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ABSTRACT:  Today, many metaheuristics have used metaphors as their inspiration and 

baseline for novelty. It makes the novel strategy of these metaheuristics difficult to 

investigate. Moreover, many metaheuristics use high iteration or swarm size in their first 

introduction. Based on this consideration, this work proposes a new metaheuristic free 

from metaphor. This metaheuristic is called treble search optimizer (TSO), representing 

its main concept in performing three searches performed by each member in each 

iteration. These three searches consist of two directed searches and one random search. 

Several seeds are generated from each search. Then, these searches are compared with 

each other to find the best seed that might substitute the current corresponding member. 

TSO is also designed to overcome the optimization problem in the low iteration or 

swarm size circumstance. In this paper, TSO is challenged to overcome the 23 classic 

optimization functions. In this experiment, TSO is compared with five shortcoming 

metaheuristics: slime mould algorithm (SMA), hybrid pelican komodo algorithm 

(HPKA), mixed leader-based optimizer (MLBO), golden search optimizer (GSO), and 

total interaction algorithm (TIA). The result shows that TSO performs effectively and 

outperforms these five metaheuristics by making better fitness scores than SMA, HPKA, 

MLBO, GSO, and TIA in overcoming 21, 21, 23, 23, and 17 functions, consecutively. 

The result also indicates that TSO performs effectively in overcoming unimodal and 

multimodal problems in the low iteration and swarm size. 

ABSTRAK: Dewasa ini, terdapat ramai metaheuristik menggunakan metafora sebagai 

inspirasi dan garis dasar pembaharuan. Ini menyebabkan strategi baharu metaheuristik 

ini susah untuk dikaji. Tambahan, ramai metaheuristik menggunakan ulangan berulang 

atau saiz kerumunan dalam pengenalan mereka. Berdasarkan penilaian ini, kajian ini 

mencadangkan metaheuristk baharu bebas metafora. Metaheuristik ini dipanggil 

pengoptimum pencarian ganda tiga (TSO), mewakilkan konsep utama dalam pemilihan 

tiga pencarian yang dilakukan oleh setiap ahli dalam setiap ulangan. Ketiga-tiga carian 

ini terdiri daripada dua pencarian terarah dan satu pencarian rawak. Beberapa benih 

dihasilkan dalam setiap carian. Kemudian, carian ini dibandingkan antara satu sama lain 

bagi mencari benih terbaik yang mungkin berpotensi menggantikan ahli yang sedang 

digunakan. TSO juga direka  bagi mengatasi masalah pengoptimuman dalam ulangan 

rendah atau lingkungan saiz kerumunan. Kajian ini TSO dicabar bagi mengatasi 23 

fungsi pengoptimuman klasik. Eksperimen ini TSO dibandingkan dengan lima 

kekurangan metaheuristik: algoritma acuan lendir (SMA), algorithma hibrid komodo 

burung undan (HPKA), Pengoptimum Campuran berdasarkan-Ketua (MLBO), 

Pengoptimuman Carian Emas (GSO), dan algoritma jumlah interaksi (TIA). Dapatan 

kajian menunjukkan TSO berkesan menghasilkan dan lebih baik daripada kelima-lima 

metaheuristik dengan menghasilkan pemarkahan padanan terbaik berbanding SMA, 

HPKA, MLBO, GSO, dan TIA dalam mengatasi fungsi 21, 21, 23, 23, dan 17, secara 
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berurutan. Dapatan kajian juga menunjukkan TSO turut berperanan efektif dalam 

mengatasi masalah modal tunggal dan modal ganda dalam iterasi rendah dan saiz 

kerumunan. 

KEYWORDS: optimization; metaheuristic; swarm intelligence; unimodal; multimodal 

1. INTRODUCTION 

Metaheuristics is a popular tool extensively used in various optimization problems. 

Many optimization studies from a wide range of subjects use metaheuristics, such as in 

smart farming [1], path planning for autonomous robots [2], traffic forecasting [3], power 

systems [4], electric vehicle charge scheduling [5], and so on. Today, hundreds of 

metaheuristics exist and are ready to be used in any optimization problem. This 

circumstance becomes one of several reasons why metaheuristic is so popular. Moreover, 

there are optimization studies that hybridize a metaheuristic with other methods, whether 

they are metaheuristics or exact methods. Because metaheuristics are flexible in 

overcoming various optimization problems and easy to modify, there are many studies on 

hybridizing metaheuristics. 

