
IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

REPURPOSING A SAMPLING-BASED PLANNER FOR A
SIX-DEGREE-OF-FREEDOM MANIPULATOR TO

AVOID UNPREDICTABLE OBSTACLES

HAFIZ IMAN* AND MD RAISUDDIN KHAN
Department of Mechatronics Engineering, Kulliyyah of Engineering,

International Islamic University Malaysia, Jalan Gombak,
53100 Kuala Lumpur, Malaysia

*Corresponding author: hafiz.ghazman@gmail.com
(Received: 3rd November 2022; Accepted: 4th December 2022; Published on-line: 4th january 2023)

ABSTRACT: This paper presents the use of a sampling-based planner as a reactive

planning scheme to avoid obstacles between a robotic arm and a moving obstacle. Based

on a planner benchmark on an obstacle-ridden environment, a rapidly-exploring random

tree (RRT) planner has been used to populate the trajectories of the task space and map

them into a configuration space using a Newton-Raphson-based inverse kinematic

solver. Two robot poses are defined in a cycle of back-and-forth motion; the initial and

the goal poses. The robot repeatedly moves from the starting pose to the end pose via the

midpoint pose. Each set of trajectories is unique. We define this unique solution within

the context of the configuration space as a cycle space. We impose a periodically

occurring synthetic obstacle that moves in and out of the robot arm workspace defined in

a simulated environment. Within the robot's workspace, the obstacle moves and cuts

through the cycle space to emulate a dynamic environment. We also ran a benchmark on

the available sampling planner in the OMPL library for static obstacle avoidance. Our

benchmark shows that the RRT has the lowest time planning time at 0.031 s compared

with other sampling-based planners available in the OMPL library, RRT implicitly

avoids singularities within the cycle space, and reactively attempts to avoid synthetic

moving objects near the robot hardware. This research intends to further investigate on

the use of RGB-D sensor and LiDAR to track moving obstacles while abiding by the

task space commands described by the initial and goal poses.

ABSTRAK: Kertas kerja ini membentangkan penggunaan perancang berasaskan

persampelan sebagai skim perancangan reaktif untuk mengelakkan halangan antara

lengan robot dan halangan yang bergerak. Berdasarkan penanda aras perancang pada

persekitaran yang dipenuhi halangan, perancang pokok rawak (RRT) penerokaan pantas

telah digunakan untuk mengisi trajektori ruang tugas dan memetakannya ke dalam ruang

konfigurasi menggunakan penyelesai kinematik songsang berasaskan Newton-Raphson.

Dua pose robot ditakrifkan dalam kitaran gerakan bolak-balik; pose awal dan matlamat.

Robot berulang kali bergerak dari pose permulaan ke pose akhir melalui pose titik

tengah. Setiap set trajektori adalah unik. Kami mentakrifkan penyelesaian unik ini dalam

konteks ruang konfigurasi sebagai ruang kitaran. Kami mengenakan halangan sintetik

yang berlaku secara berkala yang bergerak masuk dan keluar dari ruang kerja lengan

robot yang ditakrifkan dalam persekitaran simulasi. Dalam ruang kerja robot, halangan

bergerak dan memotong ruang kitaran untuk meniru persekitaran yang dinamik. Kami

juga menjalankan penanda aras pada perancang pensampelan yang tersedia dalam

perpustakaan OMPL untuk mengelakkan halangan statik. Penanda aras kami

menunjukkan bahawa RRT mempunyai masa perancangan masa terendah pada 0.031 s

berbanding dengan perancang berasaskan pensampelan lain yang terdapat dalam

319

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

perpustakaan OMPL, RRT secara tersirat mengelakkan singulariti dalam ruang kitaran,
dan secara reaktif cuba mengelakkan objek bergerak sintetik yang menghampiri
perkakasan robot. Melangkah ke hadapan, penyelidikan ini berhasrat untuk menyiasat
lebih lanjut mengenai penggunaan penderia RGB-D dan LiDAR untuk mengesan
halangan bergerak sambil mematuhi arahan ruang tugas yang diterangkan oleh pose awal
dan matlamat.

KEYWORDS: mechatronics; robot manipulator; planner; motion planning; dynamic

environment

1. INTRODUCTION
Given its rigid and massive construction, a small-sized industrial robot imposes

significant hazards on the people that work near it. Hence, robotic manufacturers build
robot manipulators that are more compliant and designed to cooperatively without risking
their safety [1]. Regardless, a robot manipulator imposes occupational hazards in the
workspace during a collision with foreign objects or a person [2]. The collision also
warrants expensive maintenance and repairs. An industrial robot system implements a
certain degree of planning algorithm specifically for the movement of the manipulator.

