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ABSTRACT:  The ability of the quadrotor in the waypoint trajectory tracking becomes 

an essential requirement in the completion of various missions nowadays. However, the 

magnitude of steady-state errors and multiple overshoots due to environmental 

disturbances leads to motion instability. These conditions make the quadrotor experience 

a shift and even change direction from the reference path. As a result, to minimize 

steady-state error and multiple overshoots, this study employs a Linear Quadratic 

Regulator control method with the addition of an Integrator. Comparisons between LQR 

without Integrator and LQR with Integrator were performed. They were implemented on 

a quadrotor controller to track square and zig-zag waypoint patterns. From experimental 

results, LQR without Integrator produce of 2 meters steady-state error and -1.04 meters 

undershoot average with an accuracy of 64.84 % for square pattern, along 3.19 meters 

steady-state error, and -1.12 meters undershoot average with an accuracy of 46.73 % for 

a zig-zag way. The LQR method with integrator produce of 1.06 meters steady-state 

error with accuracy 94.96 % without multiple-overshoot for square pattern, the 1.06 

meters steady-state error, and -0.18 meters undershoot average with an accuracy of 86.49 

% for the zig-zag way. The results show that the LQR control method with Integrator can 

minimize and improve steady-state error and multiple overshoots in quadrotor flight. The 

condition makes the quadrotor able to flying path waypoints with the correct system 

specification.  

ABSTRAK: Kemampuan quadrotor dalam pengesanan lintasan waypoint menjadi syarat 

penting dalam menyelesaikan pelbagai misi pada masa kini. Walau bagaimanapun, 

besarnya ralat keadaan mantap dan banyak kelebihan kerana gangguan persekitaran 

menyebabkan ketidakstabilan pergerakan. Keadaan ini menjadikan quadrotor mengalami 

pergeseran dan bahkan mengubah arah dari jalur rujukan. Oleh itu, kajian ini 

menggunakan kaedah kawalan Linear Quadratic Regulator dengan penambahan 

integrator dalam meminimumkan ralat keadaan mantap dan banyak kelebihan. 

Perbandingan antara LQR tanpa Integrator dan LQR dengan Integrator dilakukan. 

Mereka dilaksanakan pada pengawal quadrotor untuk mengesan corak titik jalan persegi 

dan zig-zag. Dari hasil eksperimen, LQR tanpa Integrator menghasilkan ralat keadaan 

mantap 2 meter dan -1.04 meter rata-rata undur tembak dengan ketepatan 64.84% untuk 

corak persegi, sepanjang ralat keadaan tetap 3.19 meter, dan -1.12 meter rata-rata undur 
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bawah dengan ketepatan 46.73 % untuk cara zig-zag. Kaedah LQR dengan integrator 

menghasilkan ralat keadaan mantap 1.06 meter dengan ketepatan 94.96% tanpa 

tembakan berlebihan untuk corak segi empat sama, ralat keadaan mantap 1.06 meter, dan 

rata-rata undur tembak -0.18 meter dengan ketepatan 86.49% untuk zig-zag cara. 

Hasilnya menunjukkan bahawa kaedah kawalan LQR dengan Integrator dapat 

meminimumkan dan memperbaiki ralat keadaan mantap dan banyak overhoot dalam 

penerbangan quadrotor. Keadaan tersebut menjadikan quadrotor dapat terbang ke titik 

jalan dengan spesifikasi sistem yang betul. 

KEYWORDS: optimal control; quadrotor; stability; waypoint 

1. INTRODUCTION  

Unmanned aerial vehicle (UAV) is an unmanned aircraft with comfortable and 

efficient use accessibility [1]. UAV has attracted the attention of invention activists in the 

industrial, civilian, and military fields to use UAVs as a vehicle to help complete various 

missions that are being developed [2]. Such as aerial surveillance, reconnaissance, aerial 

photography, transportation of goods, and many others [3]. 

Completion of these missions is not only required of UAVs to be able to maintain a 

stable attitude of orientation and altitude but also expected to have the ability to trace the 

flight path following a predetermined row of earth location coordinates or called 

waypoints mission. The completeness of the existing capabilities makes UAVs map an 

area precisely and accurately, which is also the main requirement for developing various 

current missions [4][5]. 

Along with advances in technological science, many UAVs have experienced 

improvements in both physical form patterns and flight systems to achieve specific 

mission operational targets. One of these UAVs is a quadrotor, which uses four motor 

actuators as a flight driver. More broadly, a quadrotor is a UAV that can take off and land 

vertically (VTOL) even in a limited area [6]. A quadrotor also has a constant flight speed 

to hover in a specific location with its stationary motion [7]. 

Looking deeply at the quadrotor architecture, the potential capabilities of quadrotors 

do not necessarily exist by themselves. It was still built through the involvement of several 

relatively complex system infrastructures. There is one system in all existing quadrotor 

system infrastructure that plays a vital role as a determining factor in the flight process. 

The system is a quadrotor flight control system. Without a well-managed control system, 

the quadrotor cannot maintain rotational or translation movements, causing the plane's 

crash. 

As previously mentioned, quadrotor motion control is divided into two categories: 

controlling rotational motion and translational motion. The quadrotor motion control 

started from rotational movement and was followed by translational motion with rules 

accommodated by a particular control method to achieve a stable state. By referring to 

several studies conducted by [8] and [9], which focus on controlling quadrotor rotational 

attitudes, the vehicle can have good flight stability by applying the Linear Quadratic 

Regulator (LQR) control system method full state feedback. The author's research explains 

that the LQR method provides regulatory characteristics in the control signal by forcing 

the control signal to a value close to zero. LQR control makes the system able to overcome 

errors through a fast response. This statement was strengthened from several other studies, 

such as applying LQR control methods on UAV aircraft that are more effective and robust 
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than PID control to a stable system [10]. LQR can maintain system stability in less than 1 

second, producing shallow errors [11,12]. 

However, referring to other research literature regarding the performance of LQR 

control, it indicates that this method is not good enough to accommodate the translational 

motion of an object with a significant average deviation that occurs when the system has 

reached its steady-state [13]. This statement was visualized through research conducted by 

[14]. The author built an autopilot control system on a quadrotor in moving to the 

waypoint coordinates using LQR control. In tracing the four waypoint coordinates, the 

research test found that the quadrotor maintained the anti-rotational motion that met the 

flight success standards. However, the quadrotor has quite a significant deviation of the 

mean translational movement of the x and y axes, which is about 2 meters from the 

reference of the flight path. 

The process of tracing the coordinates of the Earth's location on a quadrotor requires a 

navigation system with data information obtained from the Global Positioning System 

(GPS) [15]. GPS is a prototype that provides latitude and longitude information at an earth 

location. Changes in the GPS reading point position converted to the displacement of the x 

and y axes in meters. The displacement will be used as the error reference value for the 

quadrotor control to the destination point [16]. 

The environment disturbance can influence the stability of the quadrotor in the 

waypoint mission. If the quadrotor has not an eligible control system, it produces more 

significant error ever. The larger deviation will be accompanied by the results of the 

steady-state error or the average deviation, which is also getting more significant. This 

condition causes the quadrotor to experience a shift from the proper track. Also, a steady-

state error that diverges with intensity as often as possible will trigger the system to 

experience multiple overshoots, which result in flight conditions not only shifting but also 

affecting the aircraft to change direction from the trajectory traced [17]. 

The main focus of this study is to design by adding the compensation Integrator 

component to the anatomy structure LQR control method. This compensation involves 

past information to correct the current signal. This process makes minimize steady-state 

errors and multiple overshoots in the system. So, the stability of translation motion can be 

enhanced and managed to track the path correctly. 

2. QUADROTOR DYNAMICS MODEL

The Newton-Euler equation is necessary to build a quadrotor with flight in x-

configuration. This study uses an inertial North-East-Down (NED) frame of reference and 

a body fixed frame to fulfil this Equation. The NED frame of reference has two axes, N 

and E, parallel to the north and east and one D axis directed downward towards the center 

of the Earth, so Newton's first law will apply to this frame of reference. Another frame of 

reference, the body fixed frame, is indicated by the direction of the x, y, and z axes with a 

center point that coincides with the center of gravity on the quadrotor body [3]. The two 

terms of reference are shown in Fig. 1. 

