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ABSTRACT: In 5G communications, higher data rates and lower latency are needed due 

to the high traffic rate. Though resource wastage is avoided by secure slicing, sliced 

networks are exploited by DDoS attackers. Thus, in the present paper, traffic-aware setting 

up is PRESENTED for resource allocation and secure slicing over the virtualization of 5G 

networks enabled by software-defined network/network functions. In the proposed method 

(called T-S3RA), to authenticate user devices, Boolean logic is used with key derivation 

based on passwords. Moreover, the traffic arrangement is based on the 5G access points. 

To implement secure resource allocation and network slicing, deep learning models are 

used. Renyi entropy computation is employed to predict the DDoS attackers. Through the 

experimental results, the effectiveness of the presented approach is proved. 

ABSTRAK: Melalui komunikasi 5G, kadar data yang tinggi dan latensi yang rendah amat 

diperlukan kerana kadar trafik yang tinggi. Walaupun pembaziran sumber dapat dielakkan 

melalui pemotongan selamat, rangkaian yang dipotong sering dieksploitasi oleh penyerang 

DDoS. Oleh itu, kajian ini menyediakan persekitaran sedar-trafik bagi peruntukan sumber 

dan pemotongan selamat ke atas rangkaian 5G secara maya melalui fungsi rangkaian 

takrif-perisian. Melaui pendekatan yang dicadangkan (iaitu T-S3RA), peranti pengguna 

disahkan terlebih dahulu menggunakan logik Boolean dengan perolehan kunci 

berdasarkan kata laluan. Di samping itu, susunan trafik adalah berdasarkan titik akses 5G. 

Bagi melaksanakan peruntukan sumber yang selamat dan pemotongan rangkaian, model 

pembelajaran mendalam telah digunakan. Pengiraan Entropi Renyi dibuat bagi meramal 

penyerang DDoS. Dapatan eksperimen mengesahkan keberkesanan pendekatan yang 

dicadangkan. 

KEYWORDS: dynamic offloading; deep learning; resource allocation; network slicing; 

traffic scheduling 

1. INTRODUCTION

Network slicing is a critical issue for 5G networks beneath a single physical

infrastructure. Generally, network slicing is defined as selection of slices and appropriate 

allocation of resources for each user [1-4]. Presently, higher service-satisfaction rates are 

required by network equipment. For instance, for a 4K ultra HD video streaming application, 

it is essential to meet more stringent service requirements like high throughput, high 

reliability, low latency, and higher storage space. Larger throughput and limited delay are 
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required by this application, thus needing the implementation of resource allocation and 

network slicing. 

Resource allocation and joint network slicing were presented as the main solution for 

meeting the requirements of users’ quality of service (QoS). Using the service type is among 

the greatest methods to create a slice. Data traffic includes the type of service used for 

configuring the network slicing. Moreover, a quick and dynamic response should be offered 

to satisfy the constraints of service level agreement (SLA). Mainly, the present solutions for 

resource allocation and network slicing are expensive computationally while not supporting 

the mixed slice requests [5,6].  

 Appropriate support is provided by a software-defined network (SDN) for resource 

allocation and network slicing since it includes the functionality of processing the slice 

requests and performing data traffic arrangement [7]. SDNs have various benefits based on 

network slicing. Moreover, they currently are extensively researched for numerous 

applications. These advantages include reliable communication, long-distance, urgent 

solutions, and communication for optimizing problems [8-10]. For similar cases, a heuristic 

algorithm is utilized. Computations require a huge deal of time in these algorithms, due to 

their complexity. 

Poor results are obtained by the present resource-allocation and network-slicing 

methods owing to the massive arrival rate of resource requests, numerous network slice 

requests, and high data traffic within a network slice [11]. Moreover, concentrated SDN 

controllers are also influenced since they behave as a single-point failure, unable to control 

most urgent service requests (ultralow latency). Through a multi-controller SDN 

environment, these issues are solved. The final decision is made by the controller in the 

SDN/network function virtualization (NFV)-based slicing to appropriately direct the slices 

[12-15]. 

