                                                                                                 (8) 

The parameter 𝛿 is the regulatory factor and the constant k is the length of the tap input vector. 

The P(k) adaptation is done as depicted by the following equation. 

P(n+1) = 𝜆−1 ∙P(n) −𝜆𝑛−1 ∙K(n)∙ 𝑢𝑇(𝑛) ∙P(n)                                                                  (9) 

The fact that P(n) and K(n) need each other during the weight optimization is why it is called 

a recursive least mean square adaptive algorithm. 

3. METHODOLOGY 

 The implementation of the proposed method is described in this section. Fig. 3 

illustrates the outline of the methodology in terms of the block diagram. Firstly, the procedure 

for EEG dataset preparation is described. Then, the eye blink region detection, eye blink 

component extraction and eye blink artifact removal are explained. Finally, the performance 

metric is calculated upon the removal output accordingly with the original simulated EEG data 

that is juxtaposed with the performance metric from Egambaram et al. [19] to prove the 

effectiveness of our method. 
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Fig. 3. The block diagram of a methodology for our eye blink removal 

3.1 EEG Dataset Preparation 

 The EEG dataset used has been schemed to have an EEG component that can be ground 

truth data to assess the performance of the proposed method in preserving the brain-originated 

signals in the noisy EEG after eye blink artifact removal. Thus, EEG data is simulated by 

superimposing the pure EEG data with eye blink artifact. The superimposition of eye blink 

artifact can be understood as a linear mix between two signals: 

X(t) = Y(t) + Z(t)                                                                                                           (10) 

X(t) is the eye blink contaminated-EEG, while Y(t) is the pure EEG component and Z(t) is the 

eye blink artifact. The EEG data used in the experiment to assess the proposed technique is 

simulated in a way that it is possible to compare the performance metrics values, which is 

documented in [19]. Exponential functions represent the eye blink components Z(t) with 

different peak magnitudes that can be expressed mathematically as follows: 

𝑍(𝑡) = ∑𝐴𝑒−(10𝑡−𝐵)
2
                                                                                                    (11) 

A is the peak height ranges from 7 to 19 in magnitude and B is the temporal location of the 

peaks. 

 Fig. 4 (a) shows an example of the synthetic eye blink artifact. As for the EEG 

component, it is synthesized by using the pink noise for which its amplitude range between 

0.0±3. Fig. 4 (b) illustrates the synthetic EEG, Y(t). In order to obtain a synthetic eye blink 

artifact contaminated-EEG, X(t), the synthetic eye blink component and synthetic EEG are 

added together as demonstrated by Eq. 10. Fig. 4 (c) depicts the synthetic X(t). This dataset is 

used to evaluate the equivalent performance metrics that later are used to compare with other 

EMD-based technique proposed by Egambaram et al. Every unit of Y(t), Z(t) and the resultant 

X(t) are simulated with the length of 10 seconds at 256 sampling rate or 2560 samples. 

3.2 Eye Blink Region Detection 

 In order to extract the eye blink component, the eye blink regions and artifact-free 

regions within the EEG data need to be identified. The targeted processes only on the specified 

EEG regions not only reduce the computational requirement and time but also prevent the 

mode-mixing in the decomposed IMFs during eye blink component extraction by EMD. To be 

able to mark the eye blink region, amplitude thresholding is used to exploit the conspicuous 

difference of amplitude between pure EEG and eye blink artifact. In order to do so, the pure 

EEG maximum amplitude of the eye blink artifact-contaminated EEG needs to be ascertained 

beforehand. Accordingly, EEG data that is recorded or prepared that corresponds to the pure 

EEG component in the EEG of interest is computed as its maximum amplitude. This maximum 

EEG data 

simulation 
Eye blink region 

identification 

Eye blink component 

extraction 

Eye blink 

artifact removal 

Performance 

metric calculation 
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amplitude value is a discriminatory factor in the eye blink artifact-contaminated EEG data. The 

following is a pseudocode to describe the steps in setting the amplitude threshold value: 

Algorithm: Finding the threshold for the deflection detection algorithm for each EEG data 

channel.  

Input: Array of pre-processed baseline EEG data, [data]  

Output: Threshold for deflection detection 

[𝑑𝑎𝑡𝑎𝑚𝑒𝑎𝑛] ← mean([EEG_data(1:5:end)])  

[data]min ← min([𝑑𝑎𝑡𝑎𝑚𝑒𝑎𝑛])  

[data]max ← max([𝑑𝑎𝑡𝑎𝑚𝑒𝑎𝑛])  

[value]max ← max(abs([data]max), abs([data]min))  

threshold ← [value]max +1 

From this pseudocode, the mean of every five-sample window in the EEG data is used to 

determine the threshold instead of the individual sample because this window-mean can act 

like smoothing against the outlier amplitudes from EEG high frequency-component that may 

wrongly influence the determination for the suitable threshold value. If the value of the 

threshold is too high, it may bypass the EEG segment that contains an eye blink artifact (false 

negative), but if it is too low, it may include a clean EEG segment (false positive). Fig. 5 (a) 

illustrates the threshold (red color) that discriminates the eye blink region and the clean EEG. 