In control theory, the dynamic behaviour of a given system can be obtained from its 

states. There are six quadrotor attitudes related to rotation, namely: Euler angle    

(Roll – Pitch – Yaw) and angular velocity around each axis body-fixed frame  rqp , for 

the other six states, namely: from the center of gravity (cog) position  zyx  and linear 
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velocity in  zyx  , relative to the body fixed frame. Therefore, the quadrotor has 12 states 

representing 6 degrees of freedom (DOF) [3].  

 

Fig. 1: NED frame of quadrotor. 

Quadrotor modelling consists of 3-axis rotational movement (roll, pitch, yaw) and 3-

axis translation movement of the Earth's x, y, z-axis (Earth) to the z-axis of the body. 

Quadrotor translation movement references used in modelling are inertial earth frame (E-

frame) [𝐸𝑥 𝐸𝑦 𝐸𝑧] and inertial body frame (B-frame) ) [𝐵𝑥 𝐵𝑦 𝐵𝑧]. 

The rotational movement 𝜙 (roll) is the quadrotor movement around the y-axis of the 

body, the rotational movement 𝜃 (pitch) is the quadrotor movement around the x-axis of 

the body, and the rotational movement 𝜓 (yaw) is the quadrotor movement around the z-

axis of the body. 

The change in the position of the body frame coordinates to the earth frame can be 

determined by a rotation matrix, where the final position of the body to the earth frame can 

be determined if the rotation matrix is known, as in Equation (1). 

[
𝑥′

𝑦′

𝑧′

] = [
𝑥
𝑦
𝑧
] (1) 

Determination of coordinate changes is carried out with a rotational matrix that 

corresponds to the rotating axis of the body frame. Like when the quadrotor body rotates 

on the x, y, and z-axis of the body frame, the final position of the coordinates of the body 

to the earth frame can be found with a rotational matrix which is sequential for each axis 

through Eq. (2) to Eq. (4)[3]. 

𝑅𝑥(𝜙) = [

1 0 0
0 cos(ϕ) −sin(𝜙)
0 sin(𝜙) cos(𝜙)

] (2) 

𝑅𝑦(𝜃) = [
cos(𝜃) 0 sin(𝜃)

0 1 0
−sin(𝜃) 0 cos(𝜃)

] (3) 

𝑅𝑥(𝜙) = [
cos(𝜓) −sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

] (4) 

The three rotational matrix equations create a relationship between body frame 

coordinates and earth frame coordinates. The relationship is created from the 

multiplication of the three rotational matrices and is shown in Eq. (5), where c is cos and s 

is sin. 
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𝑅𝐵
𝐸(𝜓, 𝜃, 𝜙) = [

𝑐(𝜓)𝑐(𝜃) −𝑠(𝜓)𝑐(𝜙) + 𝑐(𝜓)𝑠(𝜃)𝑠(𝜙) 𝑠(𝜓)𝑠(𝜙) + 𝑐(𝜓)𝑐(𝜙)𝑠(𝜃)

𝑠(𝜓)𝑐(𝜃) 𝑐(𝜓)𝑠(𝜃) + 𝑠(𝜙)𝑠(𝜃)𝑠(𝜓) −𝑐(𝜓)𝑠(𝜙) + 𝑠(𝜃)𝑠(𝜓)𝑐(𝜙)

−𝑠(𝜃) 𝑐(𝜃)𝑠(𝜙) 𝑐(𝜃)𝑐(𝜙)

] (5) 

The rotation matrix on the quadrotor used is only the z coordinates of the body frame 

against the x, y, and z coordinates of the earth frame. The quadrotor can only move up and 

down along the z coordinates of the body. The movement of the quadrotor at the x and y 

coordinates of the earth frame is the result of changes in the orientation of the roll angle 

and pitch from point 00 when the quadrotor moves on the z-axis of the body [3]. 

Quadrotor modeling is calculated using the Newton-Euler approach, where Newton 

II's law also applies in the system. Newton's second law describes the relationship between 

the force F and the acceleration 𝑎experienced by a center of mass, with the three forces 

and the acceleration for each axis on the quadrotor, so the relationship is as shown in Eq. 

(6). 

𝐹 = 𝑚. 𝑎 (6) 

The quadrotor has a net force determined by the lift force of the four rotors, which can be 

calculated through Eq. (7). 

𝐹𝑇 = 𝑢1 = ∑ 𝑓𝑖
4
𝑖=1  (7) 

Quadrotor movement on the x, y, and z coordinate axes of the earth frame can be 

modeled with the rotation matrix of Eq. (5) and Newton II's law in Equation (6). The 

rotation matrix in the third column of Eq. (5) with the axis used is only the z-axis of the 

body frame to the x, y, and z axes of the earth frame. 

Based on this modeling, the translational motion on the x, y, z axes of the earth frame is 

described through Eq. (8) and Eq. (10). 

𝐹𝑥 = 𝐹𝑇 . 𝐵𝐵𝑥

𝐸𝑧 (8) 

𝐹𝑦 = 𝐹𝑇 . 𝐵𝐵𝑦

𝐸𝑧 (9) 

𝐹𝑧 = 𝐹𝑇 . 𝐵𝐵𝑧

𝐸𝑧 + 𝑚.𝑔 (10) 

From Eqs. (8) to (10), described by the rotation matrix equation obtained by c (.) is cos, 

and s (.) is sin shown in Eqs. (11) to (13). 

𝑚. �̈� = 𝐹𝑇(𝑐(𝜙)𝑠(𝜃)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)) (11) 

𝑚. �̈� = 𝐹𝑇(−𝑐(𝜓)𝑠(𝜙) + 𝑠(𝜃)𝑠(𝜓)𝑐(𝜙)) (12) 

𝑚. �̈� = 𝐹𝑇(𝑐(𝜙)𝑐(𝜃) + 𝑚. 𝑔) (13) 

The thrust or 𝐹𝑇 obtained from Eq. (7) will experience a change in pitch angle (𝜃), roll

angle (𝜙), yaw angle (𝜓) for translational movement on each axis of the quadrotor earth 

frame so that Eqs. (11) to (13) can be simplified to, 

𝑚. �̈� = 𝐹𝑇 . 𝑠(𝜃) (14) 

𝑚. �̈� = 𝐹𝑇(−𝑠(𝜙)) (15) 

𝑚. �̈� = 𝐹𝑇 + 𝑚.𝑔 (16) 

This equation can be further simplified into Eqs. (17) to (19) with a slight angle 

approximation (close to 0o) by simulating the value of the angular acceleration sin α, and 

the result is close to the angle α itself. 
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�̈� =
𝐹𝑇.𝜃

𝑚
(17) 

�̈� =
𝐹𝑇.𝜙

𝑚
(18) 

�̈� =
𝐹𝑇

𝑚
+ 𝑔 (19) 

Quadrotor rotational motion modeling can use the second Euler's law. This law 

describes the relationship between torque (𝜏) and angular acceleration (𝛼) and the 

relationship between angular momentum (𝐿) and rotational speed (𝜔) for each axis 

experienced by a center of mass, as shown in Eq. (20). 

𝜏 = 𝐼. 𝛼 + 𝐿𝑥𝜔 (20) 

with the cross product of momentum and angular velocity, the torque can be solved 

through Eq. (21), 

𝜏 = 𝐼. 𝛼 + 𝐿𝑥𝜔 sin 𝛽 (21) 

𝛽 is the angle formed by angular momentum and rotational speed. The angle formed in the 

quadrotor rotation motion is minimal and does not affect so that the angle can be ignored 

by giving it a zero value. From this, it makes Eq. (21) only affected by the relationship of 

torque, angular acceleration, and inertia as in Eqs. (22) and (23). 

𝜏 = 𝐼. 𝛼 (22) 

𝜏 = 𝐼. �̇� (23) 

The relationship 𝜏 (torque) with lift or (thrust) is shown in Eq. (24). 