A robot motion planner can provide a collision-free motion solution for a manipulator
if a solution is defined as the collection of waypoints and trajectories that avoid collision
between the robot and the obstacle as will be demonstrated by this paper in the following
section. A global planner, an offline approach to motion planning, takes in a set of initial
and goal positions, , or as set of initial and goal poses, , as its input
constraint-informed trajectory as intermediate waypoints for the robot to follow [3].
However, a global planner is offline, which implies that the trajectories are set before the
task commences. The global planner also assumes a static workspace. Any unplanned
changes in the workspace over the global planning scheme, such as an unplanned
introduction of a stationary object or a moving object into the robot workspace, renders the
offline-planned trajectory outdated and, consequently, requires replanning.

Hence, a compliant manipulator or cooperative manipulator must have an efficient
online motion planner because of the dynamic aspect of their workspace. However, this
requires replanning which is computationally expensive and time-consuming. To relax the
computational strain, algorithms are designed stochastically by implementing sampling of
plausible solution in specific solution space [4]. Unfortunately, sampling-based planner
trade completeness and optimality with efficiency where the planner may fail to provide a
solution [5]. Also, if a solution exists under its metric space, the waypoints may not be the
least cost path to a goal [6].

Regardless of the lack of completeness and optimality, sampling-based planners excel
at maintaining reasonable usage of computational resources that pave the way to the near-
online planning scheme. The sampling-based planners for robot motion are a family of
planners that use probabilistic approach to generate graph structures that encode the free
space and the robot configuration space. The samplings are stochastic, such that
resampling will give a unique solution to the previous sampling. Most sampling-based
planners are tractable in higher-dimensional configurations and task space. Nonetheless,
sampling-based planners also assume a static workspace.

This paper uses sampling-based motion planning, the rapidly-exploring random tree
motion planning, to address operation tasks in a dynamic environment in Euclidean space,
Our method leverages the efficiency and the computationally reserved sampling-based

320

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

motion planning without needing to apply a purely reactive motion planning approach so

that computational resources can be delegated to other tasks, i.e., motion-tracking, state

estimation, mapping, localization, and motion control. In the following sections of this

report, we will assume sampling planners to provide solutions in higher dimensional

configuration space, which implicates a solution with a set of poses represented by the

special Euclidean group , .

2. RELATED WORK
The research done in [5] is the seminal work on the use of a probability model for

sampling the configuration space for holonomic robot motion such as a manipulator robot.

The planner is called the probabilistic roadmap (PRM). The algorithm constructs a graph

structure to find a path between an initial pose to a goal pose in a two-dimensional

configuration space, . A more general solution for higher dimensional configuration

space, , were also proved using the PRM in their work. With graph structure, more

than one path connects the initial pose to the goal pose. Therefore, PRM is a multi-query

type planner.

The work in [6] improved PRM by redefining the distance metric of a robot

manipulator so that the robot can move around a moving obstacle in real-time. Their

approach performs well in an uncluttered environment. They also redefined the distance

function of the PRM to address dynamic objects, such as a walking person, into a two-

dimensional map. Although the configuration space of the manipulator is in , the map,

constructed from a two-dimensional LiDAR scan, is in, .

In retrospect, the RRT was formulated for non-holonomic motion targeting problems

addressed in differential-constrained motion such as a car on a plane [7]. However, given

the model of its metric space and consequently the configuration space, RRT is tractable

for the higher dimensional problem such as manipulator motion in 3D space. RRT

assumes a static environment but investigation in [8], successfully changed the way RRT

samples a robot metric space so that it is fast enough to react to a changing environment.

Also, unlike PRM, RRT works well in a cluttered environment because of the randomized

sampling on the robot configuration space in the context of the metric space.

Apart from the works in [6] and [8], few have applied their planning algorithms on a

robot manipulator despite having RRT and PRM algorithms provide a mathematical

framework for planning for multi-body and multi-frame systems. In this paper, we will use

the method demonstrated by [6] and [8] to design a moving obstacle avoidance algorithm

with the implementation of the vanilla RRT to solve motion for a robot manipulator in

three-dimensional space, . Our method implements the vanilla RRT where we do not

represent the obstacle configuration space unlike in [8].