In the case of EEG data used to test the proposed method, the synthetic EEG data Y(t) is used 

to compute the amplitude threshold. 

 

Fig. 4. (a) The simulated eye blink component Z. (b) The simulated EEG component Y. 

(c) The simulated eye blink contaminated-EEG X 

(a) 

(b) 

(c) 
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 As shown in the last line of the pseudocode, the threshold value is concluded as the 

maximum value added by 1 to dismiss clean EEG data samples effectively during eye blink 

artifact detection. During the detection, as visualized by Fig. 5 (b), the mean of every five 

samples is again computed and compared against the threshold to deem it as part of the eye 

blink region, as represented by an orange color or clean EEG samples (blue color) in a 

temporally successive manner. The detection by five-sample window-mean also helps to 

differentiate the five-sample segment whether it is a clean EEG sample or a contaminated EEG 

sample, more discretely. 

 The whole eye blink region is considered to be detected completely when no more 5-

sample mean value is detected as an eye blink contaminated EEG segment for another 150 

samples consecutively. 

 Before the detected eye blink-contaminated EEG samples are marked as a complete eye 

blink segment, the neighbouring samples at the beginning and end of the detected segment are 

included as part of the detected segment until the nearest zero-crossing is reached at both ends. 

At this point, an eye blink-region detection is complete. This is visualized in Fig. 5 (c), which 

shows that, in orange color, a complete eye blink region is marked. Then, the detection moves 

to the next five samples to detect another eye blink region. 

 

Fig. 5. (a) The window-mean threshold (red line) is used to discriminate the eye blink 

region. (b) Eye blink samples are detected (orange color). (c) The whole eye blink 

region is approximated by the nearest zero-crossing 

3.3 Eye Blink Component Extraction 

 After the eye blink region is detected, EMD decomposes the segment. Before the 

decomposition, the segment is segregated into its individual deflection, as shown in Fig. 6 (b). 

To ensure smooth approximation of the envelope during sifting process, a constant 𝛼 is used 

as a factor for the mean envelope e(t) whenever the e(t) is subtracted from the signal x(t) or the 

intermediate residual 𝑟𝑛(𝑡) as the following: 

x(t) = x(t)  − 𝛼 ∙ 𝑒(𝑡)                                                                                                      (12) 

The constant 𝛼 value is between from 0 to 1. 

 Energy thresholding is deployed during IMF derivation and as a stopping criterion. For 

IMF derivation, qResol is used as an additional condition to derive an IMF. The threshold 

qResol is as an energy ratio of which when the energy of the e(t) is qResol times lower than 

the energy of x(t) or 𝑟𝑛(𝑡), the IMF is derived from the following: 

(a) (b) (c) 
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If qResol > 
energy of x(t)or rn(t)

energy of e(t)
, IMF is derived.                                                      (13) 

Threshold qResol aims to avoid constructing envelopes that introduce new components 

during IMF derivation. As for the energy threshold for the stopping criterion, the ratio of x(t) 

or 𝑟𝑛(𝑡) to the new residual produced (𝑟𝑛+1(𝑡)), which is produced after an IMF is derived, 

called threshold qResid. The decomposition stops when the value of qResid is lower than its 

set threshold: 

If qResid >  
energy of x(t)or rn(t)

energy of rn+1(t)
, the decomposition is stopped.                               (14) 

 The incorporation of threshold qResid influences the decomposition by EMD so that it 

does not produce a monotonic signal as its final residuum in a definitive manner like the 

original EMD would. This behavior is useful when the objective of the decomposition is to 

extract low oscillatory components with specific temporal features.  

Before the decomposition, the deflection segregation is done according to the zero-

crossings between each deflection. Deflection segregation allows the eye blink component to 

be extracted by EMD without being fragmented across IMFs due to over sifting. Eye blink 

artifact morphology is independent of any mathematical basis. However, the individual 

deflection generally resembles a peak or valley with one extremum, which is consistent with 

the EMD final residuum of which, after being generated, the decomposition stopped. Hence, 

as illustrated in Fig. 6 (c), the final residuum is a representative of the respective eye blink 

deflection instead of the monotonic signal, which ultimately can be used to reconstruct the eye 

blink component directly without the need to utilize other IMFs for the process.  