𝜏 = 𝐹. 𝑟 (24) 

The matrix component I (inertia) is shown in Eq. (25), and the angular acceleration and 

angular torque matrix are shown in Eqs. (26) and (27). In contrast, the lift or thrust matrix 

is shown in Eq. (28). 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (25) 

𝛼 = [

�̈�

�̈�
�̈�

] (26) 

𝜏 = [

𝜏𝜙

𝜏𝜃

𝜏𝜓

] (27) 

𝐹 = [

𝐹𝜙

𝐹𝜃

𝐹𝜓

] (28) 

The form of roll rotation (𝜙) and pitch (𝜃) can be modeled into Eqs. (29) and (30). 

𝐼𝑥𝑥 . �̈� = 𝐹𝜙 . 𝑟 (29) 

𝐼𝑦𝑦 . �̈� = 𝐹𝜃 . 𝑟 (30) 

where, 𝐼𝑥𝑥 is the inertia of the quadrotor on the x-axis, �̈� is the angular acceleration of the

roll, r is the distance between the motor and the center of gravity of the quadrotor and 𝜏𝜙

is the roll torque. Also, 𝐼𝑦𝑦 is the inertia of the quadrotor on the y-axis, �̈� is the
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acceleration of the pitch angle, r is the distance between the motor and the center of 

gravity of the quadrotor and 𝜏𝜃 is the pitch torque. So, the roll and pitch motion models

can be simplified in Eqs. (31) and (32). 

�̈� =
𝜏𝜙

𝐼𝑥𝑥
(31) 

�̈� =
𝜏𝜃

𝐼𝑦𝑦
(32) 

Then for the form of yaw rotational motion (𝜓) can be shown in Eq. (33), where 𝐼𝑧𝑧 is the

quadrotor inertia on the z-axis, �̈� is the yaw angular acceleration and 𝜏𝜓 is the yaw torque.

𝐼𝑧𝑧 . �̈� = ∑ 𝜏𝑀𝑖

4
𝑖=1 (33) 

The yaw movement model does not use a thrust acting on the arm and motor but uses 

the torque resulting from the rotation of the motor at each end of the quadrotor arm so that 

the model can be simplified to Eq. (34). 

�̈� =
𝜏𝜓

𝐼𝑧𝑧
(34) 

The quadrotor has a moment of inertia resulting from rotation on the x, y, and z axes. The 

Equation for the moment of inertia is adjusted to the shape of the component to be 

measured. There are two primary forms used to calculate the inertia of an object, namely 

the shape of a block or a cube and a cylinder. The equations used are in Table 1. 

Table 1: Inertia equation [21] 

Form Image Equation 

Cylinder 
𝐼𝐺𝑥𝑥

= 𝐼𝐺𝑦𝑦
=

1

12
𝑚(3𝑟2 + ℎ2) 

𝐼𝐺𝑧𝑧
=

1

2
𝑚𝑟2 

Solid 

Beams 

𝐼𝐺𝑥𝑥
=

1

12
𝑚(𝑏2 + 𝑐2) 

𝐼𝐺𝑦𝑦
=

1

12
𝑚(𝑎2 + 𝑐2) 

𝐼𝐺𝑧𝑧
=

1

12
𝑚(𝑎2 + 𝑏2) 

3. CONTROL SYSTEM DESIGN

3.1 Linear Quadratic Regulator (LQR) Control 

LQR control is an optimal control that has a robust character and can produce a 

minimal steady-state error. This study utilizes LQR control with full state feedback gain. 

LQR control block diagram is interpreted in Fig. 2. 

      Fig. 2: LQR control diagram [18]. 
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where sp is a reference or set point, u is control signal input, y is output signal, x is state 

control, and K is feedback gain. All components of LQR control are transformed in matrix 

dimension. The linear system equation in the LQR method is written through Eqs. (35) 

and (36) [19]. 

�̇� = 𝐴𝑥 + 𝐵𝑢 (35) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (36) 

The cost function or index performance determines the performance of the LQR 

control. The best control signal performance is associated with the least possible yield 

weight. The formulation of the cost function is presented in Eq. (37) [19]. 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)
∞

𝑡0 𝑑𝑡 (37) 

Based on Eq. (37), the control signal (u) is generated from the control state's multiplication 

and the full state feedback gain. The control signal equation is shown in equation (38)[19]. 

𝑢 = −𝐾𝑥 (38) 

In the presence of Eq. (38), Eq. (35) will become Eq. (39) with the close-loop property in 

it. 

�̇� = 𝐴𝑥 − 𝐵(𝐾𝑥) = (𝐴 − 𝐵𝐾)𝑥 = 𝐴𝑐𝑥 (38) 

Also, by substituting Eq. (38) into Eq.(37), the cost function control equation will be, 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝐾𝑇𝑅𝐾)𝑥
∞

𝑡0 𝑑𝑡 (40) 

The selection of the correct feedback value (𝐾) will result in optimal control. The 

accuracy of the 𝐾 value is indicated by the performance value index or cost function 𝐽 
which is very minimal, close to 0. The performance index (𝐽) can be interpreted as a 

function of energy maintained at a small value in a closed-loop system. The performance 

index (𝐽) is weighted by state 𝑥(𝑡) and the control input 𝑢(𝑡), where if 𝐽 is minimized, 

state x (t) will go to zero for an infinite time that the closed-loop system will be stable. 

The 𝑄 and 𝑅 matrices are also influencing to performance of LQR control. Selecting 

the correct 𝑄 and 𝑅 metrics will determine the best 𝐾 feedback gain value for the system. 

The rule selection of matrics Q and R are as follows, 

• The larger weight matrices Q will increase the value of gain feedback (K), making 

a fast response system to achieve the intermediate state cost function. 

• The larger weight matrices R will decrease the value of gain feedback (K) which 

can slow down the steady-state (energy drive). 

 The optimal feedback gain 𝐾 is found by deriving Eq. (40) using the Hamilton - Jacobi 

- Bellman method with procced as follows.  

𝑑

𝑑𝑡
(𝑥𝑇𝑆𝑥) = 𝑥𝑇(𝑄 + 𝐾𝑇𝑅𝐾)𝑥 (41) 

𝐽 = ∫
𝑑

𝑑𝑡
(𝑥𝑇𝑆𝑥)𝑑𝑡

∞

0
= 𝑥𝑇(0)𝑆𝑥(0) (42) 

where 𝑆 is the auxiliary variable matrix. From Eq. (42), it is assumed that the closed-loop 

system is in a stable state with 𝐽 being independent of the current 𝐾 which depends on 𝑆 

and the initial conditions. By deriving and substituting Eq. (38) into Eq. (41), then, 

�̇�𝑇𝑆𝑥 + 𝑥𝑇𝑆�̇� + 𝑥𝑇𝑄𝑥 + 𝑥𝑇𝐾𝑇𝑅𝐾𝑥 = 0 (42) 

𝑥𝑇𝐴𝑐
𝑇𝑆𝑥 + 𝑥𝑇𝑆𝐴𝑐𝑥 + 𝑥𝑇𝑄𝑥 + 𝑥𝑇𝐾𝑇𝑅𝐾𝑥 = 0 (43) 
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𝑥𝑇(𝐴𝑐
𝑇𝑆 + 𝑆𝐴𝑐 + 𝑄 + 𝐾𝑇𝑅𝐾)𝑥 = 0 (44) 

(𝐴 − 𝐵𝐾)𝑇𝑆 + 𝑆(𝐴 − 𝐵𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0 (45) 

𝐴𝑇𝑆 + 𝑆𝐴 + 𝑄 + 𝐾𝑇𝑅𝐾 − 𝐾𝑇𝐵𝑇𝑆 − 𝑆𝐵𝐾 = 0 (46) 

Based on Eq. (46), the feedback gain 𝐾 is obtained by the following Eq. (47), 

𝐾 = 𝑅−1𝐵𝑇𝑆 (47) 

with Eq. (46) solved by the Algebraic Riccati Equation (ARE). The equation for solving 

ARE can be seen in Eqs. (48) and (49) [19]. 