The present study aims to handle the massive heterogeneous services from diverse tools 

with 5G networks connections [16-22]. Currently, three key services are evolved in 5G 

namely, ultra-reliable low-latency communication (URLLC), massive machine-type 

communication (mMTC), and enhanced mobile broadband (eMBB) (Table I). 

The QoS and security requirements of networks were increased by integrating 

SDN/NFV and 5G. Resource allocation and network slicing in a 5G network enabled by 

SDN/NFV are challenging since the optimum set of resources and proper slice must be 

defined. Resource allocation and network slicing are implemented in most studies for a few 

heterogeneous services while considering very restricted metrics. Furthermore, fast resource 

allocation and network slicing are required owing to various throughputs, mobilities, data 

rates, and delays in different services. The QoS can be improved by a universal system. 

For proper resource allocation and slice selection, a concentrated SDN controller is not 

practicable since slice privacy and security are not considered and there is higher 

participation of DDoS attackers. Thus, massive quantities of traffic are sent to a particular 

slice by these attackers. Nevertheless, the QoS requirement for UE cannot be satisfied by 

the secure network slicing alone since it is essential to serve the high-priority traffic first, in 

terms of the type of service. 

The slice network is performed by the global controller while allocating optimal 

resources to achieve diverse service needs from users. The present study mainly includes 

the following points.  
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The 5G AP audits each authority in a VAP to insert, eliminate, and adjust the operations. 

Using a password-based key derivation function 2 (PBKDF2) in terms of Boolean logic is 

considered along with three input parameters including a physically unclonable function 

(PUF), secret key, and timestamp. An asymmetric queue model was used to perform traffic 

scheduling oriented by Bernoulli’s theorem. Packet delay, data rate, and packet length were 

used to schedule the traffic flow. Two high- and low-priority queues were fixed within the 

5G AP. Each queue includes asymmetric service rates based on the arrival rate. The 

international mobile subscriber identity, traffic type, fair SLA, device mobility, and slice 

capacity are considered in network slicing.  

The present work primarily focused on SLA constraints between the service provider 

and user leading to the fair SLA while slicing the network. First, it tried to calculate the 

service availability ratio (SAR), throughput ratio (TR), response time ratio (RTR), and 

service reliability ratio (SRR) accompanied by the fairness or weight for each service. To 

perform resource allocation, HopFieldNet is used as a quick neural network to find resources 

for each slice. Through the proposed dynamic-flow offloading outline at the local control 

plane, overloading at network slices is handled. Using a fast-weighted bipartite graph 

(FωBG) was considered in terms of transmission rate, switch service capacity, and loss rate 

to map multiple flows to the optimal switches enhancing the network reputation. Packet 

classification through Renyi entropy was run along with the device authentication. The 

bandwidth usage is estimated here, for the switches. Ultimately, the NS3.26 simulator was 

used for the experiments to assess the proposed scheme exhibiting highly satisfactory 

performance compared to the formerly presented schemes based on several metrics like 

throughput, response time, latency, packet loss ratio, packet transmission ratio, bandwidth 

consumption, slice acceptance ratio, and slice capacity. 

The rest of this paper is organized as follows. Earlier studies on resource allocation and 

network slicing are provided in Section 2 to recognize the research gap. The main problems 

explored from the present studies are highlighted in Section 3. The presented traffic-aware 

scheduling is detailed in Section 4 for resource allocation and secure slicing (T-S3RA) 

architecture along with its essential algorithms. The proposed architecture is compared in 

Section 5 with former methods in terms of the experimental results. Finally, our 

contributions are summarized in Section 6 while outlining future improvements. 

