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ABSTRACT: This paper presents the use of a sampling-based planner as a reactive 

planning scheme to avoid obstacles between a robotic arm and a moving obstacle. Based 

on a planner benchmark on an obstacle-ridden environment,  a rapidly-exploring random 

tree (RRT) planner has been used to populate the trajectories of the task space and map 

them into a configuration space using a Newton-Raphson-based inverse kinematic 

solver. Two robot poses are defined in a cycle of back-and-forth motion; the initial and 

the goal poses. The robot repeatedly moves from the starting pose to the end pose via the 

midpoint pose. Each set of trajectories is unique. We define this unique solution within 

the context of the configuration space as a cycle space. We impose a periodically 

occurring synthetic obstacle that moves in and out of the robot arm workspace defined in 

a simulated environment. Within the robot's workspace, the obstacle moves and cuts 

through the cycle space to emulate a dynamic environment. We also ran a benchmark on 

the available sampling planner in the OMPL library for static obstacle avoidance. Our 

benchmark shows that the RRT has the lowest time planning time at 0.031 s compared 

with other sampling-based planners available in the OMPL library, RRT implicitly 

avoids singularities within the cycle space, and reactively attempts to avoid synthetic 

moving objects near the robot hardware. This research intends to further investigate on 

the use of RGB-D sensor and LiDAR to track moving obstacles while abiding by the 

task space commands described by the initial and goal poses. 

ABSTRAK: Kertas kerja ini membentangkan penggunaan perancang berasaskan 

persampelan sebagai skim perancangan reaktif untuk mengelakkan halangan antara 

lengan robot dan halangan yang bergerak. Berdasarkan penanda aras perancang pada 

persekitaran yang dipenuhi halangan, perancang pokok rawak (RRT) penerokaan pantas 

telah digunakan untuk mengisi trajektori ruang tugas dan memetakannya ke dalam ruang 

konfigurasi menggunakan penyelesai kinematik songsang berasaskan Newton-Raphson. 

Dua pose robot ditakrifkan dalam kitaran gerakan bolak-balik; pose awal dan matlamat. 

Robot berulang kali bergerak dari pose permulaan ke pose akhir melalui pose titik 

tengah. Setiap set trajektori adalah unik. Kami mentakrifkan penyelesaian unik ini dalam 

konteks ruang konfigurasi sebagai ruang kitaran. Kami mengenakan halangan sintetik 

yang berlaku secara berkala yang bergerak masuk dan keluar dari ruang kerja lengan 

robot yang ditakrifkan dalam persekitaran simulasi. Dalam ruang kerja robot, halangan 

bergerak dan memotong ruang kitaran untuk meniru persekitaran yang dinamik. Kami 

juga menjalankan penanda aras pada perancang pensampelan yang tersedia dalam 

perpustakaan OMPL untuk mengelakkan halangan statik. Penanda aras kami 

menunjukkan bahawa RRT mempunyai masa perancangan masa terendah pada 0.031 s 

berbanding dengan perancang berasaskan pensampelan lain yang terdapat dalam 
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perpustakaan OMPL, RRT secara tersirat mengelakkan singulariti dalam ruang kitaran, 
dan secara reaktif cuba mengelakkan objek bergerak sintetik yang menghampiri 
perkakasan robot. Melangkah ke hadapan, penyelidikan ini berhasrat untuk menyiasat 
lebih lanjut mengenai penggunaan penderia RGB-D dan LiDAR untuk mengesan 
halangan bergerak sambil mematuhi arahan ruang tugas yang diterangkan oleh pose awal 
dan matlamat. 

KEYWORDS: mechatronics; robot manipulator; planner; motion planning; dynamic

environment

1. INTRODUCTION
Given its rigid and massive construction, a small-sized industrial robot imposes

significant hazards on the people that work near it. Hence, robotic manufacturers build 
robot manipulators that are more compliant and designed to cooperatively without risking 
their safety [1]. Regardless, a robot manipulator imposes occupational hazards in the 
workspace during a collision with foreign objects or a person [2]. The collision also 
warrants expensive maintenance and repairs. An industrial robot system implements a 
certain degree of planning algorithm specifically for the movement of the manipulator. 