𝐴𝑇𝑆 + 𝑆𝐴 + 𝑄 + (𝑅−1𝐵𝑇𝑆)𝑇𝑅(𝑅−1𝐵𝑇𝑆) − (𝑅−1𝐵𝑇𝑆)𝑇𝐵𝑇𝑆 − 𝑃𝐵(𝑅−1𝐵𝑇𝑆) = 0 (48) 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0 (49) 

3.2  Integral Control 

Control of a closed-loop system using only proportional control or full state feedback 

control will almost certainly result in a steady-state error in the response for each system 

input. The steady-state error that occurs is called offset. The offset unit step is shown in 

Fig. 3. 

Fig. 3: Unit step response and offset [20]. 

The offset can be eliminated if integral control is added to the control system in 

controlling the system. Integral control has a functional equation described in Eq. (50)[20]. 

𝐾𝑖 = ∫𝑒(𝑡)𝑑𝑡 (50) 

3.3 LQR and Integrator Control Design on Quadrotor 

A control system with a quadratic concept use12 states as states obtained from 

quadrotor modelling. Based on Eqs. (17), (18), (19), (31), (32), and (33) are first converted 

into state-space, which refers to Eqs. (35) and (36). The basic concept of changing the 

form of a linear representation uses a system model with various orders spelt out into first-

order orders. The shape of the quadrotor model state space is shown in Eq. (51) with the 

output signal—the form of state-space presented in Eq. (52). 

137



IIUM Engineering Journal, Vol. 23, No. 1, 2022 Dhewa et al. 
https://doi.org/10.31436/iiumej.v23i1.1803 

 

u

u

u

u

u

B

zz
I

yy
I

xx
I

m

x

z
V
z
y

V
y
x

V
x

A

m

u

m

u

x

z
V
z
y

V

y
x

V

x





































































−

+
















































































−

=











































4

3

2

1

1
000

0000

0
1

00

0000

00
1

0

0000

000
1

0000
0000
0000
0000
0000

000000000000
100000000000
000000000000
001000000000
000000000000
000010000000
000000000000
000000100000

000001000000

000000001000

000100000000

000000000010





































 (51) 

u

u

u

u

u

Dx

z
V
z
y

V
y
x

V
x

Cy

y

y

y

y

y

y









































+




























































=






















4

3

2

1

0000
0000
0000
0000
0000
0000

010000000000
000100000000
000001000000
000000010000
000000000100
000000000001

6

5

4

3

2

1








 (52) 

where the inertia of the x, y, and z axes which are the components of Eq. (51), can be 

obtained by using reference Tabel 1 with Eqs. (53) to (55). 

𝐼𝑥𝑥 = ∑ (𝐼𝐺𝑥𝑥𝑗
+ 𝑚𝑗(𝑦𝑗

2 + 𝑧𝑗
2)𝑛

𝑗=1  (53) 

𝐼𝑦𝑦 = ∑ (𝐼𝐺𝑦𝑦𝑗
+ 𝑚𝑗(𝑥𝑗

2 + 𝑧𝑗
2)𝑛

𝑗=1  (54) 

𝐼𝑧𝑧 = ∑ (𝐼𝐺𝑧𝑧𝑗
+ 𝑚𝑗(𝑥𝑗

2 + 𝑦𝑗
2)𝑛

𝑗=1  (55) 

The LQR control method is specialized as a regulator. The problem that arises in this 

control system is when the user or the autonomous system wants to change the reference 

from the state. Changing the connection with a physical quantity of a state not equal to the 

input reference quantity can be done using the state reference (𝑥𝑟𝑒𝑓). 

Reference state can help maintain the vehicle's state with a specific position, such as 

an altitude position or translating the x and y axes of the Earth to a particular place. The 

existence of a reference state will modify Eqs. (35) to (56). 

�̇� = 𝐴𝑥 + 𝐵(−𝐾(𝑥 − 𝑥𝑟𝑒𝑓) (56) 

Based on Eq. (47), the calculation of the control signal (𝑥 − 𝑥𝑟𝑒𝑓) is an error against the 

desired reference, which is called an error. The error causes the system to produce a 

steady-state error or an offset against the reference or even more significant overshoot 

because the change in the value of the state changes directly, especially to maintain the 

translational motion of the x, y, and z axes of the vehicle to the Earth's axis. The 

calculation can be overcome by integrating the error and multiplied by a Gain. LQR 

control with a reference state is added to an Integrator component that converts Eq. (56) 

into Eq. (57). 
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�̇� = 𝐴𝑥 + 𝐵(−𝐾(𝑥 − 𝑥𝑟𝑒𝑓) + 𝐾𝑖 ∫(𝑥 − 𝑥𝑟𝑒𝑓)) (57) 

This system has an A matrix system with 12x12 dimensions, a B matrix system with 

12x4 dimensions, a C matrix system with 6x12 dimensions, the output signal (y) in 6x1 

dimension, and a control signal (u) 12x1 matrix dimension. The control diagram design 

that interprets quadrotor control with state reference and Integral control is shown in Fig. 

4. 

 

Fig. 4: LQR and Integrator control system on quadrotor. 

Implementation of LQR Integrator control on quadrotor motion is based on the result 

of the integration of the dynamic equation. The force and torque on the quadrotor shown 

in Eq. (58). 

[

𝐹𝑇

𝜏𝜙

𝜏𝜃

𝜏𝜓

] = [

−𝑏 −𝑏
−𝑙𝑏 −𝑙𝑏

−𝑏 −𝑏
𝑙𝑏 𝑙𝑏

𝑙𝑏 −𝑙𝑏
𝑘 −𝑘

−𝑙𝑏 𝑙𝑏
𝑘 −𝑘

]

[
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

 (58) 

where b and k are the coefficients of the thrust force and torque obtained from the 

calculation of Eqs. (59) and (60) [22]. 

𝑏 = 𝐶𝑇𝜌𝐴𝑅𝑝
2 (59) 

𝑘 = 𝐶𝑞𝜌𝐴𝑅𝑝
3 (60) 

where 𝐶𝑇 and 𝐶𝑞 are coefficients from propeller characteristics. 𝜌 is the density of air, and 

A is the circle area of propeller and 𝑅𝑝 is a radius of the propeller.  The speed of each 

motor can be calculated through Eq. (61). 

[
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

= 𝐴𝑧
−1 [

𝐹𝑇

𝜏𝜙

𝜏𝜃

𝜏𝜓

] = [

−𝑏 −𝑙𝑏
−𝑏 −𝑙𝑏

𝑙𝑏 𝑘
−𝑙𝑏 −𝑘

−𝑏 𝑙𝑏
−𝑏 𝑙𝑏

−𝑙𝑏 𝑘
𝑙𝑏 −𝑘

] [

𝑢1

𝑢2
𝑢3

𝑢5

] (61) 
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4.   QUADROTOR MOVEMENT SCENARIO ON WAYPOINT 

TRACKING 

Waypoint tracking flights require a structured and sequenced flight scenario to 

complete the mission. The quadrotor flight scenario in this study developed, which is 

described in Fig. 5. 

 

Fig. 5: Quadrotor movement scenario. 

Quadrotor flying motion in tracing the waypoint trajectory is always set to move 

forward. This situation certainly causes the control of the x-axis translation of the 

quadrotor not only to utilize GPS latitude data, as well as the control of the y-axis 

translation of the quadrotor not only to utilize GPS longitude data. The quadrotor moves 

on the x-axis of the Earth. That refers to the longitude coordinates. It will rotate in front of 

the quadrotor, for example, 90o. The position makes the control of the quadrotor x-axis 

translation motion refer to latitude data. Figure 6 describes the quadrotor movement. 

 

Fig. 6: Quadrotor direction to waypoint reference. 

The rotation matrix concept solves the translational movement issue with the 

quadrotor's face. The face does not just face north, as indicated by the compass value of 

0o. The rotation is centered on the z-axis and directed towards the quadrotor's x and y axes. 
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It is building a new axis based on the resulting angle. The new axis equation of the 

rotation matrix for the x and y axes is described by Eqs. (62) and (63). 

