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ABSTRACT: Liquid impact and ricochet is still attracting researchers interested in 
the field of hydrodynamics and naval engineering. The ricochet from a water surface 
experienced by spinning spheres was examined both analytically and numerically. A 
theoretical analysis was made to quantify the enhancement attained by imparting backspin 
to the sphere. Numerical simulation of the process was conducted by implementing 
ABAQUS software. The mathematical analysis and the simulation were built on the 
assumption that the effects of cavitation, splash, and two phase flow are negligible 
compared to hydro-dynamical forces of lift and drag. It was proven that both mathematical 
analysis and simulation were capable of predicting the trajectory of a spinning sphere during 
its course of entry into the water. Aspects like the critical angle of ricochet and the 
maximum depth of immersion were extracted from these trajectories and compared with 
available data. It was found that the analytical and numerical results were generally 
validated with respect to each other as well as to existing findings. Aluminum (𝜎𝜎 = 2.7) 
spinning spheres, of radius 10 mm and speed of 10 m/sec, were examined. It was found that 
a 300 rad/sec backspin improves the critical angle of ricochet from 10.43 to 12.5 deg and 
increases the maximum depth of immersion from 1.52 to 1.83.  "Magnus Effect" usually 
acting on a fully immersed spinning sphere, was described and relations estimating the 
hydrodynamic forces were deduced.  

ABSTRAK: Keadaan pertumbuhan bakteria penghasil enzim protease aktif-sejuk terasing 
daripada sampel Antartika disaring menggunakan satu-faktor-satu-masa (OFAT). 
Kemudian, enzim protease ini diekstrak pada lewat fasa logaritma untuk ujian enzimatik. 
Strain yang menunjukkan aktiviti enzim tertinggi telah dipilih bagi tujuan pengoptimuman 
melalui Kaedah Permukaan Tindak Balas (RSM). Parameter yang dikaji adalah pada suhu 
pengeraman (4 - 36 °C), media pH (4 – 10) dan kepekatan NaCl (0 - 8 %). Berdasarkan 
dapatan OFAT, kesemua lapan bakteria menunjukkan kadar pertumbuhan tertinggi pada 20 
°C, pH 7 dan 4% NaCl (w/v). Hasil ujian enzimatik menunjukkan enzim protease mentah 
yang diekstrak daripada SC8 menunjukkan aktiviti yang jauh lebih tinggi (0.20 U dan 0.37 
U) daripada kawalan positif (0.11 U dan 0.31 U) pada -20 °C dan 20 °C. RSM ini
menunjukkan kadar optimum bagi pertumbuhan SC8 adalah pada 20.5 °C, pH 6.83 dan
2.05% NaCl (w/v) dengan dapatan kadar pertumbuhan bakteria pada 3.70 ± 0.06 x 106

sel/jam. Keadaan pertumbuhan optimum SC8 melalui kajian ini bermanfaat bagi
menghasilkan produk protease aktif-sejuk secara besar-besaran pada masa hadapan.
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1. INTRODUCTION  
The phenomenon of liquid impact and ricochet is still attracting researchers interested in 

the field of hydrodynamics and naval engineering. It also fascinates the layman, as evidenced 
by attempting to achieve skipping of stones across the water’s surface. The interaction 
between liquids and solids in many modern applications has stimulated engineers and 
scholars to conduct more research towards comprehensive understanding of the phenomenon. 
These applications include – but are not limited to - ships, offshore structures, missiles, 
torpedoes, underwater vehicles, watercrafts, and oceanographic measuring devices. Interest in 
the liquid-solid impact may well stem from the historical technique of ricocheting 
cannonballs to attack ships in the past two centuries. In this context, the famous bomb used in 
World War II and known as the Barnes Wallis’s bouncing bomb, is particularly recognized. 
Barnes Wallis proposed an attack on German dams which were protected against normal 
high-level air attacks. A torpedo attack was also excluded for the defenders of those dams had 
arranged a web of heavy anti-torpedo netting. He thus proposed spherical bombs dropped 
from low-level flying aircraft; being too low and too speedy, the bombs would ricochet and 
skip over the nets. In addition, Wallis succeeded to impart back-spin to the flying bomb for 
more stability during flight and the ability to ricochet; for more details about this fascinating 
device, the reader is referred to Johnson [1].  

During this period, the water-entry of solid bodies was experimentally investigated by 
Richardson [2]. A movie camera of 200 frames per second was used to record the trajectories 
of Duralumin, Steel, and ebonite spheres during their impacts onto water at different 
combinations of speed and angle, see Fig. 1. Measurements of the entry and exit speeds and 
angles were also made. 

 
Fig. 1: Depiction of sphere trajectories [2]. 

It has also been noted that the sphere was always followed by a cavity due to the 
separation which occurs immediately after contact. In addition, the critical angle of ricochet 
was found to be 60, 90, and 150 for Steel (𝜎𝜎 = 7.8), Duralumin (𝜎𝜎 = 2.7), and Ebonite (𝜎𝜎 =
1.1), respectively. Finally, the submergence of ricocheting spheres falls in the range of one 
radius to two. 