A robot motion planner can provide a collision-free motion solution for a manipulator 
if a solution is defined as the collection of waypoints and trajectories that avoid collision 
between the robot and the obstacle as will be demonstrated by this paper in the following 
section. A global planner, an offline approach to motion planning, takes in a set of initial 
and goal positions, , or as set of initial and goal poses, , as its input 
constraint-informed trajectory as intermediate waypoints for the robot to follow [3]. 
However, a global planner is offline, which implies that the trajectories are set before the 
task commences. The global planner also assumes a static workspace. Any unplanned 
changes in the workspace over the global planning scheme, such as an unplanned 
introduction of a stationary object or a moving object into the robot workspace, renders the 
offline-planned trajectory outdated and, consequently, requires replanning. 

Hence, a compliant manipulator or cooperative manipulator must have an efficient 
online motion planner because of the dynamic aspect of their workspace. However, this 
requires replanning which is computationally expensive and time-consuming. To relax the 
computational strain, algorithms are designed stochastically by implementing sampling of 
plausible solution in specific solution space [4]. Unfortunately, sampling-based planner 
trade completeness and optimality with efficiency where the planner may fail to provide a 
solution [5]. Also, if a solution exists under its metric space, the waypoints may not be the 
least cost path to a goal [6].  

Regardless of the lack of completeness and optimality, sampling-based planners excel 
at maintaining reasonable usage of computational resources that pave the way to the near-
online planning scheme. The sampling-based planners for robot motion are a family of 
planners that use probabilistic approach to generate graph structures that encode the free 
space and the robot configuration space. The samplings are stochastic, such that 
resampling will give a unique solution to the previous sampling. Most sampling-based 
planners are tractable in higher-dimensional configurations and task space. Nonetheless, 
sampling-based planners also assume a static workspace.  

This paper uses sampling-based motion planning, the rapidly-exploring random tree 
motion planning, to address operation tasks in a dynamic environment in Euclidean space, 
Our method leverages the efficiency and the computationally reserved sampling-based 
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motion planning without needing to apply a purely reactive motion planning approach so 

that computational resources can be delegated to other tasks, i.e., motion-tracking, state 

estimation, mapping, localization, and motion control. In the following sections of this 

report, we will assume sampling planners to provide solutions in higher dimensional 

configuration space, which implicates a solution with a set of poses represented by the 

special Euclidean group           , .  

2. RELATED WORK 
The research done in [5] is the seminal work on the use of a probability model for 

sampling the configuration space for holonomic robot motion such as a manipulator robot. 

The planner is called the probabilistic roadmap (PRM). The algorithm constructs a graph 

structure to find a path between an initial pose to a goal pose in a two-dimensional 

configuration space, . A more general solution for higher dimensional configuration 

space, , were also proved using the PRM in their work. With graph structure, more 

than one path connects the initial pose to the goal pose. Therefore, PRM is a multi-query 

type planner.  

The work in [6] improved PRM by redefining the distance metric of a robot 

manipulator so that the robot can move around a moving obstacle in real-time. Their 

approach performs well in an uncluttered environment. They also redefined the distance 

function of the PRM to address dynamic objects, such as a walking person, into a two-

dimensional map. Although the configuration space of the manipulator is in , the map, 

constructed from a two-dimensional LiDAR scan, is in, . 

In retrospect, the RRT was formulated for non-holonomic motion targeting problems 

addressed in differential-constrained motion such as a car on a plane [7]. However, given 

the model of its metric space and consequently the configuration space, RRT is tractable 

for the higher dimensional problem such as manipulator motion in 3D space. RRT 

assumes a static environment but investigation in [8], successfully changed the way RRT 

samples a robot metric space so that it is fast enough to react to a changing environment. 

Also, unlike PRM, RRT works well in a cluttered environment because of the randomized 

sampling on the robot configuration space in the context of the metric space.  

Apart from the works in [6] and [8], few have applied their planning algorithms on a 

robot manipulator despite having RRT and PRM algorithms provide a mathematical 

framework for planning for multi-body and multi-frame systems. In this paper, we will use 

the method demonstrated by [6] and [8] to design a moving obstacle avoidance algorithm 

with the implementation of the vanilla RRT to solve motion for a robot manipulator in 

three-dimensional space, . Our method implements the vanilla RRT where we do not 

represent the obstacle configuration space unlike in [8]. 

3.   FORMULATION AND ALGORITHMS 
This paper will use the superscript notation to refer to the control space and the subscript 

as the equivalent representation in the configuration space. For example, , refers to the 

control space of the end-effector where the controlling pipelines would take in

, and the equivalent pose is in the configuration space, . 