3. FORMULATION AND ALGORITHMS
This paper will use the superscript notation to refer to the control space and the subscript

as the equivalent representation in the configuration space. For example, , refers to the

control space of the end-effector where the controlling pipelines would take in

, and the equivalent pose is in the configuration space, .

Since the revolute joint topology is the 1-hypersphere, , we will assume that, for the

case of 6R robot, its joints are limited to a certain range which makes, .

321

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

3.1 The Geometry of a Compliant Robotic Arm, r_mini
We prototype and build a 3D-printed robot called Richard Mini (r_mini, see Fig. 1(a)

and 1(b)) based on the condition addressed by Pieper [9], which entails three collated

joints sharing the same cross point of their, z-axes, shown in Fig. 2.

(a) r_mini hardware assemblage (b) r_mini Computer Aided Design (CAD) construction

Fig. 1: A 3D-printed compliant manipulator, r_mini, designed to replicate a common

industrial robot construction.

Fig. 2: r_mini wrist conforms to Pieper condition where axes of rotation for joint4, joint5, and joint6

share points of intercept. The dashed circles in the diagram refer to point of intercepts. Both points are

valid frames for constructing the DH-table.

r_mini has six revolute axes, . The first three axes move the task space from

one point to another representing the translation vector, . The last three axes of the

manipulator rotate the task space representing the rotation operation about the task space

frame, . Hence the complete transformation of the task space via the joint

movement is represented by the homogenous transformation matrix, , where

 is homomorphic to ; . The matrix representation of

the homogenous transformation is shown in Eq. (1).

(1)

The kinematic model of the r_mini follows the Denavit-Hartenberg (DH) formulation

[10]. The DH-parameters are shown in Table 1 and the visualization of these parameters in

the form of frames transformation is shown in Fig. (3).

322

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

Table 1: DH-parameter table for r_mini

 r_mini build completion

Fig. 3: The location and orientation of r_mini. The choice of orientation for each frame is based on

Denavit-Hartenberg convention. The joints’ values are represented by the angle between the x-axis
around the z-axis (the rotation axis of each joint) of the actuator.

Following the DH-convention, each link rotates about the z-axis of each frame it is

attached to, where , corresponds to respectively. In Table

1, each row represents elements of homogeneous transformation, used in Eq. (2):

 (2)

where, , are the rotation operations about the z-axis and the x-axis

respectively, and are the translation vector on the z-axis and the x-axis

respectively, while, , are scalars. The homogeneous transformation between the

origin of the base of the robot into the end-effector of the robot, which coincides with

 is shown in Eq. (3),

(3)

323

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

where , is the point location of the end effector in 3D space, and is the

origin of the base of the robot. Since the rotation involve in Eq. (3) includes the rotation

about the origin of the local frames, the orientation of the end-effector can be represented

by,

(4)

Here the operation is closed. Often, to reduce computation expenses and trailing errors due

to matrix-matrix multiplication, the rotation operation of r_mini are done over the

quaternion (Eq. (5)),

(5)

where the Eq. (2) and Eq. (3) represent the forward kinematic solution for the end-effector

of r_mini.
 The self-collision, robot collision checking is delegated to a collision and proximity

query library, the Flexible Collision library (FCL). Later in the algorithm formulation of

the RRT and the cycle space, the subroutine from the FCL will be invoked to check

collisions between the manipulator and the moving obstacles. The robot manipulator and

the obstacles are encoded inside the collision scene which resides in the planning scene,

ℳ , when the RRT datastructure is initialized (refer to Algorithm 2 line 1).

 We use the Newton-Raphson method to find the inverse kinematic solution of r_mini,
. The generalization of the method uses the current value of the robot's encoder,

, and the termination value, , to end the iteration. Algorithm 1 delineates the

method:

Table 2: The Newton-Raphson algorithm for r_mini’s inverse kinematic solver

3.2 The Rapidly-Exploring Random Trees and its Mathematical Background
This research uses RRT implementation provided by the OMPL library packaged in

the MoveIt software. The algorithm for the purpose of this research is shown in Algorithm

2:

Where represents the number of nodes in the tree generated by the RRT; represents

the collision space of the planning scene where all RRT sampling takes place and, is the

tree that points to a non-colliding space. In this RRT implementation, the map is loaded or