The first formula appeared in the literature which governs the critical angle of entry of a 
spherical object for ricochet is due to Birkhoff et al. [3], i.e.: 
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𝜗𝜗𝑐𝑐 =
18
√𝜎𝜎

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)                                                                                                                   (1) 

In reproducing Eq. (1), Johnson & Reid [4] adopted the assumptions made in [3] which 
were: i. the pressure on a surface element is 0.5𝜌𝜌(𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉)2, ii. the pressure of splash above 
the undisturbed surface of water is discounted, and iii. the limiting condition for ricochet is 
that the sphere moves horizontally at the instance of full immersion. No attempt was made to 
justify these assumptions. Thus, Johnson & Reid [4] concluded that: 

𝜗𝜗𝑐𝑐 =
17.5
√𝜎𝜎

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)                                                                                                                          (2) 

Trajectories for the sphere having different combinations of (𝑉𝑉0 ,𝜃𝜃0) were also calculated 
by applying the equations of motion in both x and y directions. 

The effect of spin on the critical angle of ricochet of a cylinder was firstly examined by 
Hutchings [5]. To this end, and realizing the infeasibility of using the pressure formula 
0.5𝜌𝜌(𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉)2, he adopted the Rayleigh pressure formula, namely: 

 

𝑝𝑝 =
𝜋𝜋𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉

4 + 𝜋𝜋𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉
𝜌𝜌𝑉𝑉2                                                                                                                             (3) 

In addition, Hutchings [5] assumed that: i. the angular extent of the wetted area is twice 
that used by Johnson & Reid [4] due to splash of water ahead of the sphere, and thus, ii. the 
limiting condition for ricochet is that the sphere moves horizontally at the instance of the 
centroid of sphere just reaches the undisturbed surface of water. In this way, Hutchings [5] 
reported that for a non-spinning sphere: 

𝜗𝜗𝑐𝑐 =
17.3
√𝜎𝜎

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)                                                                                                                          (4) 

So far, the weight of the spherical projectile was assumed negligible in comparison with 
the hydrodynamic forces at high speeds. At relatively low speeds, however, the effect of 
projectile weight has to be considered. Following the procedure of Johnson & Reid [4], the 
weight and hence the speed of sphere has been accounted for by Soliman et al. [6] as: 

𝜗𝜗𝑔𝑔2 = 𝜗𝜗𝑐𝑐2 −
4
𝐹𝐹�

                                                                                                                                      (5) 

where 𝜗𝜗𝑐𝑐 is that of Eq. (2) and  𝜗𝜗𝑔𝑔 is the new one modified for the speed of sphere. 
Soliman et al. [6] also carried out tests on the ricochet of Steel and Duralumin spheres from 
shallow depths of water. Different values of the speed of sphere and the angle of attack were 
employed. A minimum value of 30 ft/sec was required for Steel spheres in order to achieve 
ricochet. The effect of spin, albeit uncontrolled, was furthermore explored; only forward spin 
has been achieved due to which smaller angle was observed for ricochet. 

Miloh & Shukron [7] strongly criticized the assumptions made in [3-6], describing it as 
lack in physical rigor. They formulated the Kelvin-Kirchoff-Lagrange equations of motion 
based on the energy method assuming large impact velocity. The formulation was performed 
in terms of time-dependent added-mass coefficients and their time derivatives. No pressure 
distribution over the sphere surface is prescribed since the method temporarily evaluates the 
added-mass coefficients and their time-derivatives in the high-frequency limit where the 
spray energy is ignored with respect to the total kinetic energy of water. Moreover, the 
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limiting condition for ricochet is that the sphere is just above the undisturbed surface and has 
zero normal velocity. It was found that the submergence of ricocheting sphere in no time 
exceeds 1.4 times its radius, even for infinite speed and density of the sphere. Also, the value 
of critical angle for ricochet predicted by Eq. (1) was found by Miloh & Shukron [7] to 
represent the infinite Froude number asymptote of their analytic solution. Finally, they 
predicted a threshold value of Froude number below which a ricochet is not possible, no 
matter how small the angle. This number is directly proportional with the density of the 
sphere. 

Numerical methods have also been employed for the solution of the ricochet problem, 
like the source panel method [8] where impact forces and ricochet behavior of the arbitrary-
shaped solid bodies can be computed. A disk cylinder and two tangent ogives were tested for 
validation of the method.  

The effect of spin on the characteristics of skipping of thin flat disks was addressed by 
Rosellini et al. [9]. Experiments revealed a positive effect on the ricochet occurrence through 
enhancing the aerodynamic stability due to gyroscopic effects. No effect of the spin was 
noted on the angle of attack. In addition, the number of skips was found to be in direct 
proportionality with the linear velocity of disk. 

An interesting extensive work by Truscot & Techet [10] investigated the effect of spin 
on the aspects of normal water-entry of a sphere. Controlled spin about the horizontal axis 
was imparted to standard billiard balls and projected normally onto water surface. Different 
values of spin and linear speed were attempted to explore their influence on the sphere 
trajectory and the splash and cavity dynamics. Figure 2 includes images of the cavity and 
splash as well as the trajectory of non-spinning (left) and spinning (right) spheres. 

  
(a) (b) 

 Fig. 2: Images of the cavity and splash as well as the trajectory of 57 mm diameter spheres. (a) non-
spinning: V= 5.95 m/s. (b) spinning V=5.45 m/s, spin=251 rad/s. Both images were taken at the 

same time after impact (t=102 ms). [10] 

The apparent curvature in the trajectory of the spinning sphere was attributed to the lift 
widely known as ''Magnus effect"; the lift force increased with spin increase.  