2.   RELATED WORK 

2.1  Secure Network Slicing 

Multiple users are allowed to reach a single network followed by authentication through 

secure slicing. Moreover, users’ performances on the slice are assessed by verification of 

attributes like the strength of passwords and the existence of malware [23]. In the study of 

Wang et al. [24], mitigation of DoS attacks in an SDN was focused on through switch 

bandwidth congestion prediction. Specifically, a complete judgment score was determined 

for each switch representing attack severity. Through trust values, multiple buffer queues 

the priority can be managed by the manager considering various users’ priorities. A 

weighted round-robin algorithm was used to schedule flow requests from users. The 

compromises by DoS attackers are estimated. Through authentication of the users, attack 

prevention is achieved. Thus, attackers are easily eliminated before overloading the 

controller. 

The VIKOR multicriteria decision-making approach was proposed by Porambage et al. 

[25] for network slicing within a 5G environment to find node significance (topology and 
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resource attributes) and thus rank the nodes. A candidate physical path is defined among the 

slice nodes, for maximizing the slice acceptance ratio. However, there is a major drawback 

in VIKOR namely, the marginal slice acceptance ratio, which should be higher for the high-

priority traffic.  

Accessing the slice by third-party application services, secure keying is made [26], 

which ensures consent from the monitored devices as well as security features for the keying 

outline. Hence, the security feature is demonstrated by establishing 5G services. The key 

distribution server initially creates the cryptographic keys. The ELGamal Cryptosystem was 

proposed for a key generation where two sets of keys are generated including private and 

public keys. The resources are made here for key generation. 

2.2  Resource Allocation and Network Slicing 

The optimal workload allocation was proposed by Ma et al. [27] for distributed 5G-

based SDN/NFV networks. An end-to-end network slicing architecture was designed in this 

method for supporting several services like URLLC and eMBB. Moreover, through slicing 

the requests from clients in the integrated environment (edge computing, NFV, and SDN), 

the network operating cost is decreased. Network slicing was performed by Dawaliby et al. 

[28] in a large-scale Internet of Things (IoT) environment (long-range extensive area 

network). In this work, three slices of the network were segregated including the reliability 

and urgency-aware slice, best-effort slice, and reliability-aware slice. First, one-to-many 

matching (defined by the number of IoT devices allocated to the virtual slices) was used to 

implement cooperative slicing. Then, a one-to-one matching game was used to allocate the 

resources for each slice (inter-slice resource allocation). The higher processing time is used 

by the coalitional multigame theory resulting in higher computational complexity. 

Packet-based data traffic scheduling was suggested to enhance resource assignment and 

sharing in 5G slice networks [29]. Two operations modes are utilized including dynamic 

sharing resource (DSR) and static sharing resource (SSR). The allocated capacity weight is 

determined to assign the resource for each slice and thus the allocated one. The fairness for 

resource distribution per slice is calculated in the final analysis. A global network controller 

is needed for operating massive types of slices like popular, sensitive, and heavy slices. The 

radio resource management (RRM) was investigated by Koutlia et al. [30] for multiple slice 

management. Using the RRM function here, the radio resources are divided and allocated. 

Slicing and allocation provisioning were proved by an interaction between the SD-RAN and 

eNB controller. The QoS requirements for real-time traffic are not met by a single controller 

while not suiting the complex application setups (Drone Control and AR/VR).  

A slice management scheme was proposed by An et al. [31] to assign resources in terms 

of priority. In this scheme, forwarding high-priority slice requests is performed while 

transmitting the lower-priority slices and shortest paths to other paths. They used 200 nodes 

to perform the experiments. Through a grid network topology, the nodes were deployed. 

The average throughput for slices was more than 6%, 13%, and 7% in the final analysis 

while minimizing the delays of the slices by 11%–14%. The shortest path is used by the 

flow (high-priority) forwarding within the data plane although it is not available for all 

cases. Thus, it is essential to install the corresponding flow in the controller when there is 

no consistency between flow and a flow table. Hence, a bandwidth scarcity problem is a 

resultant for users under static resource assignment. 