 

Fig. 6. (a) The identified eye blink region (orange line) is fed into EMD. (b) The eye 

blink is segregated into its individual deflection. (c) EMD decomposition. (d) Eye blink 

component extraction. (e) Eye blink artifact removal by ANC. (f) The ANC output is a 

cleaned signal. 
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 The consistency of this occurrence is important so that only residuum is needed for the 

eye blink component reconstruction instead of the inclusion of a deliberate selection of suitable 

IMFs so that automatic eye blink component reconstruction is possible. In the proposed 

method, the residua are concatenated at their ends to form the respective eye blink component 

by means of spline interpolation, as visualized by Fig 6 (d). This reconstructed eye blink 

component has a similar deflection shape as the respective eye blink artifact contained in the 

EEG segment and thus can be utilized as a reference channel for adaptive filtering to remove 

the eye blink artifact from the EEG segment. 

3.4 Eye Blink Artifact Removal 

 After the eye blink component is reconstructed, it is used as reference data r1(n), as 

shown in Fig. 7. The block diagram of the proposed adaptive filter that is used as adaptive noise 

cancellation (ANC) system is shown. The identified eye blink region is fed into the ANC as 

primary input d(n). The RLS-based algorithm is used in the adaptive filter to remove the eye 

blink artifact from the marked EEG segment. For the respective EEG segments that correspond 

to the eye blink affected EEG region, their length span ranges from 0.25 to 1.5 seconds. Hence, 

𝛿 value is set to be 0.99 and 𝜆 value to be 10 with a coefficient order of 2 to ensure efficient 

and stable impulse response convergence. 

 

Fig. 7. ANC structure 

3.5 Performance Metric 

 In order to measure the performance of the proposed method in removing the eye blink 

artifact, two data-centric measures are used on the processed EEG segments accordingly. The 

performance metrics are correlation coefficient (CC) and relative root-mean-square error 

(RMSE). The values generated from these performance metrics indicate how well the 

processed EEG data is preserved. The CC and RMSE are measured for the EEG component 

and eye blink component, respectively; between before and after being processed for eye blink 

artifact removal. The following are the mathematical descriptions of the performance metrics. 

The CC is measured as the following: 

𝐶𝐶𝐸𝐸𝐺 = 
𝑐𝑜𝑣(𝑌𝑝𝑖𝑛𝑘𝑛𝑜𝑖𝑠𝑒,   𝑌𝑜𝑢𝑡𝑝𝑢𝑡)

𝑠𝑡𝑑(𝑌𝑝𝑖𝑛𝑘𝑛𝑜𝑖𝑠𝑒)∗𝑠𝑡𝑑(𝑌𝑜𝑢𝑡𝑝𝑢𝑡)
                                                   (15) 

𝐶𝐶𝑒𝑦𝑒 𝑏𝑙𝑖𝑛𝑘 = 
𝑐𝑜𝑣(𝑍𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,   𝑍𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑)

𝑠𝑡𝑑(𝑍𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)∗𝑠𝑡𝑑(𝑍𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑)
                                   (16) 
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The RMSE is measured as the following: 

𝑅𝑀𝑆𝐸𝐸𝐸𝐺 = √
∑ (𝑌𝑝𝑖𝑛𝑘𝑛𝑜𝑖𝑠𝑒(𝑡)− 𝑌𝑜𝑢𝑡𝑝𝑢𝑡(𝑡))

2𝑛
𝑡=1

𝑛
                                       (17) 

𝑅𝑀𝑆𝐸𝑒𝑦𝑒 𝑏𝑙𝑖𝑛𝑘 = √
∑ (𝑍𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑡)− 𝑍𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑡))

2𝑛
𝑡=1

𝑛
                       (18) 

The variable 𝑋(𝑡)𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the simulated eye blink contaminated-EEG, 𝑌𝑝𝑖𝑛𝑘𝑛𝑜𝑖𝑠𝑒 is the 

simulated EEG component, 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 is the cleaned simulated EEG component, 𝑍𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the 

simulated eye blink component and 𝑍𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 is reconstructed eye blink component. 

4. RESULTS AND DISCUSSION 

4.1 EEG Dataset Structure 

 The EEG dataset used to measure the performance metric is fully-simulated EEG data 

as described in Subsection 3.1. This is done to compare the performance metrics with the eye 

blink removal technique proposed by Egambaram et al. [19]. The generation of fully-simulated 

EEG for component Y(t), Z(t) and X(t) are iterated until 100 units are obtained. This total unit 

of EEG data is expedient to gauge the reliability of the performance metrics values in 

consistently proving the eye blink removal method of its level of performance. 