Since the revolute joint topology is the 1-hypersphere, , we will assume that, for the 

case of 6R robot, its joints are limited to a certain range which makes, . 
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3.1   The Geometry of a Compliant Robotic Arm, r_mini 
We prototype and build a 3D-printed robot called Richard Mini (r_mini, see Fig. 1(a) 

and 1(b)) based on the condition addressed by Pieper [9], which entails three collated 

joints sharing the same cross point of their, z-axes, shown in Fig. 2.  

  

(a) r_mini hardware assemblage (b) r_mini Computer Aided Design (CAD) construction 

Fig. 1: A 3D-printed compliant manipulator, r_mini,  designed to replicate a common 

industrial robot construction. 

 

Fig. 2: r_mini wrist conforms to Pieper condition where axes of rotation for joint4, joint5, and joint6 

share points of intercept. The dashed circles in the diagram refer to point of intercepts. Both points are 

valid frames for constructing the DH-table. 

r_mini has six revolute axes, . The first three axes move the task space from 

one point to another representing the translation vector, . The last three axes of the 

manipulator rotate the task space representing the rotation operation about the task space 

frame, . Hence the complete transformation of the task space via the joint 

movement is represented by the homogenous transformation matrix, , where 

 is homomorphic to ; . The matrix representation of 

the homogenous transformation is shown in Eq. (1). 

 

 
(1) 

The kinematic model of the r_mini follows the Denavit-Hartenberg (DH) formulation 

[10]. The DH-parameters are shown in Table 1 and the visualization of these parameters in 

the form of frames transformation is shown in Fig. (3). 
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Table 1: DH-parameter table for r_mini 

 

 

 r_mini build completion 

Fig. 3: The location and orientation of r_mini. The choice of orientation for each frame is based on 

Denavit-Hartenberg convention. The joints’ values are represented by the angle between the x-axis 
around the z-axis (the rotation axis of each joint) of the actuator. 

Following the DH-convention, each link rotates about the z-axis of each frame it is 

attached to, where , corresponds to  respectively. In Table 

1, each row represents elements of homogeneous transformation, used in Eq. (2): 

 
 (2) 

where, , are the rotation operations about the z-axis and the x-axis 

respectively, and  are the translation vector on the z-axis and the x-axis 

respectively, while, , are scalars. The homogeneous transformation between the 

origin of the base of the robot into the end-effector of the robot, which coincides with 

 is shown in Eq. (3), 

 

 
(3) 
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where , is the point location of the end effector in 3D space, and  is the 

origin of the base of the robot. Since the rotation involve in Eq. (3) includes the rotation 

about the origin of the local frames, the orientation of the end-effector can be represented 

by, 

 
(4) 

Here the operation is closed. Often, to reduce computation expenses and trailing errors due 

to matrix-matrix multiplication, the rotation operation of r_mini are done over the 

quaternion (Eq. (5)), 

 
(5) 

where the Eq. (2) and Eq. (3) represent the forward kinematic solution for the end-effector 

of r_mini. 
 The self-collision, robot collision checking is delegated to a collision and proximity 

query library, the Flexible Collision library (FCL). Later in the algorithm formulation of 

the RRT and the cycle space, the subroutine from the FCL will be invoked to check 

collisions between the manipulator and the moving obstacles. The robot manipulator and 

the obstacles are encoded inside the collision scene which resides in the planning scene, 

ℳ , when the RRT datastructure is initialized (refer to Algorithm 2 line 1). 

 We use the Newton-Raphson method to find the inverse kinematic solution of r_mini, 
. The generalization of the method uses the current value of the robot's encoder, 

, and the termination value, , to end the iteration. Algorithm 1 delineates the  

method: 

Table 2: The Newton-Raphson algorithm for r_mini’s inverse kinematic solver 

   

3.2   The Rapidly-Exploring Random Trees and its Mathematical Background 
This research uses RRT implementation provided by the OMPL library packaged in 

the MoveIt software. The algorithm for the purpose of this research is shown in Algorithm 

2: 

Where  represents the number of nodes in the tree generated by the RRT;  represents 

the collision space of the planning scene where all RRT sampling takes place and,  is the 

tree that points to a non-colliding space. In this RRT implementation, the map is loaded or 
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queried in line 1 each time the generateRRT() is invoked. Line 3 generates a random state 

bias towards the . Line 4 invokes the k-nearest neighbor to find a selection of nodes 

that is close to the state configuration, . Line 5 is the core of the RRT sampling 

where it represents the controlling input of the robot motion. Since the robot is controlled 

in the joint-configuration space, the angular joint limit addresses the shape of the 

workspace. However, given the angular velocity, these limits are translated into the 

configuration space via the kinematic Jacobian which requires information on the . The 

limits implicitly ensure that the RRT, by executing Line 5 within the context of the robot‘s 

Jacobian, does not pass through the singularities of the robot. Hence, the configuration 

space of the manipulator also includes, , containing configuration that abides the 

joint-configuration space range and angular velocity limit. 