𝑋𝐴 = 𝑋𝐵𝑐𝑜𝑠𝛾 − 𝑌𝐵𝑠𝑖𝑛𝛾 (62) 

𝑌𝐴 = 𝑋𝐵𝑠𝑖𝑛𝛾 + 𝑌𝐵𝑐𝑜𝑠𝛾 (63) 

Another requirement for the quadrotor to constantly move forward when carrying out 

a search mission is adjusting the quadrotor from the current coordinate point to the 

intended waypoint coordinates. This adjustment is in the form of a calculation angle from 

two different coordinate points as the reference state yaw value. The calculated angle is 

called the bearing angle. The position of the angle is shown in Fig. 7 [16]. 

Fig. 7: Bearing angle from two difference of coordinate point location. 

The bearing angle (𝛽) is based on taking the compass angle value of 0o with the 

magnetic north of Earth. This angle (𝛽) is obtained from two positions of latitude (𝜑) and 

longitude (𝜆) measures of the GPS coordinate frame. Two coordinate points meant are the 

actual point of the quadrotor in any position during flight and destination point. The actual 

point is represented by the longitude and latitude of GPS coordinate with 𝑝0 symbol. On

the other hand, the destination point is represented by the longitude and latitude of the 

following planning position coordinate with 𝑝𝑥 symbol. Updating bearing angel can be

calculated by the Haversine formula, where the first step is found longitude distance (𝛿𝜆)
between 𝑝0 and 𝑝𝑥 in radians units. The longitude distance can be processed as follows

[16], 

𝛿𝜆 = (𝜆𝑝0
− 𝜆𝑝𝑥

) (64) 

Different longitude distance is then converted from degree to radians as follows in Eq. 

(65). 

𝛿𝜆 = (𝜆𝑝0
− 𝜆𝑝𝑥

) ∗
180

𝜋
(65) 

We know if Earth has a round form with 3 Dimension perspective. So the Haversine 

formula should be implemented in this calculation to obtain accurate information. 

Therefore, Eq. (66) is described using a formula, 
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𝑎𝜆 = sin(𝛿𝜆) ∗ cos (𝜑𝑝𝑥
∗

180

𝜋
) (66) 

This process also applies to latitude coordinates that can be described by Eqs. (67) and 

(68). 

𝑎𝜑1
= sin (𝜑𝑝0

∗
180

𝜋
) ∗ cos (𝜑𝑝𝑥

∗
180

𝜋
) cos(𝛿𝜆) (67) 

𝑎𝜑2
= cos (𝜑𝑝0

∗
180

𝜋
) ∗ sin (𝜑𝑝𝑥

∗
180

𝜋
) − 𝑎𝜑1

 (68) 

Based on the relation of longitude and latitude in the radians unit, the bearing angel (𝛽) 

can be calculated in degree unit using Eq. (69). 

𝛽 = 𝑎𝑡𝑎𝑛2(𝑎𝜆, 𝑎𝜑2
) (69) 

5.   ARCHITECTURE SYSTEMS 

5.1  Electronic Design System 

Input from the quadrotor system in several sensors measuring data is the design's 

value, especially in the quadrotor control system. The sensors are an accelerometer and a 

gyroscope that produce data in the form of roll angle and pitch values from the sensor 

fusion process using the DMP method. Yaw angle data is obtained from the compass 

sensor. 

The following sensors are barometer and ultrasonic, which are used to provide altitude 

data. The barometer sensor is used when the quadrotor flies above one meter. The pressure 

data is filtered and converted to altitude using the SISO Kalman filter. 

Then the U-block LEA-6H module GPS sensor is used with an accuracy of up to 

0.010. This sensor provides longitude and latitude data which is converted into meters. 

Also, this sensor acts as quadrotor control data in maintaining position and as a control in 

tracking the waypoint path. Like the barometer, this sensor also experiences drifting, 

especially for readings of the Earth's longitude, requiring data filtering first. The Kalman 

filter also uses the method of filtering GPS data. The hardware used in processing the 

algorithm in this study is an ARM Cortex-M4 microcontroller with a computational speed 

of 96 MHz and rated speed which can be increased through overclocking up to 120 MHz. 

 

       Fig. 8: Electronics architecture of quadrotor.  

The last part of the electronic device system is the output part. This section is an 

actuator to drive the speed and direction of flight of the quadrotor. The electronic 

hardware used is a brushless motor with a specification of 980 kV. The engine is a three-
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phase DC motor controlled using an electronic speed controller module that pulses from 

the microcontroller PWM port. This motor uses a propeller 10 x 4.5. The relation of the 

three electronic hardware is shown in Fig. 8. 

5.2 Mechanical Design 

This mechanical frame consists of an upper canter plate, lower center plate, and four 

arms attached to the sides of the canter plate. Between the upper and lower center plates, 

space is occupied by a battery in the form of a sized block and a telemetry module. The 

top center plate is used to place the microcontroller shield and the GPS buffer antenna, and 

the GPS module itself. Another part of the frame is the arm. It is used as the 980 kV 

brushless motor placement with a 10 x 5 propeller HQ-prop type and ESC. The mechanics 

of the aircraft spacecraft are shown in Fig. 9 and Fig. 10. 

Fig. 9: Mechanics design of quadrotor in top view. 

Fig. 10: Mechanics design of quadrotor inside view. 

5.3  Flow Concept Programming 

The main program of the Quadrotor system starts by declaring the header and several 

libraries used, then declarations of variables needed in the system. Furthermore, the 

system will enter into a setup condition, where this section is the initial condition of the 

sensor access, telemetry, remote reading receiver, and actuator. After the program enters 

the setup section, the program will enter the loop function. This function is a function that 

will run the program repeatedly until the system is disabled. In this function, the system 

will check the condition of getting flight orders or not. When the system conditions are 

changed into flight commands, the system will take raw data from the sensors, where the 
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sensor data is processed and acquired through the filtering and sensor fusion processing 

sub-functions. Then the program will operate the rotational motion correction function, 

namely flight control, by maintaining the quadrotor rotational attitude using the LQR and 

Integrator control system control. The flow of the main algorithm is shown in Fig. 11. 

 

Fig. 11: Main flow diagram of a quadrotor system.  

6.   RESULTS AND DISCUSSION 

Based on the flight scenario that has been designed, it is necessary to test and analyze 

the characteristics of the quadrotor. Observations were made at the point of maintaining 

anti-rotational motion, maintaining altitude, maintaining the anti-translational motion of 

the x and y axes, and defending the waypoint path. This stability test refers to the plane 

parameters calculated physically and mathematically, as shown in Table 2. 
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Table 2: Parameters of quadrotor 

Parameter Value Unit 

𝐶𝑇 1.915 x 10-4 - 

𝐶𝑄 1.830 x 10-5 - 

R 1.250 x 10-1 m 

𝜌 1.184 kg.m3 

A 4.910 x 10-2 m2

𝐼𝑥𝑥 1.320 x 10-2 kg.m2 

𝐼𝑦𝑦 1.402 x 10-2 kg.m2 

𝐼𝑧𝑧 1.237 x 10-2 kg.m2 

b 1.739 x 10-7 - 

k 1.229 x 10-9 - 

Based on the experiments, it is found that the movement attitudes have increased 

stability with integrator control. The stability is obtained by determining the full state 

feedback constant value 𝐾 and 𝐾𝑖 of each quadrotor state. The constants are influenced by

the weighting of the 𝑄 and 𝑅 elements [23]. The greater weighting of the 𝑄 element will 

result in a more significant gain value 𝐾 as well. The greater the gain value 𝐾, the greater 

the torque on the quadrotor system, making the system more responsive than giving a 

small gain value 𝐾 [24]. The best correlation constants with 𝑄 and 𝑅 quadrotor in this 

study are shown in Tables 3 and 4. 