4.2 Proposed Eye Blink Component Extraction 

 The extracted eye blink component is desired to be identical to its source. In this regard, 

a good eye blink component extraction is an eye blink component extraction with good 

precision of its features with the features of the original eye blink artifact. This is to ensure 

only the eye blink artifact is subtracted from the identified EEG segment during adaptive 

filtering. Generally, correct eye blink component extraction is also important for any rejection-

based eye blink removal method, which includes the ICA-based method. Fig. 8 shows a sample 

of the reconstructed eye blink component (line in yellow colour) that being plotted in such a 

way that it can be compared with its respective eye blink reconstruction (line in blue colour). 

Two windows each magnifies a simulated eye blink region that originates from the main plot. 

 

Fig. 8. The simulated eye blink component and its eye blink reconstruction. 
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 The result shown in Table 1 contains the 𝐶𝐶𝑒𝑦𝑒 𝑏𝑙𝑖𝑛𝑘 and RMSEeye blink values 

computed using the proposed eye blink component extraction method being juxtaposed with 

the respective performance metrics from the proposed FastEMD-CCA by Egambaram et al. 

The better value in comparison is bolded for every measurement. 

Table 1: Performance metrics for eye blink component extraction between the proposed 

method and FastEMD-CCA. 

Performance Metrics 
EMD-AF  

(Proposed Method) 
FastEMD-CCA 

𝐂𝐂𝐞𝐲𝐞 𝐛𝐥𝐢𝐧𝐤(𝝁 ± 𝝈) 𝟎. 𝟗𝟗𝟏𝟓 ± 𝟎. 𝟎𝟑𝟓𝟖 0.9754 ± 0.0055 

𝐂𝐂𝐞𝐲𝐞 𝐛𝐥𝐢𝐧𝐤(95% CI) 0.9880-0.9950 0.9743-0.9765 

𝐑𝐌𝐒𝐄𝐞𝐲𝐞 𝐛𝐥𝐢𝐧𝐤(𝝁 ± 𝝈) 𝟎. 𝟐𝟗𝟔𝟎 ± 𝟎. 𝟐𝟗𝟗𝟖 0.6580 ± 0.0776 

𝐑𝐌𝐒𝐄𝐞𝐲𝐞 𝐛𝐥𝐢𝐧𝐤(𝟗𝟓% 𝑪𝑰) 0.2666-0.3253 0.6426-0.6734 

 

 The result above shows that the eye blink reconstruction using EMD with spline 

interpolation resembles the original eye blink artifact better than the combination of EMD with 

CCA. Its CC value evidences this is statistically higher than FastEMD-CCA, while the 

proposed method’s RMSE is statistically lower than that resulting from FastEMD-CCA. 

Hence, with appropriate energy thresholding for IMF derivation (qResol) and as decomposition 

stopping criterion (qResid), EMD is already substantial for excellent eye blink reconstruction. 

In the experimentation of implementing the EMD based on Rato et al. revision, 𝛼 value is set 

to 0.5 for smooth but relatively efficient e(t) formation regulation, qResid is set to 55 for 

satisfactory IMF derivation and qResid is set to 57 for sufficient eye blink component 

extraction. Fig. 6 shows a sample of the simulated eye blink contaminated-EEG (line in orange 

colour) with its respective eye blink reconstruction (line in blue colour). 

4.3 Proposed Eye Blink Removal 

 The extracted eye blink component is used to remove its eye blink source from its 

respective region. This can be done by means of component cancellation. In our proposed 

method, the extracted eye blink component is converged first by means of producing an 

appropriate impulse response using the RLS weight adaptation algorithm. The impulse 

response is then used to cancel out the eye blink artifact from the marked region by ANC. Fig. 

9 displays the original simulated EEG component (line in red colour) being overlapped with 

its cleaned counterpart (line with yellow colour) to visualize any differences between them. 

The cleaned EEG is the output of the proposed method. Also, the eye blink-contaminated EEG 

(line with blue colour) is also plotted into the same graph to visualize the difference between it 

and the cleaned EEG. 

In the following, the results on the performance metrics indicating the degree of 

possible change that may occur on the ground truth EEG are tabulated in Table 2. This degree 

of change is measured between the original simulated EEG data and the EEG data extracted 

after eye blink artifact removal performed by the proposed method. As for the metric, CC and 

RMSE are also used. The better value in comparison is bolded for every measurement. A higher 

CC value, closer to 1, or if it is 1 itself reveals that the cleaned segment is nearly or perfectly 

similar with its original counterparts. The lower value of RMSE points to a lower degree of 

difference between the cleaned segment and its original EEG component. 
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Fig. 9. The original simulated EEG data (line with blue colour) and its respective 

component retrieved after eye blink removal (line with yellow colour). 