In general, this massive development of metaheuristics comes from two reasons. The 

first reason is that various things can be used as inspiration for searching mechanisms, 

especially nature. Many metaheuristics use nature, especially animal behavior, as their 

inspiration and transform it into an optimization or searching strategy. Several 

shortcoming metaheuristics that use animal behavior as their inspiration, such as the 

Komodo mlipir algorithm (KMA) [6], northern goshawk optimizer (NGO) [7], marine 

predator algorithm (MPA) [8], hybrid pelican Komodo algorithm (HPKA) [9], coati 

optimization algorithm (COA) [10], cheetah optimizer (CO) [11], chameleon swarm 

algorithm (CSA) [12], and so on. Several metaheuristics used the term leader to represent 

the reference during the directed search, such as mixed leader-based optimizer (MLBO) 

[13], random selected leader-based optimizer (RSLBO) [14], hybrid leader-based 

optimizer (HLBO) [15], and so on. Meanwhile, several metaheuristics declared their main 

concept or strategy for their name rather than using metaphors, such as total interaction 

algorithm (TIA) [16], golden search optimizer (GSO) [17], average and subtraction-based 

optimizer (ASBO) [18], and so on. The second reason is that no metaheuristic is suitable 

or superior in overcoming any optimization problem, as stated in the no-free-lunch theory. 

Each strategy has its strengths and weaknesses. In other words, no metaheuristic can 

accommodate all strategies. 

There are several critiques following the massive development of new metaheuristics. 

First, many metaphor-based metaheuristics use their metaphor as a novelty or contribution. 

However, through the investigation of the algorithm and mathematical model, their 

method is slightly different from the previous ones [19]. Second, many studies proposing 

new metaheuristics exploited their ability to outperform the previous metaheuristics rather 

than highlighted their distinct mechanics in a clear explanation [19]. Besides, the 

performance of many metaheuristics is investigated in the high iteration or swarm in their 

first appearance. Moreover, these circumstances need to be clarified in several studies 

proposing a new metaheuristic. For example, NGO uses the behavior of the northern 

goshawk as metaphor and the maximum iteration is set to 1,000 during the evaluation [7]. 

The maximum iteration is also set to 1,000 in the first introduction of ASBO [18]. In the 

first introduction of GSO, the maximum iteration is set to 1,000 while the swarm size is 

set to 30 [17]. Unfortunately, the performance of these metaheuristics has not been 

investigated in the low swarm and low iteration circumstance.  
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The objective of this work is to promote a new simple and metaphor-free swarm-

based metaheuristic that works effectively with a low iteration number and swarm size. 

This metaheuristic is called a treble search optimizer (TSO) which comes from the three 

searches performed in the algorithm. These searches include two directed searches and one 

random search. The global optimal member and one randomly selected member become 

the references in these two directed searches. Meanwhile, the random search focuses on 

finding a better member near or around the corresponding member. In TSO, each member 

performs all these three searches in every iteration, which means TSO does not implement 

segregation of roles. One best seed is selected in every search, so three seeds from three 

searches are generated by a corresponding member in every search. Then, the best seed 

becomes the final seed as a substitute for the current corresponding member.  

Based on this explanation, below are the novelties and contributions of this work. 

1) This work promotes a novel swarm-based metaheuristic that is free from using 

metaphors, named treble search optimizer (TSO). 

2) TSO was designed to overcome the optimization problem in the low iteration and 

swarm circumstance. 

3) TSO performs three searches (two directed searches and one random search) where 

several seeds are generated from each search. 

4) The performance of TSO is investigated using 23 classic functions to overcome. 

2. RELATED WORKS 

Investigating the existing metaheuristics is the first and main critical step in proposing 

a new metaheuristic. Within this investigation, it is very important to highlight the 

distinction, novelty, or uniqueness of the metaheuristic. This step is also important because 

there are hundreds of metaheuristics already in existence. Proposing a new metaheuristic 

without investigating the existing ones, especially the shortcoming ones, may end with 

proposing a metaheuristic like the existing ones. This investigation is also important 

because a new metaheuristic can be developed by modifying or hybridizing several 

existing metaheuristics. 

Investigating a metaheuristic can be performed by classifying the metaheuristic based 

on several parameters. First, a metaheuristic should be classified as whether it uses 

metaphors. As mentioned, a metaphor-based metaheuristic should be rigorously 

investigated to address its distinct approach by abstracting the metaphor. Second, the 

algorithm and mathematical model following the algorithm should also be reviewed. After 

that, several parameters can be used to classify the metaheuristic, such as the number of 

searches, segregation of roles, and so on. 