The oblique impact of a torpedo onto water was studied theoretically, numerically, and 
experimentally by Wei et al. [11]. The linear and angular motions of a torpedo were 
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formulated and solved for the trajectory. MSC DYTRAN was used to simulate the water 
entry, and the wind tunnel experimentation was based on the similarity principle. 

Moxnes et al. [12] used AUTODYN code with the Smooth Particle Hydrodynamics 
(SPH) method to simulate the ricochet of a spherical steel projectile from the water surface. 
The simulation with AUTODYN showed too large a drag coefficient but the critical angle of 
ricochet was consistent with Eq. (1).  

Numerical solution of the ricochet of solid non-spinning cylinders from water surface 
was investigated by Omidvar et al. [13] where fixed ghost boundary conditions were added to 
Smooth Particle Hydrodynamics (SPH) open source code. It was concluded that the 
Smoothed Particle Hydrodynamics is a suitable method to investigate the water impact of 
solid objects.  

Recently, Nguyen et al. [14] extended and applied a two-phase three-equation model to 
simulate the ricochet of circular cylinders from water surface. The numerical method was 
solved for a cylinder with different densities, and comparisons of predicted and experimental 
data showed fairly good agreement, which confirmed the capability and robustness of the 
model for accurate simulation of free surface and water impact flows. 

Nguyen et al. [15] presented an efficient free surface solver to simulate the three 
dimensional modeling of the ricochet problems for solid bodies entries to the water. A 
dynamic numerical scheme was implemented of grid to facilitate the flow simulation of the 
complex geometries entered to water. 

Lyu et al. [16] experimentally studied the impact of a bouncing sphere to the water 
surface. The effect of impact velocity and initial impact angle and the energy dissipation on 
the ricochet of spheres were evaluated. Also the cavitation effect on ricochet were conducted. 
The study showed that more than half of the initial energy was dissipated at low impact 
angles. 

The authors believe that the ricochet of solids off liquid surfaces is far from exhaustive, 
particularly in the cases where spinning is involved. In the absence of available theoretical 
estimate of the critical angle of ricochet associated with spinning spheres, it is hoped that this 
work will fill some the blanks.  

2. THEORETICAL ANALYSIS 
Most of the criticisms cited regarding theoretical analyses are focused on the 

assumptions made prior to, or throughout the analysis, especially those made not on a 
physical- but on ad hoc- basis. Approximations are another source of precision loss too. In 
this work, only necessary assumptions, pertaining to the physics of the problem and leading 
to feasible and reasonable results, will be made. Moreover, the oft-neglected terms (based on 
their insignificance) will be retained or at least partly sacrificed. The present analysis is based 
on the following:                            

1. The hydrodynamic pressure on an elemental surface whose normal makes an angle 
𝑉𝑉 ≤ 𝜋𝜋

2
 with oncoming stream of non-viscous fluid is that due to Rayleigh - Eq.(3). As stated 

in the preceding section, Hutchings [5] used this formula in order that the spin effect can be 
accounted for. 
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2. The effects of cavitation, splash and two phase flow are negligible compared to the 
hydro-dynamic forces of lift and drag. Thus, the pressure is primarily due to the equipotential 
undisturbed surface of the water. 

3. The limiting condition for ricochet is that the whole sphere is just above the 
undisturbed surface and has zero normal velocity. 

4. Gravitational forces are introduced in order that the speed and radius of the sphere can 
be accounted for.  

Referring to Fig. 3(A), a backwards spinning sphere enters a calm plane surface of water 
at an intermediate stage where the sphere has entered a distance y, attained a current speed V 
in the direction inclined at angle. The wetted portion of the sphere (shown shaded in the 
figure) extends from 𝜑𝜑 = 0, or 𝑦𝑦′ − 𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 to 𝜑𝜑 = 𝜑𝜑0. 

The hydrodynamic force normal to a surface element of area 𝑑𝑑𝑑𝑑 is:  

𝑑𝑑𝐹𝐹𝑛𝑛 = 𝑝𝑝𝑑𝑑𝑑𝑑                                                                                                                                             (6) 
where, after Hutchings [5]: 

𝑝𝑝 =
𝜋𝜋𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉

4 + 𝜋𝜋𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉
𝜌𝜌𝑉𝑉′2 ≅

𝜋𝜋
5
𝜌𝜌𝑉𝑉′2𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉                                                                                                (7) 

The elemental area can be calculated as: 

𝑑𝑑𝑑𝑑 = 𝑎𝑎2𝑑𝑑𝑎𝑎𝑠𝑠𝜑𝜑.𝑑𝑑𝜑𝜑𝑑𝑑𝑑𝑑                                                                                                                            (8) 

The resultant velocity 𝑉𝑉′of a point on the element relative to oncoming water is given 
by:  

𝑉𝑉′2 = 𝑉𝑉2 + 2𝑑𝑑𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑟𝑟 + 𝑑𝑑2𝑟𝑟2                                                                                                        (9) 
From Fig. 3(B), it is shown that: 

𝑑𝑑𝑉𝑉𝑉𝑉𝑑𝑑𝑟𝑟 = 𝑎𝑎𝑉𝑉𝑉𝑉𝑑𝑑𝜑𝜑                                                                                                                                  (10) 