Table 3: The RRT algorithm 

 

The configuration space where sampling occurs is modified in this paper where, the 

rotation representation and its sampling is in , such that the parameterization of the 

Hamiltonian-space is the quaternions, . Therefore, the representation of the robot 

poses and also the non-colliding poses, , are explained in Eq. (6). 

 
(6) 

The RRT sampling involves a query into a map, that stores objects that are prone to 

collision. This is the planning scene, denoted as the collision map, where the RRT 

sampling occurs. The query is invoked when both the initial pose and a goal pose are sent 

to the RRT planner input. The output of the pipeline is a set of non-colliding space where 

from another pipeline, transform the configuration space into a control space. We will 

define the control space in the following section. 
3.3   The Cyclical Space 

The cyclical space is the subset of the planner solution where the RRT algorithm is 

invoked twice. During the generation of the cyclical space, the RRT output a trajectory 

from the initial pose,  to the goal pose, , into a controlling pipeline. The 

trajectories are then mapped from the configuration space into the joint-configuration 

space via the Newton-Raphson inverse kinematic solver (see algorithm 1). To complete 

the set of the cyclical space, the entries in the initial pose and the goal pose are swapped, 

while invoking the query into the collision map, 

 (7) 
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which forms a cyclical motion between the initial pose and the goal pose. Here,  

 Algorithm 3 block explains how the 

 space is constructed. 

The control space is represented by the trajectory in the joint-configuration space

, where  is the 6-hypersphere homomorphic to  because each 

joint is constrained to its angle limit. In Eq. (7), the joint-configuration space is equivalent 

to the configuration space in Eq. (6). The control space is the direct controlling parameters 

for the movement of r_mini where it only handles the control space (or joint-state space). 

The sampling of the RRT to generate the tree data structure, , are done within the 

topology. The free configuration space, or the non-colliding pose, is 

represented by, . According to LaValle et al. [7], this also 

covers the physical constraint of the non-holonomic movement of the robot. However, in 

the case of an articulated robot arm in this research, the configuration limitations are the 

range of the joints and the angular velocity limits. Since, these measurements are in the 6-

space, to map them into the , we use the kinematic Jacobian. 

Table 4: The cycle space generator where the movement within the constraint of the cycle space  

(also, a cyclical space) is dependent on the map, . 

 

4.   METHODOLOGY 
The methodology starts with the benchmarking of sampling-based planners available 

in the OMPL library and comparing the performance of the planners with the RRT. The 

benchmark is followed by experimentation in the simulated environment with a simulated 

robotic arm (r_mini) followed by the coupling of the simulated environment with r_mini 
hardware. The experimentation involves the moving obstacle that is introduced 

synthetically in the collision space. This was necessary since, at the time of this 

experimentation, the feedback from the mapping sensors was unavailable. 
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4.1  Benchmarking of Sampling-Based Motion Planners 
In this research, the planner for the dynamic obstacle avoidance is selected based on 

the performance of a benchmarking activity.  Two poses were set for the benchmark, pose 

initial were represented in the form of Eq. (6). The following vectors explain the 

numerical value of these poses concerning the frame attached to the base of r_mini. 

 

(8) 

A box, with dimension, 0.5 m × 0.05 m × 0.575 m, was placed in front of the robot, 

its pose was described by the vector in Eq. (9), 

 

(9) 

Figure 4 shows the simulation setup and the planning motion in action. The 

simulation was run for 50 requests from the initial pose to the goal pose. Time processing 

was given a 10 s limit. The memory limit was set to 1 Mb. The time limit for a request, 

including the motion and the processing time was set to 3637 s (about 1 hour). This paper 

also uses the default configuration of each planner in MoveIt to start the benchmarking. 