324

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

queried in line 1 each time the generateRRT() is invoked. Line 3 generates a random state

bias towards the . Line 4 invokes the k-nearest neighbor to find a selection of nodes

that is close to the state configuration, . Line 5 is the core of the RRT sampling

where it represents the controlling input of the robot motion. Since the robot is controlled

in the joint-configuration space, the angular joint limit addresses the shape of the

workspace. However, given the angular velocity, these limits are translated into the

configuration space via the kinematic Jacobian which requires information on the . The

limits implicitly ensure that the RRT, by executing Line 5 within the context of the robot‘s

Jacobian, does not pass through the singularities of the robot. Hence, the configuration

space of the manipulator also includes, , containing configuration that abides the

joint-configuration space range and angular velocity limit.

Table 3: The RRT algorithm

The configuration space where sampling occurs is modified in this paper where, the

rotation representation and its sampling is in , such that the parameterization of the

Hamiltonian-space is the quaternions, . Therefore, the representation of the robot

poses and also the non-colliding poses, , are explained in Eq. (6).

(6)

The RRT sampling involves a query into a map, that stores objects that are prone to

collision. This is the planning scene, denoted as the collision map, where the RRT

sampling occurs. The query is invoked when both the initial pose and a goal pose are sent

to the RRT planner input. The output of the pipeline is a set of non-colliding space where

from another pipeline, transform the configuration space into a control space. We will

define the control space in the following section.
3.3 The Cyclical Space

The cyclical space is the subset of the planner solution where the RRT algorithm is

invoked twice. During the generation of the cyclical space, the RRT output a trajectory

from the initial pose, to the goal pose, , into a controlling pipeline. The

trajectories are then mapped from the configuration space into the joint-configuration

space via the Newton-Raphson inverse kinematic solver (see algorithm 1). To complete

the set of the cyclical space, the entries in the initial pose and the goal pose are swapped,

while invoking the query into the collision map,

 (7)

325

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

which forms a cyclical motion between the initial pose and the goal pose. Here,

 Algorithm 3 block explains how the

 space is constructed.

The control space is represented by the trajectory in the joint-configuration space

, where is the 6-hypersphere homomorphic to because each

joint is constrained to its angle limit. In Eq. (7), the joint-configuration space is equivalent

to the configuration space in Eq. (6). The control space is the direct controlling parameters

for the movement of r_mini where it only handles the control space (or joint-state space).

The sampling of the RRT to generate the tree data structure, , are done within the

topology. The free configuration space, or the non-colliding pose, is

represented by, . According to LaValle et al. [7], this also

covers the physical constraint of the non-holonomic movement of the robot. However, in

the case of an articulated robot arm in this research, the configuration limitations are the

range of the joints and the angular velocity limits. Since, these measurements are in the 6-

space, to map them into the , we use the kinematic Jacobian.

Table 4: The cycle space generator where the movement within the constraint of the cycle space

(also, a cyclical space) is dependent on the map, .

4. METHODOLOGY
The methodology starts with the benchmarking of sampling-based planners available

in the OMPL library and comparing the performance of the planners with the RRT. The

benchmark is followed by experimentation in the simulated environment with a simulated

robotic arm (r_mini) followed by the coupling of the simulated environment with r_mini
hardware. The experimentation involves the moving obstacle that is introduced

synthetically in the collision space. This was necessary since, at the time of this

experimentation, the feedback from the mapping sensors was unavailable.

326

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

4.1 Benchmarking of Sampling-Based Motion Planners
In this research, the planner for the dynamic obstacle avoidance is selected based on

the performance of a benchmarking activity. Two poses were set for the benchmark, pose

initial were represented in the form of Eq. (6). The following vectors explain the

numerical value of these poses concerning the frame attached to the base of r_mini.

(8)

A box, with dimension, 0.5 m × 0.05 m × 0.575 m, was placed in front of the robot,

its pose was described by the vector in Eq. (9),

(9)

Figure 4 shows the simulation setup and the planning motion in action. The

simulation was run for 50 requests from the initial pose to the goal pose. Time processing

was given a 10 s limit. The memory limit was set to 1 Mb. The time limit for a request,

including the motion and the processing time was set to 3637 s (about 1 hour). This paper

also uses the default configuration of each planner in MoveIt to start the benchmarking.