𝑑𝑑𝑑𝑑𝑎𝑎𝑠𝑠𝑟𝑟 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑠𝑠𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑                                                                                                                       (11) 
It can easily be shown that: 

𝑉𝑉′𝑉𝑉𝑉𝑉𝑑𝑑𝑉𝑉 = 𝑉𝑉𝑑𝑑𝑎𝑎𝑠𝑠𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑                                                                                                                    (12) 
As a result: 

𝑑𝑑𝐹𝐹𝑛𝑛 =
𝜋𝜋
5
𝜌𝜌𝑉𝑉𝑉𝑉′𝑎𝑎2𝑑𝑑𝑎𝑎𝑠𝑠2𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑.𝑑𝑑𝜑𝜑𝑑𝑑𝑑𝑑                                                                                            (13) 

  
(a) (b) 

Fig. 3: (a) Velocity vectors on spinning sphere and (b) Relation between the radius of sphere and 
radius of rotation. 
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It is noteworthy to distinguish between two intervals in terms of depth of submergence: 
the first interval, shown in Fig. 4, in which 0 ≤ 𝑦𝑦 ≤ 𝑎𝑎(1 − 𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐), and the second interval is 
which 𝑦𝑦 > 𝑎𝑎(1 − 𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐), see Fig. 3(A). These intervals are differentiated through the 
parameter, δ, where: 

𝛿𝛿 = �𝑐𝑐 − 𝛾𝛾   , 0 ≤ 𝛾𝛾 ≤ 𝑐𝑐
0       , 𝛾𝛾 > 𝑐𝑐 �                                                                                                         (14) 

𝛾𝛾 = 𝑉𝑉𝑉𝑉𝑑𝑑−1
𝑎𝑎 − 𝑦𝑦
𝑎𝑎

                                                                                                                                (15) 

𝜑𝜑0 = 𝑐𝑐 + 𝛾𝛾                                                                                                                                          (16) 

 
Fig. 4: First stage of wetted portion is shown shaded. 

The drag force, D, along x '- axis is given by: 

𝐷𝐷 = � 𝑑𝑑𝐹𝐹𝑛𝑛. 𝑑𝑑𝑎𝑎𝑠𝑠𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑
𝜑𝜑0

𝑆𝑆
                                                                                                                (17) 

or:  

𝐷𝐷 =
𝜋𝜋
5
𝜌𝜌𝑎𝑎2 � 2� �𝑉𝑉2 + 2𝑑𝑑𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑟𝑟 + 𝑑𝑑2𝑟𝑟2

𝜋𝜋
2

0
.𝑉𝑉𝑑𝑑𝑎𝑎𝑠𝑠3𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑2𝑑𝑑.𝑑𝑑𝜑𝜑𝑑𝑑𝑑𝑑

𝜑𝜑0

𝛿𝛿
                          (18) 

The integration is performed over the leading half of the sphere below the undisturbed 
surface of water. At this stage, one may neglect the 𝑑𝑑2𝑟𝑟2 term and still seek a numerical 
solution or retain a part of it while rendering the above integral totally tractable. So, let 
𝑑𝑑2𝑟𝑟2 ≅ 𝑑𝑑2𝑟𝑟2𝑉𝑉𝑉𝑉𝑑𝑑2α , then: 

𝐷𝐷 =
𝜋𝜋
5
𝜌𝜌𝑎𝑎2 � 2� (𝑉𝑉 + 𝑎𝑎𝑟𝑟𝑉𝑉𝑉𝑉𝑑𝑑𝜑𝜑)

𝜋𝜋
2

0
.𝑉𝑉𝑑𝑑𝑎𝑎𝑠𝑠3𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑2𝑑𝑑.𝑑𝑑𝜑𝜑𝑑𝑑𝑑𝑑

𝜑𝜑0

𝛿𝛿
                                                 (19) 

Thus: 

𝐷𝐷 =
𝜋𝜋2𝜌𝜌𝑎𝑎2𝑉𝑉2

240
[𝐹𝐹1(𝜑𝜑0) − 𝐹𝐹1(𝛿𝛿)]                                                                                                    (20) 

where: 

𝐹𝐹1(𝜑𝜑) = 8𝑉𝑉𝑉𝑉𝑑𝑑3𝜑𝜑 − 24𝑉𝑉𝑉𝑉𝑑𝑑𝜑𝜑 +
6𝑎𝑎𝑟𝑟
𝑉𝑉

𝑑𝑑𝑎𝑎𝑠𝑠4𝜑𝜑                                                                                  (21) 

Following the same procedure, the lift, L, acting upwards along the y- axis, is given by: 
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𝐿𝐿 = � 𝑑𝑑𝐹𝐹𝑛𝑛. 𝑉𝑉𝑉𝑉𝑑𝑑𝜑𝜑
𝜑𝜑0

𝑆𝑆
                                                                                                                             (22) 

or:  

𝐿𝐿 =
𝜋𝜋
5
𝜌𝜌𝑎𝑎2 � 2� �𝑉𝑉2 + 2𝑑𝑑𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑𝑟𝑟 + 𝑑𝑑2𝑟𝑟2