In many shortcoming metaheuristics, implementing multiple search strategies has 

become more popular rather than performing a single search strategy, as shown in Table 1. 

The main reason is that there is not any single search that can guarantee finding the 

optimal member. Using the global best member or the best member among the swarm 

becomes the most popular option so that this member is used in many swarm-based 

metaheuristics, such as KMA [6], HPKA [9], ASBO [18], and so on. Some other 

metaheuristics use local best member for their reference, such as in MPA [8], GSO [17], 

and so on. Meanwhile, there are also metaheuristics using the other members within the 

swarm as their reference, such as in TIA [16], NGO [7], and so on. Even moving toward 
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the best member may guide the entire swarm toward the local optimal entrapment because 

the global best member lies somewhere else in the search space. 

Table 1: List of shortcoming metaheuristics 

No Metaheuristic Metaphor Segregation 

of Roles 

Number 

of 

Searches 

Maximum 

Iteration 

Swarm Size 

1 KMA [6] komodo dragon yes 4 5,000 

evaluations 

5, 20-200 

2 NGO [7] northern goshawk no 2 1,000 20-80 

3 HPKA [9] pelican and 

komodo dragon 

yes 4 200 20 

4 MPA [8] marine predator yes 5 500 50 

5 CO [11] cheetah yes 3 12x105 

evaluations 

6 

6 COA [10] coati no 3 200, 1,000 n/a 

7 HLBO [15] leader no 2 1,000 n/a 

8 MLBO [13] leader no 1 n/a n/a 

9 RSLBO [14] leader no 1 n/a n/a 

10 ASBO [18] - no 3 1,000 20-80 

11 GSO [17] - no 1 1,000 30 

12 TIA [16] - no 1 50 10 

13 this work - no 3 40 5 

 

The list of swarm-based shortcoming metaheuristics is displayed in Table 1. Table 1 

consists of five pieces of information related to the corresponding metaheuristics. The first 

information is the metaphor used in the metaheuristic. The second information is whether 

the corresponding metaheuristic implements the segregation of roles. The third information 

is the number of searches implemented in the corresponding metaheuristic. The fourth 

information is the maximum iteration set in the first appearance of the corresponding 

metaheuristic. The fifth information is the swarm size set in the first appearance of the 

corresponding metaheuristic. There are 14 things that could be improved in metaheuristics 

in Table 1. The last row of Table 1 presents the attributes of TSO to give a clear view 

regarding the novelty and position of this work. 

Table 1 presents many areas for improvement in the metaheuristic's use of 

metaphors, especially animals. Some metaheuristics use the term leader while others do 

not use a metaphor. Most metaheuristics do not perform segregation of roles so that in 

these metaheuristics, all members perform all searches adopted in the corresponding 

metaheuristic. Besides, most shortcoming metaheuristics perform multiple searches rather 

than a single search. In their first appearance, many metaheuristics are challenged to 

overcome optimization problems in the high maximum iteration or swarm size. Based on 

this explanation, the opportunity to propose a new swarm-based metaheuristic that is 

metaphor-free implements multiple searches and is challenged to overcome problems in 

the low maximum iteration and low swarm size is still open. 

3. MODEL 

TSO is built based on two approaches. First, TSO performs three searches where each 

output will be compared to find the best output. Second, there are multiple seeds generated 

in every search so that the best seed among these seeds will be chosen to compete with 

other selected seeds from other searches mentioned in the first approach.  
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algorithm 1: treble search optimizer (TSO) 

1 output: sb 

2 for all s in S 

3   initialize s using Eq. (1) 

4   update sb using Eq. (2) 

5 end for 

6 for t=1 to tmax 

7   for all s in S 

8     select ss using Eq. (3) 

9     for j=1 to nc 

10       generate c1, c2, c3 using Eq. (4), Eq. (5), Eq. (6) 

11     end for 

12     select cs1, cs2, cs3 using Eq. (7), Eq. (8), Eq. (9) 

13     select cf using Eq. (10) 

14     update s using Eq. (11) 

15     update sb using Eq. (2) 