4.2 Experiment Design
The cyclical space is populated by the RRT-Newton-Raphson pipeline where the

generated trajectories are then passed to the control pipeline where the controller will

spline the sparse trajectory waypoints. Two poses are defined in this experimentation

which has been described in Eq. (8). A moving obstacle is placed in front-view of the

robot. The obstacle is a cylinder with a 0.1 m radius base at 1 m height. The obstacle

moves from 0.3 m to 1.7 m away from the robot in oscillation. The period of motion is

harmonic, such that, the robot follows along the x-axis. Two

velocities () values were used: 50% and 10% scale from the maximum velocity of the

end-effector.

The planner is invoked five seconds before the obstacle is placed into the planning

scene. As described previously, the cylinder is directly placed into the planning scene (i.e.,

collision space) such that no motion tracking via mapping sensor feedback is necessary for

this research. The planner is requested to provide a solution for the motion described by

the cycle space. Twenty iterations were done with each given a five-minute runtime. The

metric used for this experiment was the time on the first collision where, when the

prototype touches the cylinder, the iteration is terminated. This experimentation was done,

both, in simulation, and with the real robot hardware coupled with the simulated

327

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

environment. To reiterate, for both the simulation and the hardware validation, the obstacle

was augmented in simulated environment.

(a) (b) (c)

Fig. 4: (a) Top view of the simulation shown, (b) Isometric view of the benchmark setup, (c) r_mini
attempts to move around the static obstacle placed in its immediate configuration workspace.

5. RESULTS AND DISCUSSION
There are two parts of the results in this paper, the first dealing with the

benchmarking result to ascertain the best sampling-based planner. The second part delve

into the performance of the selected planner from the benchmarking on a moving obstacle.

5.1 Benchmark Result
Figure 5 shows the compiled statistics of the time the solutions that were passed to the

controller (in this case a virtual controller for the simulation of r_mini in the simulated

environment).

Fig. 5: The benchmark result when two configurations are defined and passed to the OMPL planner

pipeline. All planners completed a 50-cycle query from an initial pose to a goal pose. RRT required the

least amount of processing time at finding the motion planning solution, followed by the PRM.

RRT requires on average, 0.031 planning time while PRM requires 0.035 planning

time from the initial pose to the goal pose when subjected to an obstacle close to the robot.

328

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

Wei & Ren [8] explained that the improved RRT algorithms, such as the bi-RRT, and the

RRT-connect, solve a query faster. However, based on our benchmarking and in the case

of this experimentation setup, vanilla RRT, or base-RRT, and PRM outperformed their

improved variants when completing the path query between an initial pose and a goal

pose. To that end, this research uses vanilla RRT as the scheme for the high-level local

planner. This result helps us select the motion planner for dynamic obstacle avoidance.

5.2 The Performance of RRT on a Dynamic Environment
Table 5 shows the recorded time to the collision of 20 iterations. The average time to

the collision was 40 s. There were two iterations where no collision was recorded. This

performance is subjected to Algorithm 3, specifically in line 4 and line 7, when RRT is

invoked. Within this call (refer to Algorithm 2: line 1), the random tree initialization

considers an obstacle map that is outdated, given the cylinder moving further toward the

manipulator when the RRT is executed. Within the RRT algorithm, there is no mechanism

for the robot to stop or move at a lower rate to avoid the cylinder. Fig. 6 shows the

sequence when the end-effector collided with the cylinder.

Table 5: The simulated and hardware-connected result of the performance of RRT in a dynamic

environment. NC stands for No Collision after five minute runtime

 (a) (b)

 (c) (d)

Fig. 6: These sequences show the manipulator follows an outdated trajectory and collides with the

cylinder despite an attempt to move away from the moving cylinder.

Despite the obstacle collision when the moving cylinder approaches the robot,

specifically when the centroid of the cylinder is nearing the x-axis of the and ,

the planner reacts to the obstacles when lines 4 and 7 in Algorithm 3 are invoked by

attempting to move around the cylinder.

The planner shows reactive behavior (local planning) when the cyclical space is

initialized via Algorithm 3. Figure 7 illustrates such behavior in the simulated

environment, and Fig. 8 shows the same behavior in the hardware reiteration of the

experimentation. The reactive behavior is illustrated in Fig. 9, where the change we

observed changes in movement range and a range in movement rate.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

329

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

(a) (b)

(c) (d)

Fig. 7: The chronology of the attempt at avoiding a moving obstacle. (a) and (b) When the obstacle

approaches the robot, (c) The planner successfully provides a non-colliding solution when the cylinder

is moving away from the robot. (d) Experimentation is defined in a simulated setup using Gazebo with

the ODE physic engine to replicate the robot hardware and encoders feedback and the cyclical space

initialization.