𝜋𝜋
2

0
.𝑉𝑉𝑑𝑑𝑎𝑎𝑠𝑠2𝜑𝜑. 𝑉𝑉𝑉𝑉𝑑𝑑𝑑𝑑. 𝑉𝑉𝑉𝑉𝑑𝑑𝜑𝜑𝑑𝑑𝜑𝜑𝑑𝑑𝑑𝑑

𝜑𝜑0

𝛿𝛿
                   (23) 

Finally: 

𝐿𝐿 =
𝜋𝜋𝜌𝜌𝑎𝑎2𝑉𝑉2

240
[𝐹𝐹2(𝜑𝜑0) − 𝐹𝐹2(𝛿𝛿)]                                                                                                       (24) 

where: 

𝐹𝐹2(𝜑𝜑) = 32𝑑𝑑𝑎𝑎𝑠𝑠3𝜑𝜑 +
3𝑎𝑎𝑟𝑟
𝑉𝑉

(4𝜑𝜑 − 𝑑𝑑𝑎𝑎𝑠𝑠4𝜑𝜑)                                                                                     (25) 

The two components of the hydrodynamic force are used in the equations of motion of 
the sphere to calculate the horizontal and vertical displacements and velocities of the sphere 
whereby the trajectory of the sphere can be determined.  

Hence:    

𝑚𝑚
𝑑𝑑𝑉𝑉𝑥𝑥
𝑑𝑑𝑡𝑡

= −𝐹𝐹𝑥𝑥 = −(𝐷𝐷. 𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐 − 𝐿𝐿. 𝑑𝑑𝑎𝑎𝑠𝑠𝑐𝑐)                                                                                          (26) 

Using Equations. (20 and 24): 

4
3
𝜋𝜋𝑎𝑎3𝜌𝜌𝑠𝑠

𝑑𝑑𝑉𝑉𝑥𝑥
𝑑𝑑𝑡𝑡

= −
𝜋𝜋𝑎𝑎2𝑉𝑉2

240
𝜌𝜌[𝜋𝜋𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐{𝐹𝐹1(𝜑𝜑0) − 𝐹𝐹1(𝛿𝛿)} − 𝑑𝑑𝑎𝑎𝑠𝑠𝑐𝑐{𝐹𝐹2(𝜑𝜑0) − 𝐹𝐹2(𝛿𝛿)}]                 (27) 

𝑑𝑑𝑉𝑉𝑥𝑥
𝑑𝑑𝑡𝑡

= −
𝑉𝑉2

320𝑎𝑎𝜎𝜎
[𝜋𝜋𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐{𝐹𝐹1(𝜑𝜑0) − 𝐹𝐹1(𝛿𝛿)} − 𝑑𝑑𝑎𝑎𝑠𝑠𝑐𝑐{𝐹𝐹2(𝜑𝜑0) − 𝐹𝐹2(𝛿𝛿)}]                                   (28) 

Moreover: 

𝑚𝑚
𝑑𝑑𝑉𝑉𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑑𝑑 − 𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑑𝑑 − (𝐷𝐷. 𝑑𝑑𝑎𝑎𝑠𝑠𝑐𝑐 + 𝐿𝐿. 𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐)                                                                        (29) 

Thus: 

4
3
𝜋𝜋𝑎𝑎3𝜌𝜌𝑠𝑠

𝑑𝑑𝑉𝑉𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑑𝑑 −
𝜋𝜋𝜌𝜌𝑎𝑎2𝑉𝑉2

240
[𝜋𝜋𝑑𝑑𝑎𝑎𝑠𝑠𝑐𝑐{𝐹𝐹1(𝜑𝜑0) − 𝐹𝐹1(𝛿𝛿)} + 𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐{𝐹𝐹2(𝜑𝜑0) − 𝐹𝐹2(𝛿𝛿)}]         (30) 

or: 

𝑑𝑑𝑉𝑉𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑑𝑑 −
𝑉𝑉2

320𝑎𝑎𝜎𝜎
[𝜋𝜋𝑑𝑑𝑎𝑎𝑠𝑠𝑐𝑐{𝐹𝐹1(𝜑𝜑0) − 𝐹𝐹1(𝛿𝛿)} + 𝑉𝑉𝑉𝑉𝑑𝑑𝑐𝑐{𝐹𝐹2(𝜑𝜑0) − 𝐹𝐹2(𝛿𝛿)}]                              (31) 

It should be noted that: 

𝑡𝑡𝑎𝑎𝑠𝑠𝑐𝑐 =
𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

=
𝑑𝑑𝑦𝑦/𝑑𝑑𝑡𝑡
𝑑𝑑𝑎𝑎/𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑦𝑦
𝑑𝑑𝑎𝑎

                                                                                                               (32) 

𝑉𝑉2 = 𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2                                                                                                                                   (33) 

Equations (28) and (31) were solved using MATLAB, with the following initial 
conditions: At t=0, x=y=0, 𝑉𝑉𝑥𝑥 = 𝑉𝑉0𝑉𝑉𝑉𝑉𝑑𝑑𝜃𝜃0, 𝑉𝑉𝑦𝑦 = 𝑉𝑉0𝑑𝑑𝑎𝑎𝑠𝑠𝜃𝜃0. A flowchart of the MATLAB code 
is given in Fig. 5.  
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Fig. 5: MATLAB code flowchart. 