4.2  Experiment Design 
The cyclical space is populated by the RRT-Newton-Raphson pipeline where the 

generated trajectories are then passed to the control pipeline where the controller will 

spline the sparse trajectory waypoints. Two poses are defined in this experimentation 

which has been described in Eq. (8). A moving obstacle is placed in front-view of the 

robot. The obstacle is a cylinder with a 0.1 m radius base at 1 m height. The obstacle 

moves from 0.3 m to 1.7 m away from the robot in oscillation. The period of motion is 

harmonic, such that, the robot follows  along the x-axis. Two 

velocities ( ) values were used: 50% and 10% scale from the maximum velocity of the 

end-effector.  

The planner is invoked five seconds before the obstacle is placed into the planning 

scene. As described previously, the cylinder is directly placed into the planning scene (i.e., 

collision space) such that no motion tracking via mapping sensor feedback is necessary for 

this research. The planner is requested to provide a solution for the motion described by 

the cycle space. Twenty iterations were done with each given a five-minute runtime. The 

metric used for this experiment was the time on the first collision where, when the 

prototype touches the cylinder, the iteration is terminated. This experimentation was done, 

both, in simulation, and with the real robot hardware coupled with the simulated 
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environment. To reiterate, for both the simulation and the hardware validation, the obstacle 

was augmented in simulated environment. 

 
  

(a) (b) (c) 

Fig. 4: (a) Top view of the simulation shown, (b) Isometric view of the benchmark setup,  (c) r_mini 
attempts to move around the static obstacle placed in its immediate configuration workspace. 

5.   RESULTS AND DISCUSSION 
There are two parts of the results in this paper, the first dealing with the 

benchmarking result to ascertain the best sampling-based planner. The second part delve 

into the performance of the selected planner from the benchmarking on a moving obstacle.  

5.1  Benchmark Result 
Figure 5 shows the compiled statistics of the time the solutions that were passed to the 

controller (in this case a virtual controller for the simulation of r_mini in the simulated 

environment).  

 

Fig. 5: The benchmark result when two configurations are defined and passed to the OMPL planner 

pipeline. All planners completed a 50-cycle query from an initial pose to a goal pose. RRT required the 

least amount of processing time at finding the motion planning solution, followed by the PRM.  

RRT requires on average, 0.031 planning time while PRM requires 0.035 planning 

time from the initial pose to the goal pose when subjected to an obstacle close to the robot. 
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Wei & Ren [8] explained that the improved RRT algorithms, such as the bi-RRT, and the 

RRT-connect, solve a query faster. However, based on our benchmarking and in the case 

of this experimentation setup, vanilla RRT, or base-RRT, and PRM outperformed their 

improved variants when completing the path query between an initial pose and a goal 

pose. To that end, this research uses vanilla RRT as the scheme for the high-level local 

planner. This result helps us select the motion planner for dynamic obstacle avoidance. 

5.2  The Performance of RRT on a Dynamic Environment 
Table 5 shows the recorded time to the collision of 20 iterations. The average time to 

the collision was 40 s. There were two iterations where no collision was recorded. This 

performance is subjected to Algorithm 3, specifically in line 4 and line 7, when RRT is 

invoked. Within this call (refer to Algorithm 2: line 1), the random tree initialization 

considers an obstacle map that is outdated, given the cylinder moving further toward the 

manipulator when the RRT is executed. Within the RRT algorithm, there is no mechanism 

for the robot to stop or move at a lower rate to avoid the cylinder. Fig. 6 shows the 

sequence when the end-effector collided with the cylinder.  

Table 5: The simulated and hardware-connected result of the performance of RRT in a dynamic 

environment. NC stands for No Collision after five minute runtime 

 

 

                                         (a)                  (b) 

 

                                         (c)                  (d) 

Fig. 6:  These sequences show the manipulator follows an outdated trajectory and collides with the 

cylinder despite an attempt to move away from the moving cylinder. 

Despite the obstacle collision when the moving cylinder approaches the robot, 

specifically when the centroid of the cylinder is nearing the x-axis of the  and , 

the planner reacts to the obstacles when lines 4 and 7 in Algorithm 3 are invoked by 

attempting to move around the cylinder.  

The planner shows reactive behavior (local planning) when the cyclical space is 

initialized via Algorithm 3. Figure 7 illustrates such behavior in the simulated 

environment, and Fig. 8 shows the same behavior in the hardware reiteration of the 

experimentation. The reactive behavior is illustrated in Fig. 9, where the change we 

observed changes in movement range and a range in movement rate.  