16   end for 

17 end for 

c1 first search seed 

c2 second search seed 

c3 third search seed 

C1 set of first search seed 

C2 set of second search seed 

C3 set of third search seed 

cs1 selected seed among first search seeds 

cs1 selected seed among second search seeds 

cs3 selected seed among third search seeds 

cf final seed 

f objective function 

nc number of seeds 

s member 

S set of members 

sb global best member 

ss selected member 

su upper boundary 

sl lower boundary 

t iteration 

tmax maximum iteration 

U uniform random 

Ur real uniform random number 

Ui integer random number 

In TSO, each corresponding member performs three searches which are two directed 

searches and one random search. The first directed search generates several seeds along 

the way, the corresponding member toward the global best member. The second directed 

search generates seeds relative to a selected random member within the swarm. In the 

second directed search, these seeds may be in the direction of the corresponding member 

toward the selected member or away from the selected member. This choice depends on 

the quality of the corresponding member and the randomly selected member. The first 

direction occurs if this randomly selected member is better than the corresponding 

member. Otherwise, the second direction takes place. In the third search, several seeds are 

generated around the corresponding member. 

As a metaheuristic, TSO consists of two phases: initialization and iteration. In the 

initialization, all members are uniformly randomized within the search space. Meanwhile, 

the iteration phase represents the improvement where three searches are performed. At the 

end of the process, the global best member becomes the final member, i.e., the algorithm 
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output. 

The best seed is then chosen in every search. It means that there are now three 

selected seeds from three searches. Then, these seeds will compete among each other so 

that the best seed among these three seeds becomes the final seed. This final seed is then 

compared with the corresponding member. This final seed substitutes the corresponding 

member only if this final seed is better than the current corresponding member. Otherwise, 

the corresponding member remains static at the end of this iteration. This concept is then 

transformed into an algorithm and mathematical model. The mathematical model is 

displayed in Eq. (1) to Eq. (11). The formalization of TSO is displayed in algorithm 1. 

Below are annotations used in algorithm 1 and the following mathematical model. The 

visualization of TSO is presented in Fig. 1. 

 

Fig. 1: Flowchart of treble search optimizer. 

𝑠 = 𝑈𝑟(𝑠𝑙, 𝑠𝑢)          (1) 

 

𝑠𝑏′ = {
𝑠, 𝑓(𝑠) < 𝑓(𝑠𝑏)
𝑠𝑏 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (2) 

 

𝑠𝑠 = 𝑈(𝑆)           (3) 

 

𝑐1 = 𝑠 + 𝑈𝑟(0,1)(𝑠𝑏 − 𝑈𝑖(1,2)𝑠)        (4) 

 

𝑐2 = {
𝑠 + 𝑈𝑟(0,1)(𝑠𝑠 − 𝑈𝑖(1,2)𝑠)
𝑠 + 𝑈𝑟(0,1)(𝑠 − 𝑈𝑖(1,2)𝑠𝑠)

        (5) 

 

𝑐3 = 𝑠 + 0.1𝑈𝑟(−1,1)(𝑠𝑢 − 𝑠𝑙)        (6) 

 

𝑐𝑠1 = 𝑐1 ∈ 𝐶1 ∧ 𝑚𝑖𝑛(𝑓(𝑐1))         (7) 
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𝑐𝑠2 = 𝑐2 ∈ 𝐶2 ∧ 𝑚𝑖𝑛(𝑓(𝑐2))        (8) 

 

𝑐𝑠3 = 𝑐3 ∈ 𝐶3 ∧ 𝑚𝑖𝑛(𝑓(𝑐3))        (9) 

 

𝑐𝑓 = 𝑐,𝑚𝑖𝑛(𝑐1, 𝑐2, 𝑐3)         (10) 

 

𝑠′ = {
𝑐𝑓 , 𝑓(𝑐𝑓) < 𝑓(𝑠)

𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (11) 

Below is the detailed explanation of Eq. (1) to Eq. (11). The global best member 

becomes the final solution. Lines 2 to 5 represent the initialization phase. Lines 6 to 17 

represent the iteration phase. Equation (1) describes that the initial member is uniformly 

randomized between the lower and upper boundary, i.e., search space. Equation (2) 

describes that the corresponding member substitutes the current global best member if this 

corresponding member is better than the current global best member. Equation (3) 

describes randomly selecting a member among the set of members. Equation (4) describes 

that the seed of the first search is generated along the way from the corresponding member 

toward the global best member. Equation (5) describes that the seed of the second search 

is generated based on the relation between the corresponding member and the randomly 

selected member. Equation (6) describes that the seed of the third search is generated near 

the corresponding member. Equations (7) to Eq. (9) describes that the best seed is selected 

from among seeds in every search. Equation (10) describes that the best seed among these 

three selected seeds becomes the final seed. Equation (11) describes that the final seed 

substitutes the current corresponding member if this final seed is better than the current 

corresponding member. 