3. NUMERICAL MODEL 
In order to be able to judge the accuracy of the present analysis, extensive 

experimentations are usually recommended. However, due to the vast difficulties encountered 
during a single experiment, the simulation of the problem would be far more suitable in this 
respect. The effects of cavitation, splash, and two phase flow are negligible compared to the 
hydro-dynamic forces of lift and drag. ABAQUS 17-1 version was utilized to model the 
oblique entry of a solid sphere into water with both rotational and translational velocities. As 
shown in Fig. 6, the model consists of two entities, namely "water box" and "Aluminum 
sphere". The water box dimensions are 600, 120, and 70 mm and the radius of the ball is 
invariably 10 mm. The length of the water box was chosen such that the sphere has enough 
water space during the expected course of travel of the sphere. Other sides of the water box 
were selected as non-reflecting edges to neglect the effect of reflecting waves. The initial 
translational velocity is fixed at 10 m/sec while the rotational speeds considered are 0, 100, 
200, and 300 rad/sec. 
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Fig. 6: Schematic drawing of the assembled model. 

 
Fig. 7: Mesh convergence, λ0=11 deg. 

Referring to Fig. 7, the maximum depth was selected according to the mesh size. It 
remained almost stable beyond the 1.25 mm mesh size (1720320 elements). For reasonably 
accurate results with possible run times, the 1.25 mm element size was selected. The type 
selected for mesh elements of the water box was EC3D8R (An 8-node linear Eulerian brick, 
reduced integration, hourglass control), while C3D10M (A 10-node modified quadratic 
tetrahedron) was assigned for the aluminum ball. This model was capable of capturing the 
effect of the attack angle of the aluminum sphere upon ricochet against the water surface. 

4. RESULTS AND DISCUSSION 
The oblique entry of aluminum (𝜎𝜎 = 2.7) spinning spheres of radius 10 mm and speed of 

10 m/sec (Fr = 32) was determined analytically and simulated as well. As a benchmark, the 
non-spinning case was also considered.  

The present analysis proposes two differential equations of motion of the sphere, 
Equations (28) and (31), in x- and y- directions respectively. An algorithm was built to solve 
these equations for different values of angle between the sphere flight and the water surface. 
Critical angles of ricochet were sought for a non-spinning sphere as well as for spheres 
spinning at 100, 200, and 300 rad/sec, as shown in Figs. 8, 9, 10 and 11, respectively.   
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In these figures, positions of the sphere were determined from the moment of initial 
contact with water (at origin of graph) to the moment of either total emergence from the 
water (i.e. ricochet) or eventual sinking. According to the definition of the limiting condition 
of ricochet, the whole sphere emerges with just a horizontal speed. This implies that the 
trajectory of the sphere in this case has a local maximum point located right on the water 
surface. As seen in Figs. 8(A), 9(A), 10(A) and 11(A) the trajectories of ricocheting spheres 
almost exhibit local maxima at the water surface; exact determination of these maxima was 
dictated by effort and time of computation. On the other hand, a non-spinning sphere 
eventually sinks (or non-ricochet) if it is fully submerged, see Fig. 8(B). This, of course, is 
attributed to the fact that the sphere in this case has no more hydrodynamic lift to overcome 
the gravity. Another explanation is also provided by Equations (24) and (25) for ω=0 and 
𝜑𝜑0 = 𝜋𝜋. Since the spinning spheres are continually experiencing lift, even when they are 
totally submerged, the sphere is said to be in a state of non-ricochet only if it reaches the local 
maximum point without total emergence from the water surface, see Figures 9(B), 10(B) and 
11(B).  

Compared with the experimental findings of Richardson [2], the trajectories of ricochet 
in Figs. 8-11(A) resemble that depicted in Fig. 1(b), while those of non-ricochet resemble that 
of Fig. 1(c).  

Of special interest is the uniform motion of the sphere at the end of its course of entry, 
see Fig.9(B). This suggests that the lift is just counteracted by gravity by the time the drag 
ceases to exist. 

The values of the critical angle of ricochet and non-dimensional maximum depth of 
submergence at critical ricochet, for non-spinning sphere drawn from the above mentioned 
figures, are listed in Table 1 together with available published data.  

Table 1: Comparison of the critical angle of ricochet  λc and the non-dimensional maximum depth of 
submergence at critical ricochet, 𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥/𝑎𝑎 for non-spinning sphere with published data. 

Ref. Present 
work 

Exp.[2] Eq.(1).[3] Eq.(2).[4] Eq.(4).[5] Analytic [7] 
 

λc , 
deg. 

10.43 9 10.95 10.65 10.53 10 
 

𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎/𝒎𝒎 1.56 ----- ----- 2.00 1.00 1.16 
 

Except for λc = 90, the present analysis prediction is favorably in agreement with the 
available data. The experimental value reported by Richardson [2], λc = 90, was previously 
discussed by Johnson & Reid [4] who attributed this variation to the extremely low Froude 
number. 

The non-dimensional maximum depth of submergence at critical ricochet, 𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥/𝑎𝑎, is 
determined from the trajectory of the sphere. As apparently seen in Table 1, the present 
analysis falls within the previously assumed values in References [4,5] and the numerically 
computed value in Ref. [7]. In the absence of extensive experimental work, the discrepancies 
shown in Table 1 cannot be presently resolved.  