Table 2: Performance metrics for eye blink component removal between proposed method 

(EMD-AF) and FastEMD-CCA. 

Performance Metrics 
EMD-AF  

(Proposed Method) 
FastEMD-CCA 

𝐂𝐂𝑬𝑬𝑮(𝝁 ± 𝝈) 𝟎. 𝟗𝟒𝟑𝟎 ± 𝟎. 𝟎𝟖𝟑𝟗 0.7478 ± 0.0687 

𝐂𝐂𝑬𝑬𝑮(95% CI) 0.9348-0.9513 0.7341-0.7614 

𝐑𝐌𝐒𝐄𝐄𝐄𝐆(𝝁 ± 𝝈) 𝟎. 𝟑𝟐𝟏𝟏 ± 𝟎. 𝟐𝟕𝟑𝟖 0.6580 ± 0.0776 

𝐑𝐌𝐒𝐄𝑬𝑬𝑮(𝟗𝟓% 𝑪𝑰) 0.2942-0.3479 0.6426-0.6734 

 

 The CC obtained from Egambaram et al. experimentation for the EEG component 

shows that its CC value dropped from the average of 0.9754, which is the CC obtained for the 

eye blink component, to 0.7478, which is the value that corresponds to the obtainment of 

ground truth EEG component after eye blink removal. This signifies that direct rejection of the 

eye blink artifact using its extracted eye blink component derived may cause distortion to the 

cleaned EEG segment. Therefore, it is substantial to introduce a mechanism that ensures the 

extracted eye blink component is converged to its eye blink artifact within the respective EEG 

segment in order to minimize the distortion that may be caused after the removal process. 

Adaptive filtering is serviceable on the matter of converging the extracted eye blink with the 

contained eye blink artifact. This is proven by the higher CC and lower RMSE value for the 

cleaned EEG segment by the adaptive filtering utilization in the proposed method. 

 FastEMD is meant not completely to decompose the EEG segment. Instead, it 

decomposes the respective EEG into a finite number of IMFs set beforehand, assuming that 

the first three IMFs are of EEG component and the remaining contains eye blink artifact. 

Subsequently, after the IMFs are divided into the non-artifactual and artifactual components, 
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they are added up to reconstruct into two components: non-artifactual and artifactual. The CCA 

is later used to find the correlation between the two components to separate the EEG component 

that remains within the artifactual components. 

 This paper intended to test the capability of EMD in extracting the eye blink component 

that is similar in its temporal feature without being complemented by other data processing 

techniques. Its heuristic approach in signal decomposition is the desirable quality that is 

expected to be harnessed in retrieving specific components. Therefore, with an appropriate 

workaround to the EMD, like energy thresholding, EMD alone is effective for eye blink 

component reconstruction that is handy for its subsequent removal. 

5. CONCLUSION 

 In this paper, we proposed the five samples-window mean as the basis for amplitude 

thresholding that was used to identify the eye blink region in the eye blinks-contaminated 

single-channel EEG. We demonstrated that incorporation of energy thresholds with EMD 

decomposition to extract the eye blink deflections makes it possible to automate the eye blink 

reconstruction process. The identified eye blink region and extracted components are used as 

reference in RLS-ANC system to remove the eye blinks artifact in eye blink region while 

preserving the original EEG in eye blink-free region. The notable contribution of the proposed 

method is the utilization of the data-driven decomposition nature of EMD to extract the eye 

blink deflections that is monumental in the eye blink component reconstruction. The proposed 

method is evaluated using synthetic EEG datasets, and results show better performance 

compared to existing fastEMD-CCA technique. The results show that the proposed method 

was successful in extracting eye blink components with high similarity to its simulated original 

waveforms and the removal of eye blink using ANC was successful without altering or 

distorting the original EEG. The results also demonstrated that EEG components 

decomposition and separation using EMD is sufficient for eye blink reconstruction without 

relying on the multivariate data processing methods that is significantly higher in complexity. 

In this study, eye blink identification and removal process were performed offline. For real 

time implementation, the routine for accommodating delay must be designed and incorporated 

adequately in distributive manner across the EEG recording and the eye blink removal process 

because the EMD decomposition process is intrinsically sequential. Nevertheless, the proposed 

method is a completely univariate eye blink removal method that extracts the eye blink 

component in an empirical manner which complements the adaptive denoising process for 

effective eye blink removal in a single EEG channel. 
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