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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(a) (b) 

 
 

(c) (d) 

Fig. 7: The chronology of the attempt at avoiding a moving obstacle. (a) and (b) When the obstacle 

approaches the robot, (c) The planner successfully provides a non-colliding solution when the cylinder 

is moving away from the robot. (d) Experimentation is defined in a simulated setup using Gazebo with 

the ODE physic engine to replicate the robot hardware and encoders feedback and the cyclical space 

initialization. 

 

Fig. 8: The sequence of motion when r_mini successfully avoids a moving obstacle when the  

obstacle is at a turning point to move away from the hardware.  

No significant changes are observed for ,  and . This is the 

implication of the Pieper-condition manipulator design where, none of the z-axis from the 

first three joints shares the same crossing point, which suggests the actuation on these 
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joints are not a linear transformation as the case for affine translation. Due to the offset 

(affine transformation) of the joints' axis of rotation, there is a bijection mapping of these 

joints to the task-space specifically reserved for translation changes in space. Also, 

changes are observed in the orientation of the frame attached to the end-effector, however, 

there is no bijection mapping of the three joints to the task-space's orientation.  

Fig. 9:  Joint angle position against timestamp due to reactions of the planner. (a) Joint 1, (b) Joint 2, (c) 

Joint 3, and (d) Joints 1,2, and 3 on a single graph. 

 

6.   CONCLUSION AND RECOMMENDATION 
We conclude that the RRT outperformed other sampling-based planners when the 

workspace of a manipulator is subjected to static obstacles. We observe that the RRT 

reacts to a moving object under the cycle space on a dynamic setup. We also concluded 

that with velocity-constrained configuration within the RRT, the planners generate a 

singularity-denied trajectory. To improve the time-to-collision value, we proposed an 

obstacle-tracking pipeline via mapping sensors such as an RGB-D sensor or a LiDAR. It is 

also recommended that more than one intermediate pose capable of reacting with the 

environment between the initial pose and the goal pose should be defined in the cycle 

space.  

REFERENCES 
[1] Hägele M, Nilsson K, Pires JN, Bischoff R. (2016) Industrial Robotics, in Springer 

Handbook of Robotics, Springer International Publishing, pp. 1385-1421.  

          doi: 10.1007/978-3-319-32552-1_54. 

 

            

(a)                                                                                    (b)   

 

    

                                     (c)                                                                                  (d)     

331



IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

[2] Matthias B, Kock S, Jerregard H, Källman M, Lundberg I. (2011) Safety of collaborative

industrial robots: Certification possibilities for a collaborative assembly robot concept, in

Proceedings - 2011 IEEE International Symposium on Assembly and Manufacturing

(ISAM) pp. 1-6.  doi: 10.1109/ISAM.2011.5942307.

[3] Deng H, Xia Z, Xiong J. (2016) Robotic manipulation planning using dynamic RRT,” in

2016 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2016,

Dec. 2016, pp. 500-504.   doi: 10.1109/RCAR.2016.7784080.

[4] Elbanhawi M, Simic M. (2014) Sampling-based robot motion planning: A review. Institute

of Electrical and Electronics Engineers Inc., 2: 56-77.

doi: 10.1109/ACCESS.2014.2302442.

[5] Kavraki LE, Kolountzakis MN, Latombe JC. (1998) Analysis of probabilistic roadmaps for

path planning. IEEE Trans. Robot. Autom., 14(1): 166-171.   doi: 10.1109/70.660866.

[6] Kunz T, Reiser U, Stilman M, Verl A. (2010) Real-time path planning for a robot arm in

changing environments. IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf.

Proc., pp. 5906-5911.  doi: 10.1109/IROS.2010.5653275.

[7] LaValle SM. (1998) Rapidly-Exploring Random Trees: A New Tool for Path Planning.

Accessed: Sep. 25, 2022. [Online]. Available: https://www.cs.csustan.edu/~xliang/Courses/

CS4710-21S/Papers/06 RRT.pdf

[8] Wei K, Ren B. (2018) A method on dynamic path planning for robotic manipulator

autonomous obstacle avoidance based on an improved RRT algorithm. Sensors

(Switzerland), 18(2):571. doi: 10.3390/s18020571.

[9] Pieper DL. (1968) The Kinematics of Manipulators Under Computer Control. Stanford

University.

[10] Denavit J, Hartenberg RS. (1955) A Kinematic Notation for Lower-Pair Mechanisms Based

on Matrices. J. Appl. Mech., 22(2): 215-221.   doi: 10.1115/1.4011045.

332

https://www.cs.csustan.edu/~xliang/Courses/CS4710-21S/Papers/06