A network slice embedding model was presented by Tang et al. [7] in terms of 

reliability. The number of slice requests is increased by the model while reducing the failure 

rate of the network slices simultaneously. A Lyapunov optimization model was used in this 
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model to allocate resources and ensure queue stability. The network stability and reliability 

were guaranteed while effectively improving the network throughput. However, obtaining 

an abundance of network slices is difficult with lower interoperability between the 

SDN/NFV and 5G network.  

Service function chaining is utilized for network slicing [32], in which a set of service 

function chains is included in each slice to deal with any traffic per slice. Then, the trade-

offs between slicing and execution runtime are examined by designing a greedy-based 

heuristic algorithm. Ultimately, the required bandwidth and delay are obtained through an 

optimization model. The mobility of network slices is not taken into account, which reduces 

the QoS and QoE.  

A scheme was developed by Alfoudi et al. for network slicing resource management 

(NSRM) [33] for the allocation of resources for each slice within a network. An LTE 

network was considered in this work for various slice allocations and fair distribution of 

bandwidth among slices. Deploying the controller, all the slices are handled by the LTE 

slice controller for each slice. The radio network resources are assigned through the LTE 

slice controller by a virtual eNodeB. It is very difficult to dynamically provision the slice 

requests. For instance, large slice request handling is required by the Industry 4.0 

application.  

Narmanlioglu et al. conducted service-aware multi-resource allocation for cellular 

networks defined by software [34]. In this work, joint network allocation was demonstrated 

along with scheduling the available network resources for determining the network slices. 

Based on the SLA priorities and constraints, network resources are specifically provided. 

For each priority, the analytic hierarchy process (AHP) is utilized to calculate the resources 

(latency, throughput, reliability, and storage). Through experiments, they evaluated the 

method for vertical subscribers and industries cost-efficiently. The network slice capacity is 

the main factor to determine the needed resources. Though, AHP is not able to concurrently 

support multiple traffic flow resource allocation.  

The vehicular ad hoc network environment was examined by a dynamic end-to-end 

slicing method supporting 5G communications [35]. Two kinds of slice services were 

examined including Video and Web. Resources were assigned for network slices in a single 

physical network infrastructure. In both the control and data planes, the handling of different 

services from numerous users is supported through virtualized network functionality 

customization. However, high throughput is not provided by this end-to-end method for 

limited latency service types. 

Two eMBB and V2X services were examined by Albonda and Pérez-Romero [36]. 

They used two approaches of heuristic algorithm and reinforcement learning for resource 

allocation and network slicing for various slices. According to the simulation results, the 

latency is reduced by 0.18 s (by 0.26 s for a fixed slicing ratio). However, multiple traffic 

classes are not supported by this approach in each slice. Furthermore, latency can be further 

reduced by a global controller for each service type. 

An optimal and quick response method is presented for resource slicing within 

heterogeneous cellular networks [37]. The real-time advent of slice requests is captured first 

by this technique through a semi-Markov decision procedure (deep double dueling) to 

predict the service resources and time. Through several experiments, the performance of the 

presented deep dueling method was demonstrated for resource slicing. Several challenges 

are caused by large and dynamic network slices in the control and data plane. Such 

challenges are addressed by presenting load balancing amongst multiple network service 
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chains. Hence, a novel concept was used (point of existence) to solve the scalability problem 

while accepting only limited slice users [38-40]. 

3.   PROBLEM DEFINITION 

Resource allocation and network slicing are run in SDN/NFV-based 5G networks based 

on the service requests of user devices [41-43]. Massive service requests from the user can 

be handled through a multiclass queuing and traffic analysis model. Low-complexity traffic 

predictors are employed utilizing a soft gated recurrent unit (GRU) to allocate the resources 

through deep neural networks (DNNs). Moreover, a multistage analysis is conducted for 

three various slices (URLLC, mMTC, and eMBB) to carry out M/M/n/K-based queuing.  