4. RESULTS 

This section presents the experiment performed to evaluate the performance of TSO 

and its result. There are two experiments regarding this work. The first experiment is 

performed to evaluate the performance of TSO in overcoming a set of benchmark 

functions and the performance comparison between TSO and the sparing metaheuristics. 

The second experiment is performed to evaluate the hyperparameter of TSO. The 23 

classic functions are chosen as the benchmark functions. 

These 23 classic functions are chosen based on several reasons. The first reason is that 

these functions represent various problems with specific circumstances and challenges. 

The second reason is that these functions are very popular, so they are chosen in many 

studies proposing a new metaheuristic. These functions can be categorized into three 

groups: seven high-dimension unimodal functions, six high-dimension multimodal 

functions, and ten fixed-dimension multimodal functions. These functions also represent 

problems with various search spaces, from narrow to large ones. 

In the first experiment, TSO is compared with five shortcoming metaheuristics: SMA, 

HPKA, MLBO, GSO, and TIA. These metaheuristics are chosen mainly because they are 

new. In their first appearance, these metaheuristics outperformed many previous 

metaheuristics. SMA outperformed many metaheuristics, such as the whale optimization 

algorithm (WOA), moth-flame optimizer (MFO), grey wolf optimizer (GWO), bat 

algorithm (BA), sine cosine algorithm (SCA), particle swarm optimization (PSO), firefly 
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algorithm (FA), multi-verse optimizer (MVO), salp swarm algorithm (SSA), ant lion 

optimizer (ALO), and differential evolution (DE) [20]. HPKA outperformed four 

metaheuristics: GWO, MPA, KMA, and POA [9]. MLBO outperforms several 

metaheuristics, such as PSO, genetic algorithm (GA), teaching-learning based optimizer 

(TLBO), GWO, emperor penguin optimizer (EPOA), and so on [13]. GSO outperformed 

four metaheuristics: gravitational search algorithm (GSA), SCA, tunicate swarm algorithm 

(TSA), and GWO [17]. TIA outperformed five sparing metaheuristics: PSO, marine 

predator algorithm (MPA), GSO, directed pelican algorithm (GPA), and driving training-

based optimizer (DTBO) [16]. 

Table 2: The simulation result of the first experiment 

Function Average Fitness Score 

SMA HPKA MLBO GSO TIA TSO 

1 6.6663x104 6.2570x104 2.2305x104 6.0029x104 0.0000 0.0000 

2 0.0000 0.0000 1.1222x1051 7.5089x1069 1.7930x1055 0.0000 

3 2.1289x105 2.0975x105 5.7327x104 1.7531x105 0.0316 0.0000 

4 8.2362x101 7.9015x101 4.7480x101 5.6846x101 0.0000 0.0000 

5 1.7908x108 1.9984x108 1.9085x107 1.2710x108 4.8879x101 4.8803x101 

6 6.9099x104 6.9444x104 2.1638x104 5.9789x104 9.4253 8.2081 

7 1.6824x102 1.3522x102 1.6547x101 9.2918x101 0.0122 0.0021 

8 -6.2418x103 -5.9791x103 -3.9934x103 -4.3938x103 -2.3210x103 -4.6397x103 

9 5.4539x102 5.6253x102 4.4459x102 5.1443x102 0.0000 0.0000 

10 1.9750x101 1.9947x101 1.6483x101 1.9463x101 0.0000 0.0000 

11 6.2192x102 7.1348x102 1.9505x102 5.3193x102 0.0087 0.0000 

12 4.6092x108 3.3887x108 8.1216x106 2.2263x108 0.8217 0.6182 

13 1.1149x109 8.5180x108 5.0042x107 4.7534x108 3.0902 2.8085 

14 1.1963x101 1.3565x101 7.6193 1.1118x101 7.5131 3.7733 

15 0.0106 0.0111 0.0141 0.0277 0.0046 0.0006 

16 -0.8973 -0.8722 -0.9689 -0.9862 -1.0219 -1.0314 

17 0.9389 0.7064 0.4966 0.8170 1.7409 0.3986 

18 8.0109x101 2.2714x101 9.8071 2.6717x101 1.7821x101 3.0137 

19 -0.0455 -0.0387 -0.0486 -0.0193 -0.0495 -0.0495 

20 -2.7549 -2.7309 -2.8287 -2.5539 -2.3823 -3.2980 

21 -2.9231 -4.0803 -2.8597 -2.7178 -4.1103 -8.2464 

22 -3.7697 -3.0703 -2.8335 -3.3707 -3.4117 -7.6623 

23 -3.5599 -2.8837 -2.3017 -3.1063 -2.5551 -8.8215 

In the first experiment, several parameters are set based on a certain value. The swarm 