A similar presentation of results was addressed to the effect of spin in order to assess the 
desired benefits, if any, when a back spin is imparted to a solid sphere entering the water. 
Table 2 is a summary of the results drawn from Figs. 9, 10, and 11.  
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Table 2: Analytical values of critical ricochet angle and max. immersion depth. 

Backspin, ω (rad/s) 0 100 200 300 

Critical ricochet angle, λc (deg.) 10.43 11.1 11.7 12.5 
Max. immersion depth, 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎/𝒎𝒎 1.56 1.64 1.74 1.86 

It is clear that the backspin enhances the tendency of the sphere towards ricocheting off 
the water surface and that the enhancement is higher at higher values of spin. Moreover, the 
sphere experiences higher depths of submergence at higher values of spin. No relevant 
previous works are available with which a comparison of these findings could be made, since 
the effect of spin, on the characteristics of sphere impact with water, is only presently 
investigated. 

Data from Figs. 8 through 11 were rearranged to display the influence of spin on the 
range of contact of the sphere with water for the cases of critical angles of ricochet, as 
displayed in Fig. 12. It is obvious that the increase in maximum depth of immersion due to 
spin is accompanied by a shortening in the range of contact, and the effect is nonlinear. This 
can be returned to the direct proportionality of the lift force with the spin. 

"Magnus effect", widely known in spinning solids of revolution in air, is especially 
addressed in this work. For this purpose, the experimental finding of Truscot & Techet [10], 
shown in Fig. 2(b), was chosen. In this experiment, a ball enters the water pool normally with 
translational as well as rotational speeds. The same data of the experiment were used in the 
present analysis, whereby the trajectory of the spinning sphere was computed and plotted as 
shown in Fig. 13. The comparison is merely qualitative in that the present analysis is capable 
of predicting the evident curvature in the path of sphere motion which manifests considerable 
lift forces induced by spin. Nevertheless, the comparison is reasonable in terms of vertical 
and lateral displacements of the sphere. The drag and lift forces acting on a submerged sphere 
can be estimated by means of Equations (20), (21), (24) and (25) in conjunction with 𝜑𝜑0 = 𝜋𝜋 
and 𝛿𝛿 = 0. Hence: 

𝐷𝐷 =
𝜋𝜋𝜌𝜌𝑎𝑎2𝑉𝑉2

12
                                                                                                                                      (34) 

𝐿𝐿 =
𝜋𝜋𝜌𝜌𝑎𝑎3𝑟𝑟𝑉𝑉

16
                                                                                                                                      (35) 

Numerical analysis was presently performed using ABAQUS 17-1 version to simulate 
the process of oblique impact of spheres with the water surface. A typical example of the 
simulation of the ricochet process is displayed in Fig. 14. The critical angle of ricochet for the 
same four cases, namely non spin and 100, 200, and 300 rad/s-spins, were sought. The 
trajectories for these critical cases are gathered as shown in Fig. 15. Similar trends to those 
found analytically in Fig. 12, were observed. This suggests that the ricochet process can well 
be simulated and used in extensive studies of similar processes. The process of simulation is 
highly sensitive to the mesh size and hence the number of elements. The optimum size was 
governed by the conditions prevailing in such an event on one hand and in the other hand by 
the inevitable limitations of time and effort. In Fig. 15, the range of sphere trip of ricochet 
differs slightly from the analytical results of Fig. 12, in value as well as in the nature of 
dependence with spin. The difference, however, lies within the range of scatter cited in the 
available data. The critical angle of ricochet as well as the non-dimensional maximum depth 
of immersion were extracted from the trajectories and listed in Table 3. For purpose of 
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comparison between the analytical and numerical findings, Table 4 is constructed by 
collecting the data of Tables 3 and 4.  

Table 3: Numerical values of critical ricochet angle and max. immersion depth 

Backspin, ω (rad/s) 0 100 200 300 

Critical ricochet angle, λc (deg.) 10.75 11.35 12 12.8 
Max. immersion depth, 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎/𝒎𝒎 1.52 1.62 1.71 1.83 

Table 4: Analytical and numerical values of critical ricochet angle and max. immersion depth 

Backspin, ω 
(rad/s) 

Critical ricochet angle, λc (deg.) Max. immersion depth, 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎/𝒎𝒎 
Analytical Numerical Analytical Numerical 

0 10.43 10.75 1.56 1.52 
100 11.1 11.35 1.64 1.62 
200 11.7 12 1.74 1.71 
300 12.5 12.8 1.86 1.83 

As revealed by Table 4, the simulation results in higher values for the critical angle of 
ricochet than that found by the analysis. On the contrary, the simulation predicts lower values 
regarding the maximum depth of immersion. This suggests that the hydrodynamic forces in 
the simulation were higher than those assumed in the analysis. The variation in analytical 
with numerical results can be reduced either by increasing the constant (𝜋𝜋/5) in the pressure 
formula, Eq. (7), or selecting moderate pressures in the simulation process. Either way is only 
possible or favorable in the presence of extensive experimentation as the actual and realistic 
datum. 