These studies have the following limitations: first, they are oriented by the load, thus, 

non-real-time traffic for scheduling before real-time traffic is caused by the high response 

time for processing high-priority class packets. Second, based on a first-come-first-serve 

(FCFS) protocol, particular slices are scheduled thus further increasing the response time 

leading to poor QoS for received requests. Third, a single point of failure occurs in an SDN, 

when it is not possible to handle the requests from various users through a single controller. 

Fourth, the response time is incremented by running both DNN and GRU for more realistic 

and QoS-constrained traffic. Furthermore, a huge deal of energy and time is used by the 

DNN. Fifth, a random seek pattern is run by the FCFS since requests are not reordered by 

the slice for minimizing service delay. Besides, fair level SLA constraints are not used by 

the queuing theory. Since the service must be provided with an availability of 99.99%, 

ensuring service timeouts of less than 0.01% and completing the 99.99% of the services are 

essential within the resources. Additionally, resources are not distributed properly when 

utilizing FCFS for scheduling. 

For embedded services, a dynamic flow migration was proposed under SDN/NFV-

aided 5G networks to decrease the dynamic traffic load per slice [44]. To address this issue, 

a heuristic algorithm was used. This approach has the following drawbacks: (1) Adaptive 

flow migration is needed owing to the limited performance of the Poisson traffic model. (2) 

An optimal solution was required by the routing path for flow migration and in former 

approaches, delay-sensitive traffic cannot be run. (3) The heuristic algorithm is not able to 

present an optimal solution when arriving at an unexpected flow at the controller. In the 

present work, the above-mentioned problems are resolved through network slicing, dynamic 

offloading, resource allocation, security, as well as packet classification. 

4.   SYSTEM MODEL 

To design the presented T-S3RA within an SDN/NFV-permitted 5G network, the 

mobile device authentication processing abilities were used along with network slicing, 

traffic scheduling, as well as dynamic offloading, and resource allocation. 

4.1  Network Overview 

Designing the T-S3RA model for resource allocation and secure network slicing 

included a global control plane, local control plane, user plane, and data plane. Some entities 

are contained in the suggested T-S3RA model such as tools (d1 … dn), VAP (VA1 … VAn), 

5G APs (AP1 … APn), controllers (GC), switches (PS1 … PSn and VS1 … VSn) and some LCs 

(LC1 … LCn). The secure credentials are submitted in the devices to the 5G AP. Generally, 

there are limited components at the data and control planes based on the resources. 

Moreover, it is essential to use these resources for sending and receiving responses from 
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users as well as for action processing. The VA is removed when not needed. Hence, using 

the multi controllers resolves the single-controller-failure problem as a result of using both 

virtual and physical switches. Hence, the overload problem is solved. 

In network slicing, more packet losses and delays are induced by massive traffic. Thus, 

slicing is performed while scheduling the traffic and allocating the resources through deep 

learning methods. Through dynamic offloading actions, imbalance issues are avoided. Via 

various credentials, these actions are kept in the data plane while considering the resource 

wastage problem. Hence, through entropy calculations, DDoS attackers are detected 

arriving at the switches.  
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Fig. 1: The system architecture [1]. 

Figure 1 shows the proposed T-S3RA architecture. The main network entities include: 

(1) All IoT tools with access to the network through the 5G communications network are 

known as the tools. Such devices are dynamic in movement and heterogeneous in nature. 

Higher coverage is required to connect them to the 5G AP. All tools are not approved, and 

unauthorized user participation is also possible. (2) 5G AP armed with higher 

communication coverage with a higher data rate, lower latency, and higher throughput. (3) 
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VAP is a pool comprising some virtual authorities but not a single entity. It is often denoted 

as a specific entity balancing the authentication process. The 5G AP handles the VA creation 

and deletion process. (4) Switches that are commonly used in the data plane and function 

by matching the incoming flow with the flow table thus performing the actions. (5) 

Controllers that are distributed and deployed within the control plane for resource allocation 

and network slicing. Multiple controllers are utilized in this work to prevent the problem of 

a single point of failure. 