size is set to 5, which represents the low swarm. The maximum iteration is set to 40, 

which represents low iteration. The dimension is set to 50, which represents a high-

dimension problem. In HPKA, all searches have equal opportunity. The result is displayed 

in Table 2, while the superiority of the TSO compared with the other metaheuristics based 

on the group of functions is displayed in Table 3. In Table 2, the best score is written in 

bold font. Meanwhile, the floating-point accuracy is set to 10-4 so that a score less than 10-

4 is rounded to 0.   

Table 2 indicates the excellent performance of TSO in terms of finding the optimal 

global member and producing the best scores among the metaheuristics. TSO could find 

the optimal global member of seven functions: Sphere, Schwefel 2.22, Schwefel 1.2, 

Schwefel 2.21, Rastrigin, Ackley, and Griewank. Meanwhile, TSO could also find the 
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member near the global optimal member of three functions: Kowalik, Six Hump Camel, 

and Branin. TSO also performed the best of 22 functions out of 23 functions. However, 

several metaheuristics also performed the same value in six functions. These six functions 

are Sphere, Schwefel 2.22, Schwefel 2.21, Rastrigin, Ackley, and Hartman 3. TIA 

performed the same value in five functions (Sphere, Schwefel 2.21, Rastrigin, Ackley, and 

Hartman 3), while SMA and HPKA performed the same value in Schwefel 2.22. 

Table 3 indicates the superiority of TSO among other competing metaheuristics in all 

groups of functions. TSO was better than SMA, HPKA, MLBO, GSO, and TIA in 

overcoming 21, 21, 23, 23, and 17 functions, respectively. It means that TSO was superior 

to MLBO and GSO. TSO was superior to SMA and HPKA. Meanwhile, TSO was still 

superior to TIA, although TIA is the most challenging metaheuristic to beat. This result 

indicates the superiority of TSO in overcoming all three kinds of problems: high-

dimension unimodal problems, high-dimension multimodal problems, and fixed-

dimension multimodal problems. 

Table 3: TSO superiority among other metaheuristics based on group of functions 

Group Number of Functions 

SMA HPKA MLBO GSO TIA 

1 6 6 7 7 4 

2 5 5 6 6 4 

3 10 10 10 10 9 

Total 21 21 23 23 17 

The second experiment was performed to evaluate the sensitivity or hyperparameter. 

There were three parameters evaluated in this experiment: maximum iteration, swarm size, 

and the number of seeds. This experiment was performed by implementing TSO to 

overcome 23 classic functions with several values of these parameters. The maximum 

iteration in the first sub-experiment was set at 10, 20, and 30. The result is displayed in 

Table 4. In the second sub-experiment, the swarm size was set at 10, 15, and 20. The result 

is displayed in Table 5. In the third experiment, the number of seeds was set to 3, 6, and 9. 

The result is displayed in Table 6. 

Table 4 indicates that all functions have achieved an acceptable member in the low 

iteration. In almost all functions, the result produced by TSO in the low iteration 

circumstance was still competitive compared with the result produced by other 

metaheuristics, as seen in Table 2. Moreover, convergence was achieved in the early 

iteration in nine functions (Schwefel 2.22, Schwefel, Penalized, Penalized 2, Shekel 

Foxholes, Six Hump Camel, Branin, Hartman 3, and Hatman 6). Among these nine 

functions, one function was a high dimension unimodal function, two functions were high-

dimension multimodal functions, and six functions were fixed-dimension multimodal 

functions. 

Table 5 indicates that the increase in swarm size after five members is insignificant in 

improving the member quality in almost all functions. Stagnancy occurred in nine 

functions because the optimal global member was achieved. Stagnancy also occurred in 

five functions, although a globally optimal member had yet to be achieved. Less 

significant improvement occurred in nine functions. 