Table 3: Conversion matrix of 𝑄 element to gain 𝐾 on quadrotor 

𝑸 𝑹 𝑲 













































6.16800000000000

081.40000000000

005.325000000000

00095.200000000

000089.60000000

0000073.1000000

0000009.195500000

00000003.1780000

000000006.124000

00000000077.100

00000000006.1240

0000000000087.0

1 

















99.1219.20000000000

0007.1872.100000067.1193.0

000063.232.10067.1133.100

00000061.4435.130000

Table 4: Integrator constant (𝐾𝑖) matrix on quadrotor

𝐾𝑖 



















005.000000000000

000011.0004.00000000004.0

00000008.00053.0000002.000

000000004.00000

As a starting point, the 𝑄 for each observed state is the value 1. Then the 𝑄 value 

approach is carried out in getting the best feedback gain system response through trial 

error and graphical analysis. Meanwhile, the value of 𝑅 is set at 1 for all states. 

The results of testing each quadrotor state that has been carried out are described in the 

following sub-sections. 
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6.1  Rotation Movement Characteristics Stability 

Testing of roll, pitch, and yaw rotational motion is carried out by giving a range of 20 

degrees counterclockwise deviations for state roll and pitch and 20 degrees clockwise for 

state yaw. The test was applied to 5 experiments with a period of 9 seconds. From the 

testing process, the characteristics response of each rotation is shown in Table 5 for roll 

response, Table 6 for pitch response and Table 7 for yaw response. 

Table 5: Roll rotation stability response 

Response Transient Test 1 Test 2 Test 3 Test 4 Test 5 Average Requirement 

System 

Rise Time (tr) → 0.24 1.54 0.19 0.27 0.18 0.65 < 1 seconds 

Settling time (ts) → 2 1.4 1.5 1.5 2.6 1.48 < 3 seconds 

Overshoot → 3.22 0 3.92 4.38 6.8 3.66 < 9 degrees 

Undershoot → -2.11 -3.82 0 -2.96 -4.11 2.6 > -9 degrees 

Steady State Error → 0.85 0.02 -0.02 0.38 0.01 0.25 ± 4.5 degrees 

Table 6: Pitch rotation stability response 

Response Transient Test 1 Test 2 Test 3 Test 4 Test 5 Average Requirement 

System 

Rise Time (tr) → 0.32 0.48 0.47 0.35 0.16 0.37 < 1 seconds 

Settling time (ts) → 2.3 0.9 1.7 1,8 2.8 1.9 < 3 seconds 

Overshoot → 4.72 1.77 4.76 2.71 4.71 3.73 < 9 degrees 

Undershoot → -2.57 0 0 -3.11 -4.74 2.08 > -9 degrees 

Steady State Error → 0.69 -0.46 0.04 -0.61 0.06 -0.06 ± 4.5 degrees 

Table 7: Yaw rotation stability response 

Response Transient Test 1 Test 2 Test 3 Test 4 Test 5 Average Requirement 

System 

Rise Time (tr) → 1.45 4.71 0.84 0.96 0.83 1.76 < 1 seconds 

Settling time (ts) → 4.6 4.90 4.7 2.5 4.3 4.2 < 3 seconds 

Overshoot → 0 0 0 0 5.23 1.02 < 9 degrees 

Undershoot → -8.91 0 -8.59 -1.28 0 3.76 > -9 degrees 

Steady State Error → -0.88 -0.55 -1.67 0.80 -3.16 -1.09 ± 4.5 degrees 

Based on Tables 5 to 7, state roll, pitch, and yaw with LQR and Integrator control for 

the entire trial of five times, the quadrotor has response characteristics that meet the 

minimum specifications for system stability. The best response attitude results in the third 

test for the state roll. The third test results only have an overshoot of 3.92 degrees and no 

undershoot. The rise time and settling time in the third test results are among the fastest in 

stabilizing the system, namely 0.19 seconds and 1.5 seconds. This test also produces a 

minimum steady-state error of 0.02 degrees compared to other test results. While the best 

result for pitch is the second test and the fourth test for the yaw state. The three best 

responses are the results of the analysis of the flight data plots shown in Figs. 12 to 14. 
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Fig. 12: Pitch angle rotation response. 

      Fig. 13: Roll angle rotation response. 

     Fig. 14: Yaw angle rotation response. 

Tests conducted on the three states prove that the LQR control with the addition of an 

Integrator can maintain the torsional stability of both roll, pitch, and yaw against 

disturbances that only require minimal potential energy. Besides, the short response speed 

of the test results indicates the need for a small cost function to stabilize the roll rotation 

motion [25]. 

On the other hand, there is a significant difference in rising time, settling time, 

overshooting, and undershooting the yaw state control analysis. The yaw angle data still 

fluctuates even though it has gone through compensation and data filtering stages. 
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Fluctuations occur because the magnetometer sensor's readings are influenced by the 

magnetic field around the sensor and the Earth's magnetic field [26]. Even so, the system 

is still able to accommodate a quadrotor to fly to control the yaw torque with good 

stability specifications. 

6.2 Altitude Response Stability 

Control in maintaining altitude controls the vertical axis z quadrotor translational 

motion associated with a thrust. This study utilizes data from the barometer and ultrasonic 

sensors to obtain elevation values above the ground as a controlled state. 

The weighting mechanism of the 𝑄𝑧 and 𝑄𝑉𝑧
 Elements in the LQR control start from a 

value of 1, which is then added and subtracted to get a 𝐾 gain that meets the system 

requirements. In contrast, the Integrator Ki gain is tuned from the smallest possible value 

starting with one 100 of the best 𝐾 LQR value. The bigger of the Integrator will provide a 

response strength that can cause rapid oscillation [27]. 

To analyze the response of the quadrotor system in altitude maintenance. The test set 

off altitude flight of quadrotor in 75 cm, giving some disturbance in the form of a 

deviation in the range of 25 cm towards the ground surface. The results of these tests are 

interpreted through the analysis of the response characteristics of the altitude hold motion 

shown in Table 8. 

Table 8: Altitude hold stability response 

Response Transient Test 1 Test 2 Test 3 Test 4 Test 5 Average Requirement 

System 

Rise Time (tr) → 0.75 0.76 0.83 0.96 1.17 0.89 < 3 seconds 

Settling time (ts) → 3.8 4.6 2.7 3.3 3.7 3.62 < 6 seconds 

Overshoot → 0.07 0.03 0.03 0.07 0.03 0.04 <= 0.07 meters 

Undershoot → 0 -0.02 0 0 0 0.004 >= -0.07 meters 

Steady State Error → -0.02 -0.01 -0.02 0.02 0.01 -0.004 ± 0.0375 meters 

The best characteristics of the aircraft are obtained when the third test. The resulting 

test only has a minimum overshoot of 0.03 degrees and no undershoot in the system. 

Furthermore, the system has the fastest settling time than others. This test also produces a 

minimum steady-state error of -0.02 degrees. The characteristic is carried out, shown by 

the flight data plotting, as shown in Fig. 15. 

 

         Fig. 15: Altitude hold response. 
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The characteristics of the quadrotor have a settling time for each test, having a 

relatively slow time and minimal undershoot in reaching a steady state. This condition is 

caused by updating the vertical translation speed state, which is longer, and using a 

considerable gain value so that the quadrotor will slowly hold the momentum after the 

overshoot occurs. 

Testing is also carried out by varying the reference height to find out more 

characteristics. The variation in altitude is adjusted to the reference height of 1.8 m, 3.4 m, 

and 4.8 m by utilizing the height data from the barometer sensor. The results of the flight 

test are depicted in Fig. 16. 

The calculation result of the steady-state error is -0.0131 m for a height of 1.8 m, -

0.0283 m for a height of 3.4 m, and 0.025 m for a height of 4.8 m. A minor steady-state 

error generated at the lowest altitude does not mean that the system has the minimum 

error. The system is steady-state with the slightest inclination interval, namely the range ± 

0.02 m, namely at an altitude of 4.8 m. The barometer sensor readings are accurate at 

higher altitudes. 

 
Fig. 16: Altitude hold response in different reference of high. 