4.2  Device Authentication 

The 5G AP audits each authority with a charge for inserting, deleting, and modifying 

the operations, in the VAP. The PBKDF2 is utilized for authentication using three input 

parameters including PUF 𝐼? 𝑢𝑓, secret key , and Timestamp —. The request is accepted 

for the three valid parameters if not, it is not recognized and ended. The operations are 

conducted in the Boolean logic function. 

PBKDF2 is a function based on the key made by RSA Labs overwhelming the brute 

force attacks resultant from weak user passwords. The following parameters are used to 

derive a PBKDF2: an iteration count, ; a pseudorandom function, ; a password, ; 

a salt, ; an output-derived secret key, , and a selected output key length, . 

A  of arbitrary length is driven by PBKDF2. In particular, by the PBKDF2, several 

possible blocks  are generated, required for covering the output secret key length. For 𝑃𝑅𝐹 

iteration, each block,  is calculated through the count, . Any number of iterations can be 

added for a large secret key length. The inputs are the user password in PBKDF2, l salt 

values, ; iteration count, ; ; timestamp, , and selected output key length, . A secret 

key,  yields the output. 

 (1) 

where  denotes all security credentials’ concatenation. Here, two processes of enrollment 

and verification handle the PUF-based authentication. In the enrollment, all response and 

challenge pairs of the device are stored by the VA, which is verified when entering a device 

into the network. The device ID is received by the verifier to determine the random 

. The equivalent response is calculated for the issued challenge. The 

verifier examines the validity of the response in the database and the made response,  is 

made for the valid cases. 

Here, the Boolean logic operator is represented as  and stated as 

    (2) 

4.3  Traffic Scheduling 

Through traffic scheduling in the 5G AP, congestion was avoided at the SDN controller. 

Here, the devices' traffic flows are categorized and arranged through an asymmetric queue 

model operating in terms of Bernoulli’s theorem [45,46]. Using three parameters, traffic 

flow was scheduled including packet delay 𝐼?𝑑, data rate , and packet length . Thus, the 

total queuing service rate is: 

𝐼_1 + 𝐼_2 = 1 (3) 
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A zero-packet loss rate is obtained by focusing on the adaptive queue within the two 

queues. Therefore, HP’s service rate of  = 0.75 was reached and exceeded, while the queue 

was still in process. 

A discrete-time system was considered in this study to schedule services dynamically 

arriving for slicing requests. Regarding the type of slots and service, all arriving requests 

were diverse. A random variable ɣ(T) was defined to represent the queue current state as:  

 ɣ(T)=  {

0                                  𝑄𝑢𝑒𝑢𝑒 𝑖𝑠 𝑖𝑑𝑙𝑒
𝑖   𝑄𝑢𝑒𝑢𝑒 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑤𝑖𝑡ℎ 𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 
𝑙 + 1                         𝑄𝑢𝑒𝑢𝑒 𝑖𝑠 𝑣𝑎𝑐𝑎𝑛𝑡

 (4) 

4.4  Resource Allocation and Network Slicing 

The Network slice selection entities (NSS s) were fed in the GC to slice the network 

via SliceNet, which is a light and faster CNN outperforming WaveNet, traditional CNNs, 

and ByteNet. 

Service Type 𝔰𝑡, Fair SLA 𝔣𝑆𝐿𝐴, Slice Capacity 𝕊𝒸 𝐼𝑀𝑆𝐼, and Device mobility 𝑑𝔐 were 

all taken into account for slicing the network. This work primarily focused on SLA 

constraints between the service provider and user leading to  while slicing the network. 

Followed by the fairness (weight) for each service, RTR, SAR, TR, and SRR were 

calculated.  