 

(a) Ricochet, 𝑐𝑐0 = 10.43 𝑑𝑑𝑑𝑑𝑑𝑑 

 
(b) Non ricochet, 𝑐𝑐0 = 10.45 𝑑𝑑𝑑𝑑𝑑𝑑 

Fig. 8: Trajectories of non-spinning sphere at different angles of attack. 
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(a) Ricochet, 𝑐𝑐0 = 11.1 𝑑𝑑𝑑𝑑𝑑𝑑 

 
(b) Non ricochet, 𝑐𝑐0 = 11.2 𝑑𝑑𝑑𝑑𝑑𝑑 

Fig. 9: Trajectories of sphere spinning at ω=100 rad/sec at critical angles of attack. 

 
 
 
 
 

 
(a) Ricochet, 𝑐𝑐0 = 11.7 𝑑𝑑𝑑𝑑𝑑𝑑 

 
(b) Non ricochet, 𝑐𝑐0 = 11.8 𝑑𝑑𝑑𝑑𝑑𝑑 

Fig. 10: Trajectories of sphere spinning at ω=200 rad/sec at critical angles of attack. 

 

 
(a) Ricochet, 𝑐𝑐0 = 12.5 𝑑𝑑𝑑𝑑𝑑𝑑 
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(b) Non ricochet, 𝑐𝑐0 = 12.55 𝑑𝑑𝑑𝑑𝑑𝑑 

Fig. 11: Trajectories of sphere spinning at ω=300 rad/sec at critical angles of attack. 

 

 
 

Fig. 12: Analytical trajectories of ricocheting sphere spinning at different values of spin  
and critical angles of attack.  

 

  
(a) (b) 

Fig. 13: Qualitative comparison between the trajectories of spinning spheres:  
(a) Present analysis, (b) Experiment [10]. 
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Fig. 14: Simulation of the ricochet process. 

 
Fig. 15: Numerical trajectories of ricocheting sphere spinning at different values of spin  

and critical angles of attack. 

5. CONCLUSIONS  
Liquid-solid interaction phenomena are still receiving the attention of engineers and 

scholars in view of the rapid advances in technology. The research in the field of ricochet of 
solid spheres from water surfaces, though seemingly exhausted, is yet far from being well 
established. A consensus now exists related to the tendency of a sphere to ricochet from 

T = 6.5 ms T = 3.5 ms 

T = 100 ms T = 50 ms 

241



IIUM Engineering Journal, Vol. 24, No. 1, 2023 Kiter et al. 
https://doi.org/10.31436/iiumej.v24i1.2448 

 
 

water, i.e. ricochet is more likely with high translational and backspin speeds, low density, 
large diameter, and low angle of impact.  

Although the process is highly complex and no single work can handle all the parameters 
and their effects, the present work assumes that the effects of cavitation, splash, and two 
phase flow are negligible compared to hydro-dynamical forces of lift and drag. The main 
contributing conclusions are: 
1. A theoretical analysis, based on a previous one and modified for the spin, is made. 
2. The maximum critical angle of ricochet increases with backspin of the sphere. A backspin 

of 300 rad/sec improves the angle from 10.430 to 12.50. 
3. The non-dimensional maximum depth also increases with backspin. A backspin of 300 

rad/sec increases the depth from 1.56 to 1.86. 
4. The theoretical analysis was found capable of describing previous experimental work, as 

well as matching other analytical and numerical works. 
5. A numerical model simulation of fluid-structure and ricochet of spinning spheres was also 

made using ABAQUS 17-1 version.  
6. The implementation of ABAQUS was efficient in simulating the ricochet process.  
7. The analytical and numerical results were consistent in that the backspin enhances the 

capability of a sphere in performing ricochet.  
8. Magnus effect in liquids was presently described and relations predicting the drag and lift 

forces were deduced.  
9. The analytical and numerical results vary to the same extent of variation of hydrodynamic 

forces.  
10. A detailed and extensive experimental work is highly recommended to end the widely 

cited debate among other works.   
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Nomenclature 

𝑎𝑎 Radius of sphere 𝑎𝑎, 𝑦𝑦, 𝑧𝑧 Coordinate axes 

D Drag force 𝑟𝑟 Angular velocity of sphere 

𝐹𝐹𝑛𝑛 Hydrodynamic force normal to solid surface 𝜎𝜎 Specific density of sphere 

𝐹𝐹𝑥𝑥 Horizontal component of hydrodynamic force 𝑉𝑉 Angle of obliquity of plane relative to 
liquid flow 

𝐹𝐹𝑦𝑦 Vertical component of hydrodynamic force 𝜌𝜌,𝜌𝜌𝑠𝑠 Density of liquid and sphere 

𝐹𝐹� Froude number = 𝑉𝑉�/�𝑎𝑎𝑑𝑑 𝜃𝜃 Angle of rotation 

L Lift force 𝜗𝜗𝑐𝑐 Critical angle of ricochet 

𝑚𝑚 Mass of solid 𝜑𝜑 Longitude angle 

n Error allowance Ψ Latitude angle 

𝑝𝑝 Hydrodynamic pressure of liquid 𝑐𝑐 Current angle of travel of sphere 

𝑑𝑑 Radius of rotation 𝑐𝑐0 Initial angle of travel of sphere 

S Area of sphere surface 𝜑𝜑0 Angular extent of wetted area 

𝑉𝑉′,𝑉𝑉 Velocity of liquid flow relative to sphere surface 𝜃𝜃0 Angle of entry 

𝑉𝑉0 Speed of entry ∆t Time interval 
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