However, the LQR control system with the addition of the Integrator concept as 

compensation can be appropriately controlled by meeting the system requirements 

specification. The steady-state error occurs no more than 10% of the reference altitude. 

6.3 Translation Movement Characteristics Stability 

This test is categorized into two segments: translational motion, maintaining absolute 

earth coordinates, and translational motion when performing a waypoint mission. 

6.3.1 Position Hold Stability 

In principle, a horizontal translational motion has two controlled x and y axes. Control 

of horizontal quadrotor translation motion depends on the accuracy of using the Global 

Positioning System sensor to obtain data in the form of displacement state and x-axis 

translation speed from longitude data conversion and y-axis data from latitude data 

conversion. Referring to previous research conducted by [28], giving a tolerance limit of 
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2.5 m to the front, back, right, and left of the quadrotor. The quadrotor translation motion 

test is analyzed based on comparing the use of the LQR and LQR Integrator controls. 

This part of the translational motion trial was carried out five times without getting 

disturbed by the current environmental conditions. Based on the five tests, the quadrotor 

has flight characteristics in maintaining the x-axis and y-axis positions as described in 

Tables 9 and 10.  

Table 9: Comparison of x-axis translation stability using LQR and LQR Integrator 

Control 

Method 

Error Properties Test 1 Test 2 Test 3 Test 4 Test 5 Average 

LQR Max. deviation (meters) 2.71 2.74 3.23 1.78 3.15 2.72 

Min. deviation (meters) -2.63 0.40 -1.14 1.69 0.22 -0.29 

Steady state error (meters) 0.12 1.84 0.93 -0.06 1.91 0.95 

LQR 

Integrator 

Max. deviation (meters) 0.41 0.39 1.49 0.14 0.74 0.63 

Min. deviation (meters) -1.35 -1.04 -0.12 -1.36 -1.49 -1.07 

Steady state error (meters) 0.10 -0.35 0.55 -0.72 -0.36 -0.15 

Table 10: Comparison of y-axis translation stability using LQR and LQR Integrator 

Control 

Method 

Error Properties Test 1 Test 2 Test 3 Test 4 Test 5 Average 

LQR Max. deviation (meters) 3.21 -0.03 0.14 4.09 4.96 2.47 

Min. deviation (meters) 0.80 -1.93 -2.99 0.57 0.48 -0.61 

Steady state error (meters) 2.07 -1.19 -1.36 2.45 2.10 0.82 

LQR 

Integrator 

Max. deviation (meters) 0.40 1.95 2.28 1.98 2.27 1.52 

Min. deviation (meters) 0.47 2.19 -1.96 -1.52 -1.79 -0.52 

Steady state error (meters) -0.28 0.21 -0.51 -0.70 0.98 -0.06 

The results also prove, by using the LQR control coupled with Integral. It can give a 

quadrotor translation motion system needed. The error calculation of a steady-state error 

has an average of -0.06 meters for the x-axis and -0.15 meters for the y-axis. On the other 

hand, the steady state error using the LQR control produces a more considerable error with 

an average of 0.95 for the x-axis and 0.82 for the y-axis. The accuracy and precision of the 

control process can be seen in Table 11. 

Table 11: Comparison between LQR and LQR Integrator method in position hold 

stabilization of a quadrotor 

Control Method Parameter Test 1 Test 2 Test 3 Test 4 Test 5 Average 

LQR Accuracy in % 62 90 80 66 58.67 71.33 

Precision in % 23.81 30.18 45.89 32.84 46.82 35.91 

LQR Integrator Accuracy in % 100 100 100 100 100 100 

Precision in % 45.45 35 38.62 37.93 31.54 37.71 

Accuracy and precision are evidenced in Fig. 17, which compares the distribution of 

quadrotor data with LQR and LQR and Integrator.  
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  (a)  (b) 

Fig. 17: Quadrotor position hold movement using (a) LQR control (b) LQR 

Integrator control. 
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The accuracy is calculated from a division of the number data in the tolerance limit 

(the light blue circle) by a value of 150 and multiplied by 100%. It can be written into the 

following Eq. (70) form, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑎𝑡𝑎𝑖𝑛𝑙𝑖𝑚𝑖𝑡𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

150
𝑥100% (70) 

The number 150 comes from taking flight data from the quadrotor test, where each 

flight is carried out for 15 seconds and produces 150 data. The calculation results prove 

that using LQR and Integrator control as a quadrotor control system can increase the 

accuracy to 100% from 71.33% accuracy of LQR control accommodation only. The LQR 

and Integrator control making the quadrotor system only requires less energy than the 

LQR control. 

High accuracy does not necessarily have high precision either. The precision itself is 

the closeness of the difference in the value of each data distribution from a data set. In the 

case of anti-translational motion control, the precision given to the LQR and Integrator 

control on the system is not so significant, which only increases the range of 1.8% of the 

LQR control. The compensation of Integrator does have properties that increase the 

system's responsiveness. So, the quadrotor error can be reduced, but it is not meaningful 

with good damping properties. 

Meanwhile, the precision value is obtained from the calculation step of the average of 

each position distance to the reference and the standard deviation, where one data is 

represented by two displacement data x and y with displacement references x and y equal 

to zero. Then the distance of a position point to the reference point can be calculated using 

the Pythagoras formula, such as Eq. (71): 

𝑟𝑎𝑛𝑔𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡𝑜𝑡ℎ𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = √𝑥2 + 𝑦2 (71) 

The precision of each distance as a ratio of the standard deviation against the average of 

range postopn to the reference multiplied by 100%, as in Eq. (72), 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑜𝑓𝑟𝑎𝑔𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡𝑜𝑡ℎ𝑒𝑟𝑒𝑓𝑒𝑟𝑛𝑐𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑓𝑟𝑎𝑛𝑔𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡𝑜𝑡ℎ𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑥100% (72) 

6.3.2 Translation Stability in Waypoint Mission 

The control system testing on translational movement when tracing a path is applied 

to a different path pattern. The track pattern consists of squares and zig-zags. The box 

waypoint trajectory pattern is constructed by entering four different latitude and longitude 

coordinates, where the coordinates of the points are shown in sequence in Table 12.  

Table 12: Coordinate trajectory pattern of waypoint 

State Coordinate 

of waypoint 

Square Pattern Zig-zag Pattern 

Latitude Longitude Latitude Longitude 

1 -7.751096 110.348807 -7.751096 110.348807 

2 -7.750976 110.348807 -7.751096 110.348927 

3 -7.750976 110.348927 -7.750976 110.348807 

4 -7.751096 110.348927 -7.750976 110.348927 

These coordinate points are determined based on satellite image data on one of the 

features provided by Google Earth by forming the path of each flight trajectory pattern as 

shown in Fig.18 (a, b). 
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(a) 

 

(b) 

Fig. 18: Waypoint flow movement of the quadrotor in (a) square and (b) zig-zag 

trajectory pattern. 

The basic concept of this translational motion control system analysis is carried out in 

the movement of the x-axis or lateral axis of the aircraft. The velocity of the quadrotor 

becomes one of the determining factors for the success of the quadrotor in the waypoint 

mission. The velocity will generate momentum in the plane, which makes it unable to 

defend stabilization. The correct value of velocity in a waypoint mission flight will make 

the quadrotor fly more accurate towards the right path [29]. Therefore, this study varies 

the speed of the quadrotor in each flight mission in tracing the trajectory with three-speed 

variations that can minimize the percentage of flight errors or errors, as explained in Table 

13. 

Table 13: Quadrotor flight velocity variation to the performance of trajectory error 

Trajectory 

Pattern 
Velocity (

𝒎

𝒔
) Range (m) % Error 

Square 0.5 52 37.78 

1 52 5.04 

1.5 52 68,89 

Zig-zag 0.5 62.76 37.83 

1 62.76 13.51 

1.5 62.76 66.72 

The error presentation reflects the accuracy of the quadrotor to be traced in the path. 