Forwarding a service request to the controller is performed through the 5G AP over 

network slicing for a tool. The presented SliceNet is sated as a mapping from the input layer 

to the output layer as: 

𝑦 = 𝑓(𝔰𝑡, 𝔣𝑆𝐿𝐴, 𝐼𝑀𝑆𝐼, 𝕊𝒸, 𝑑𝔐 ∀(𝑑𝑖)), (5) 

In which  di represents the tool i. The aforementioned parameters are inserted as inputs into 

the presented SliceNet where the input encoder, decoder, and I/O mixer, are the key 

components.  

The input is obtained from the devices by a convolutional module in three stages of 

separable conv, ReLU activation, and the layer normalization. The hidden units are 

normalized and calculated layer-wise in the normalization. Generally, the conv_module is 

written as: 

𝐶𝑜𝑛𝑣𝑆𝑡𝑒𝑝 (𝑤, 𝑥) = 𝐿𝑁(𝑆𝑒𝑝𝐶𝑜𝑛𝑣, (𝑤, 𝑅𝑒𝐿𝑈(𝑋)), (6) 

Thus, the conv_module is achieved by stacking 4 convolutional phases:  

,  (7) 

, (8) 

, (9) 

, (10) 

𝐶𝑜𝑛𝑣𝑀𝑜𝑑𝑢𝑙𝑒(𝑋) =  {
𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (ℎ4(𝑋), 0.5)  𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

ℎ4(𝑋)                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                        (11) 

where  h (1…n) (X) represents the number of hidden units, and 0.5 is the learning rate. 
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The service requirements and input feature vector similarities are calculated based on 

the service type. Two convolution steps are conducted by the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function in this 

module: 

, (12) 

 (13) 

Ultimately, the three components’ structure was detailed including I/O mixer, input 

encoder, and decoder. The concatenation of all the aforementioned components makes the 

output embedding as: 

𝑀𝑖𝑥𝑖=𝐼/𝑂 (𝑚)[𝐼𝑒 (𝑖), 𝑂𝑒(𝑜)], (14) 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑚𝑖𝑥) (15) 

Ultimately,  is obtained in the output layer, which  is 

determined as the slice selection indicator. Thus,  denotes three kinds of services including 

eMBB, mMTC, and URLLC with different resource configurations. Hence, each service 

type is represented  accompanied by the specified network slice. To run resource 

allocation, HopFieldNet is used as a quick neural network to find the resource for each slice. 

Considering 𝑆𝐼𝑁𝑅, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡,  𝔣𝑆𝐿𝐴, 𝕊𝒸, arrival rate 𝐴𝑟, and slice value 𝑠𝑣, the resources 

were determined for each slice request. Here, the resources are assigned for three various 

processes including computation, communication, and caching as cj, ci and ck respectively.  

HopFieldNet is an artificial neural network (ANN) comprising nodes on a single layer. 

The input nodes in HopFieldNet are synchronously updated in terms of clock time 

variations. Here, there are the contributing nodes with the connectivity in terms of the 

defined weight values. The outcomes from network slices are used by HopFieldNet as input 

to compute the resources for the three groups of slices as URLLC, mMTC, and eMBB. The 

performance of input loops intended in this network is based on the capability of enriching 

knowledge, which is operative to resolve complicated computational problems. Designing 

HopFieldNet with a single layer of input nodes linked to other nodes as feedback 

connections, redirection of the output to the input is assisted. Here, there is an equal number 

of inputs, nodes, and outputs, in this T-S3RA system, and totally R1, R2, R3……,RN nodes 

are made by resources.  

The received input weight value is strong-minded from the separate slice service 

necessities stated in terms of the weight values in the connection as well as the node’s state. 