Fig. 8: The sequence of motion when r_mini successfully avoids a moving obstacle when the

obstacle is at a turning point to move away from the hardware.

No significant changes are observed for , and . This is the

implication of the Pieper-condition manipulator design where, none of the z-axis from the

first three joints shares the same crossing point, which suggests the actuation on these

330

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

joints are not a linear transformation as the case for affine translation. Due to the offset

(affine transformation) of the joints' axis of rotation, there is a bijection mapping of these

joints to the task-space specifically reserved for translation changes in space. Also,

changes are observed in the orientation of the frame attached to the end-effector, however,

there is no bijection mapping of the three joints to the task-space's orientation.

Fig. 9: Joint angle position against timestamp due to reactions of the planner. (a) Joint 1, (b) Joint 2, (c)

Joint 3, and (d) Joints 1,2, and 3 on a single graph.

6. CONCLUSION AND RECOMMENDATION
We conclude that the RRT outperformed other sampling-based planners when the

workspace of a manipulator is subjected to static obstacles. We observe that the RRT

reacts to a moving object under the cycle space on a dynamic setup. We also concluded

that with velocity-constrained configuration within the RRT, the planners generate a

singularity-denied trajectory. To improve the time-to-collision value, we proposed an

obstacle-tracking pipeline via mapping sensors such as an RGB-D sensor or a LiDAR. It is

also recommended that more than one intermediate pose capable of reacting with the

environment between the initial pose and the goal pose should be defined in the cycle

space.

REFERENCES
[1] Hägele M, Nilsson K, Pires JN, Bischoff R. (2016) Industrial Robotics, in Springer

Handbook of Robotics, Springer International Publishing, pp. 1385-1421.

 doi: 10.1007/978-3-319-32552-1_54.

(a) (b)

 (c) (d)

331

IIUM Engineering Journal, Vol. 24, No. 1, 2023 Iman and Khan
https://doi.org/10.31436/iiumej.v24i1.2642

[2] Matthias B, Kock S, Jerregard H, Källman M, Lundberg I. (2011) Safety of collaborative

industrial robots: Certification possibilities for a collaborative assembly robot concept, in

Proceedings - 2011 IEEE International Symposium on Assembly and Manufacturing

(ISAM) pp. 1-6. doi: 10.1109/ISAM.2011.5942307.

[3] Deng H, Xia Z, Xiong J. (2016) Robotic manipulation planning using dynamic RRT,” in

2016 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2016,

Dec. 2016, pp. 500-504. doi: 10.1109/RCAR.2016.7784080.

[4] Elbanhawi M, Simic M. (2014) Sampling-based robot motion planning: A review. Institute

of Electrical and Electronics Engineers Inc., 2: 56-77.

doi: 10.1109/ACCESS.2014.2302442.

[5] Kavraki LE, Kolountzakis MN, Latombe JC. (1998) Analysis of probabilistic roadmaps for

path planning. IEEE Trans. Robot. Autom., 14(1): 166-171. doi: 10.1109/70.660866.

[6] Kunz T, Reiser U, Stilman M, Verl A. (2010) Real-time path planning for a robot arm in

changing environments. IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf.

Proc., pp. 5906-5911. doi: 10.1109/IROS.2010.5653275.

[7] LaValle SM. (1998) Rapidly-Exploring Random Trees: A New Tool for Path Planning.

Accessed: Sep. 25, 2022. [Online]. Available: https://www.cs.csustan.edu/~xliang/Courses/

CS4710-21S/Papers/06 RRT.pdf

[8] Wei K, Ren B. (2018) A method on dynamic path planning for robotic manipulator

autonomous obstacle avoidance based on an improved RRT algorithm. Sensors

(Switzerland), 18(2):571. doi: 10.3390/s18020571.

[9] Pieper DL. (1968) The Kinematics of Manipulators Under Computer Control. Stanford

University.

[10] Denavit J, Hartenberg RS. (1955) A Kinematic Notation for Lower-Pair Mechanisms Based

on Matrices. J. Appl. Mech., 22(2): 215-221. doi: 10.1115/1.4011045.

332

https://www.cs.csustan.edu/~xliang/Courses/CS4710-21S/Papers/06