 

Table 4: Performance of TSO with several values of maximum iteration 
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Function Average Fitness Score 

tmax = 10 tmax = 20 tmax = 30 

1 2.6467 0.0001 0.0000 

2 0.0000 0.0000 0.0000 

3 7.7478x102 1.3350 0.0034 

4 1.8470 0.0259 0.0003 

5 1.3821x102 4.8819x101 4.8819x101 

6 1.1822x101 8.0214 8.1741 

7 0.0193 0.0043 0.0019 

8 -4.0668x103 -4.2352x103 -4.6166x103 

9 3.5869x101 0.0024 0.0000 

10 0.7767 0.0020 0.0000 

11 0.5366 0.0060 0.0035 

12 0.7894 0.6502 0.6806 

13 3.2482 2.9358 2.8653 

14 4.4341 4.9429 3.6936 

15 0.0017 0.0006 0.0005 

16 -1.0304 -1.0309 -1.0308 

17 0.3989 0.3984 0.3984 

18 6.6955 3.0042 3.0079 

19 -0.0495 -0.0495 -0.0495 

20 -3.2050 -3.239 -3.2961 

21 -5.7886 -7.2599 -7.9212 

22 -5.8045 -7.1234 -7.5447 

23 -6.1753 -6.9030 -7.8198 

Table 5: Performance of TSO with several values of swarm size 

Function Average Fitness Score 

N(X) = 10 N(X) = 15 N(X) = 20 

1 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000 

4 0.0000 0.0000 0.0000 

5 4.8717x101 4.8717x101 4.8713x101 

6 6.8744 6.4879 6.2007 

7 0.0007 0.0005 0.0004 

8 -5.7240x103 -5.2949x103 -5.3398x103 

9 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 

11 0.0000 0.0000 0.0000 

12 0.4685 0.4531 0.3879 

13 2.6890 2.5259 2.4414 

14 2.4780 1.1478 1.0927 

15 0.0014 0.0004 0.0004 

16 -1.0316 -1.0316 -1.0316 

17 0.3981 0.3981 0.3981 

18 3.0015 3.0000 3.0000 

19 -0.0495 -0.0495 -0.0495 

20 -3.3071 -3.3038 -3.3137 

21 -9.2349 -9.4629 -9.6812 

22 -9.6167 -1.0084x101 -1.0193x101 

23 -9.1412 -1.0034x101 -1.0293x101 

Table 6: Performance of TSO with several values of number of seeds 

95



IIUM Engineering Journal, Vol. 24, No. 2, 2023 Kusuma and Dinimaharawati 
https://doi.org/10.31436/iiumej.v24i2.2700 

 

 

Function Average Fitness Score 

n(C) = 3 n(C) = 6 n(C) = 9 

1 0.0000 0.0000 0.0000 

2 0.0000 0.0000 0.0000 

3 0.0005 0.0000 0.0000 

4 0.0000 0.0000 0.0000 

5 4.8850x101 4.8775x101 4.8775x101 

6 8.5787 7.7692 7.4645 

7 0.0033 0.0012 0.0005 

8 -4.4692x103 -4.6142x103 -4.8921x103 

9 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 

11 0.0000 0.0000 0.0000 

12 0.7405 0.6131 0.5368 

13 2.9124 2.7398 2.7218 

14 4.7629 5.9951 3.5355 

15 0.0023 0.0015 0.0013 

16 -1.0310 -1.0310 -1.0316 

17 0.3987 0.3986 0.3982 

18 3.0053 3.0007 3.0009 

19 -0.0495 -0.0495 -0.0495 

20 -3.2625 -3.2822 -3.2983 

21 -8.0977 -6.3341 -8.3292 

22 -7.0566 -8.3640 -7.9018 

23 -6.5042 -8.6724 -8.5935 

Table 6 indicates that the increase in the number of seeds was less sensitive to the 

improvement of the performance of TSO. The average fitness score tended to fluctuate or 

remain static in almost all problems. Meanwhile, the less significant improvement 

occurred in six functions (Penalized, Shekel Foxholes, Branin, Quartic, Shekel 5, Shekel 

7, and Shekel 10).  

5. DISCUSSION 

This section presents an in-depth evaluation of the relation between the result and the 

findings. This discourse is divided into four parts. The first part is a discourse related to 

the performance of the TSO and the linkage with the chosen exploitation-exploitation 

strategy. The second part is a discourse regarding the hyperparameter evaluation. The third 

part is a discourse related to the algorithm complexity of TSO. The fourth part is a 

discourse related to the limitation of this work, especially the metaheuristic. 