The error presentation is calculated from the position based on the fault tolerance limit 

during the flight mission. Error calculation can be calculated using Eq. (73), 

%𝐸𝑟𝑟𝑜𝑟 =
𝑇ℎ𝑒𝑎𝑚𝑜𝑢𝑛𝑡𝑜𝑓𝑞𝑢𝑎𝑑𝑟𝑜𝑡𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑎𝑡𝑎𝑖𝑠𝑜𝑢𝑡𝑜𝑓𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙𝑜𝑓𝑑𝑎𝑡𝑎𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑖𝑛𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑥100% (73) 

From the results of data processing, it was found that the slightest error percentage in 

both inbox and zig-zag trajectory occurred in the quadrotor system with a flight speed of 1 

m / s. In comparison, the most significant error happened when the quadrotor speed was 

set at 1.5 m / s with an error percentage of 68.89% for the square track pattern and 66.72% 
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for the zig-zag trajectory. A higher velocity than the system requirement will produce a 

steady-state that is out of the path tolerance limit. It happened because lateral motion 

control requires navigation data to run slower in correcting errors. Also, the high velocity 

can make overshoot component on the flight of a quadrotor. Overshoot occurs because the 

process of moving the quadrotor movement moves forward towards a stop condition when 

it enters the waypoint point to change the direction of a quadrotor. In this situation will be 

tremendous momentum so that the plane is likely to bounce. 

The low speed of the system requirements will also affect the number of errors that 

occur, although not as large as the errors generated at high-speed settings. The percentage 

of error was 37.78% in the square track pattern and 37.83% in a zig-zag way for the 

velocity of 0.5 
𝑚

𝑠
. The velocity is set lower than the system requirement. It will make the 

aircraft character less able to correct the drift that occurs. Resulting in the quadrotor to 

produce track tracking movements still with errors that are high enough then the tolerance 

limit. 

6.3.3 Comparison between LQR and LQR Integrator Control Method Performance in 

Square Trajectory Pattern 

The quadrotor flight behavior in tracing the waypoint trajectory in a box pattern is 

visualized in Fig. 19 (a, b) and their characteristics as shown in Table 14.  

 

 
  (a)           (b) 

Fig. 19: Quadrotor movement in square trajectory pattern (a) using LQR control (b) 

using LQR Integrator control. 

Based on Table 14, the lack of the LQR control system applied to the quadrotor to 

trace the waypoint coordinates is corrected by adding an Integrator control to the LQR 

control. Using LQR and Integrator control, the quadrotor can reduce the steady-state error 

and multiple overshoots that occur, followed by an increase in the accuracy of tracking 

aircraft movements on the trajectory from 64.84% to 94.96%. The steady-state error is 

minimized from 2 meters to 0.54. meters and the average undershoot is -1.04, so there are 

no multiple overshoots when the quadrotor takes advantage of this control. Based on the 
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description in the previous paragraph, the Integrator can compensate for the control signal 

generated by the LQR. The control signal has calculated from an error value multiplied by 

the last gain integrator. So, the system response does not only depend on giving the 

current read state value. Besides, this control can accommodate the quadrotor's attitude 

towards the regulator with the energy required by the system specifications for the 12 

steady states. 

Table 14: Comparison of Characteristics Movement Quadrotor using LQR and LQR 

Integrator Control Method in Square Trajectory Pattern 

Waypoint Length 

of 

Track 

(m) 

LQR LQR Integrator 

Over

shoot 

(m) 

Unders

hoot 

(m) 

Steady 

state 

error 

(m) 

Accu

racy 

(%) 

Over

shoot 

(m) 

Unders

hoot 

(m) 

Steady 

state 

error 

(m) 

Accu

racy 

(%) 

wp1 to wp2 13 0 0 1.51 86.40 0 0 0.39 93.58 

wp2 0 0 -0.15 0 92.22 0 0 0 100 

wp2 to wp3 13 0 0 2.10 66.67 0 0 0.45 94.59 

wp3 0 0 -2.25 0 20.62 0 0 0 100 

wp3 to wp4 13 0 0 2.54 40.29 0 0 0.29 72.73 

wp4 0 0 -1.74 0 48.42 0 0 0 100 

wp4 to wp1 13 0 0 1.80 65.78 0 0 1.02 98.78 

wp1 0 0 -0.01 0 98.34 0 0 0 100 

Average 0 -1.04 2.00 64.84 0 0 0.54 94.96 

6.3.4 Comparison between LQR and LQR Integrator Control Method Performance in 

Zig – Zag Trajectory Pattern 

Comparison of translational motion control is also carried out in zig-zag trajectory 

tracing, where the quadrotor provides flight characteristics interpreted in Fig. 20 (a, b).  

 

    (a)                     (b) 

Fig. 20: Quadrotor movement in zig-zag trajectory pattern (a) using LQR method (b) 

using LQR Integrator method. 
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Based on Fig. 20 (a, b), the quadrotor has been able to enter within the tolerance of 

the zig-zag waypoint path when carrying out a search strengthened by the acquisition of 

data analysis results in Table 15. 

Table 15: Comparison of characteristics movement quadrotor using LQR and LQR 

Integrator control method in Zig – Zag trajectory pattern 

Waypoint Length 

of 

Track 

(m) 

LQR LQR Integrator 

Over

shoot 

(m) 

Unders

hoot 

(m) 

Steady 

state 

error 

(m) 

Accu

racy 

(%) 

Over

shoot 

(m) 

Unders

hoot 

(m) 

Steady 

state 

error 

(m) 

Accu

racy 

(%) 

wp1 to wp2 13 0 0 0.76 73.72 0 0 0.18 98.47 

wp2 0 0 0 0 100 0 0 0 100 

wp2 to wp3 18.38 0 0 4.70 16.15 0 0 0.90 92.36 

wp3 0 0 -0.86 0 41.67 0 -0.02 0 93.33 

wp3 to wp4 13 0 0 2.24 40.48 0 0 1.84 92.36 

wp4 0 0 -0.42 0 84.61 0 -0.1 0 92.85 

wp4 to wp1 18.38 0 0 5.08 0 0 0 1.29 95.45 

wp1 0 0 -2.45 0 17.24 0 -0.41 0 76 

Average 0 -1.12 3.19 46.73 0 -0.18 1.06 86.49 

Referring Table 15, it indicates that controlling a quadrotor on a zig-zag line is more 

complicated than tracing a straight path pattern. This result is evidenced by the more 

minor accuracy results for the two control method applications. Quadrotor control with 

LQR control has decreased tracking accuracy to 46.73% with steady-state error, and the 

average undershoot is getting greater to be 3.19 and -1.12 meters. Likewise, quadrotor 

control using LQR and Integrator experienced a decrease in tracking accuracy to 86.49% 

with a steady-state error and an undershoot that occurred at 1.06 and -0.18 meters. 

This condition occurs because the zig-zag trajectory pattern requires the quadrotor to 

rotate by maintaining a direction that exceeds 90o. The results in the yaw torque were 

significantly affecting the pitch and roll torque being unstable with a greater force. This 

instability cannot be handled by quadrotor translation control, which has a more extended 

control update rate than other state controls and makes the quadrotor have a more 

significant deviation than before. The condition does not necessarily increase the value of 

gain K, that resulting torsional the greater torque.  The torque can make the quadrotor 

more responsive rotate in the direction of the x-axis or y-axis even slammed [30]. 

Therefore, the best system response is presented using the results of the Q element tuning 

with a gain K as in controlling the translation motion at a specific location. 

7.   CONCLUSION  

Implementing the LQR control method with the Integrator on the waypoint mission 

has successfully minimized steady-state error and multiple-overshoot. LQR Integrator can 

increase the accuracy to 94.96% with a steady-state error of 1.06 meters in square track 

pattern and 86.49% with a steady-state error of 0.54 meters in zig-zag trajectory. The 

compensation of Integrator has higher accuracy that can sign to provide minimum error, 

but it no more effective to increase precision state in translation movement. 

In the future, this research needs to develop other methods that can enhance the 

precision state in quadrotor systems. We will implement an artificial intelligence approach 
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to combine in anatomy structure LQR control method. So, the system has a self-learning 

ability that can adapt to the environment dynamically. 
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