The first discourse is related to the evaluation of the experiment result. TSO 

performed effectively in overcoming the 23 classic functions. Its performance was 

superior in all groups of these functions. Based on the superior result in overcoming 

unimodal functions, TSO performed exploitation effectively. Moreover, TSO was also 

good at performing exploration based on the superior result in overcoming multimodal 

functions, whether they were high-dimension multimodal functions or fixed-dimension 

multimodal functions. The performance gap between TSO and the sparing metaheuristics 

was also broad, especially in overcoming high-dimension functions. This gap needs to be 

more comprehensive in overcoming fixed-dimension functions. 
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The superiority of TSO proves that the strategy implemented in TSO is better than the 

strategy implemented in the sparing metaheuristics. First, implementing multiple searches 

is proven better than a single search because each has its strengths and weaknesses. 

Second, each member needs to perform multiple searches in every iteration. Third, the 

tournament-based approach was better than the sequential-based approach. 

The second discourse is related to the sensitivity analysis of the hyperparameter. This 

work evaluated three parameters: maximum iteration, swarm size, and the number of 

seeds. In general, the increase in maximum iteration improves the quality of the member. 

In the low maximum iteration, increasing maximum iteration improves the member mostly 

in overcoming the unimodal functions. On the other hand, the increase in the maximum 

iteration is less significant in improving the quality of the member. On the contrary, the 

swarm size does not improve the member quality in overcoming unimodal functions. The 

increase in swarm size improves the member quality, mostly in overcoming the 

multimodal functions. However, this improvement is also insignificant because the near-

optimal or optimal global member has been found in the low maximum iteration and low 

swarm size circumstances. Increasing the number of seeds improves the quality of 

members in overcoming several functions. These functions can be found in both unimodal 

and multimodal functions. However, the improvement could be more significant. 

The third discourse is related to algorithm complexity. The complexity of TSO can be 

displayed as O(3tmax.n(X).n(C)). Based on this presentation, the complexity is linear to one 

of three parameters: the maximum iteration, swarm size, or the number of seeds. 

Fortunately, the computational process of TSO is still competitive because the acceptable 

member has reached a low maximum iteration, low swarm size, and a low number of 

seeds. 

The fourth discourse is related to the limitation of the algorithm and this work. There 

are several limitations regarding this algorithm and this work. First, TSO still needs to find 

the final member, the optimal global member or near-optimal member in overcoming six 

functions. These six functions are two high-dimension unimodal functions (Rosenbrock 

and Step), three high-dimension multimodal functions (Schwefel, Penalized, and 

Penalized 2), and one fixed-dimension multimodal function (Hartman 3). This fact 

strengthens the no-free-lunch theory. Although TSO is superior among the sparing 

metaheuristics, there are still problems where TSO needs to find the optimal global 

member. Meanwhile, there is an opportunity to find the optimal global member for these 

functions by setting the system to high maximum iteration and swarm size. However, this 

scenario was not performed in this work as its focus is on the low maximum iteration and 

low swarm size. This limitation can be used as a baseline to improve the current form of 

TSO so that the improved version can overcome these six functions in future studies. This 

work has a limitation on implementing TSO in overcoming theoretical optimization 

problems only. In some studies, the proposed metaheuristic has been challenged to 

overcome the theoretical problems only, while in other studies, the metaheuristic has also 

been challenged to overcome practical problems.  

6. CONCLUSION 

The development and evaluation of a new swarm-based metaheuristic, treble search 

optimizer (TSO) has been introduced in this paper. Referring to its name, the central 

concept of TSO is performing three searches: two directed searches and one random 

search. Each member in every iteration performs these three searches. Several seeds are 

generated from each search. The experiment result presents that TSO performed 
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effectively in overcoming 23 classical functions. TSO outperformed five shortcoming 

metaheuristics chosen as the sparing metaheuristics in this work. TSO was better than 

SMA, HPKA, MLBO, GSO, and TIA in overcoming 21, 21, 23, 23, and 17 functions, 

respectively. TSO could find the optimal global member of seven functions in low 

maximum iteration and low swarm size circumstances. When the swarm size was set to 

moderate, there were three more functions where TSO can find their optimal global 

member. TSO also performed the best member of 22 functions out of 23 functions. 

Future studies can be conducted in several ways. Improvement is still open for TSO, 

especially in finding the optimal global member of the six functions that TSO still needs to 

find in this work. More theoretical experiments should be performed to enrich the 

investigation of the strengths and weaknesses of TSO. Moreover, future studies can also 

be performed by implementing TSO to overcome many kinds of practical optimization 

problems.  
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