The weighted summation of the nodes  U is: 

 𝑈𝑖 = ∑ 𝑤𝑒𝑖𝑗𝑠𝑡𝑗
𝑁
𝑗=1 , (16) 

where  denotes the connectivity weight between i and j, and stj 10ft he state 10ft he node 

j. To control the training in HopFieldNet, the Storkey learning rule is used for minimizing 

the errors well. The Storkey learning rule is mathematically formulated as:  

𝑤𝑒𝑖𝑗
0 = 0     ∀ 𝑖, 𝑗, (17) 

𝑤𝑒𝑖𝑗
𝑘 = 𝑤𝑒𝑖𝑗

𝑘−1 +
1

𝑁
𝐼_𝑖

𝑘𝐼_𝑗
𝑘 −

1

𝑁
𝐼_𝑖

𝑘ℎ𝑗𝑖
𝑘 −

1

𝑁
ℎ𝑖𝑗

𝑘 𝐼_𝑗
𝑘 (18) 
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The weight estimated between 𝑖 and 𝑗 is represented by 𝑤𝑖𝑗
𝑒𝑘 in (17) and (18) only after 

learning the  pattern, while  represents the new knowledge pattern. The local field  

is: 

𝐻𝑖𝑗
𝑘 = ∑ 𝑤𝑒𝑖𝑛

𝑘−1𝐼_𝑛
𝑘𝑁

𝑛=1,𝑛≠𝑖,𝑗 , (19) 

Premeditating the HopFieldNet, the resources are categorized in terms of the slice service 

requirements.  

As seen in Fig. 5, for categorizing the available resource blocks from the slices, the 

HopFieldNet with a single layer is {x1, x2, …xi…xN} and the equivalent outputs are {Y1, Y2, 

Y3,…Yi…YN}. The inputs are received from all NS defined as {R1, R2, R3……,RN}. For each 

separate NS, the output in HopFieldNet is attained. 

The advantage of HopFieldNet is its process for associative memory to store part of the 

information and allocate the rest of the pattern. Recalling the former patterns, using prior 

information of the resource amount is enabled for each NS. The resource is classified into 3 

states. In the suggested T-S3RA, the states of the nodes are estimated as: 

 (20) 

For each node, the states st are formulated in a trained matrix, where the three groups, ci, cj 

and ck are the possible states for the resource. The node 𝑠𝑡𝑖 state is defined as: 

𝑠𝑡𝑖 = 𝑠𝑖𝑔𝑛(𝑈𝑖 − 𝑇𝐻𝑅𝐸𝑆𝑁), (21) 

in which  represents the threshold, , and . No 

node is related to itself as in this network and all nodes need to follow . Thus, 

the node connectivity weights are stated as:       

 

(22) 

For each node, the threshold THRESi is presented based on its service requirements. 

The threshold for the nodes is presented in matrix format as: 

 

(23) 

where  represent the separate threshold values for each node. The threshold 

can be varied considering the existence of the slice requests in each NS. The threshold is 

updated when a new slice request is included in the device or user.  Using the class of the 

resources at the NS is recognized followed by finding the resources for the NS. Then, the 

individual NS payment status is confirmed to exactly predict the use of the load by the NS. 

4.5  Dynamic Flow Offloading 

A higher traffic volume of slices is resultant from an inadequate bandwidth for switches. 

Comprised FωBG is used in terms of the transmission rate, switch service capacity, and loss 

rate. By FωBG , multiple flows are mapped to the optimal switches increasing the network 

reputation. Furthermore, FωBG  helps to prevent slice capacity problems. 
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5.   RESULTS AND DISCUSSION 

5.1  Simulation Setup 

To evaluate the proposed T-S3RA model, the network simulator tool V.NS3.26 was 

used, which can incorporate the technologies and network modules needed to simulate a 

network properly. The network simulator was mounted on a system with a 32-bit dual-core 

processor, the Ubuntu 14.04 LTS OS, and 2 GB of RAM. Table 1 presents the simulation 

parameters for designing the testbed. 

Figure 2 represents the suggested T-S3RA architecture model simulation results. The 

proposed system with various planes is explained based on the simulation steps, as shown 

above. 

 
 

Fig. 2: The Simulation results for key generation, network slicing, and node deployment. 

5.2  Comparative Analysis 

In this comparative analysis section, the efficiencies of the proposed T-S3RA are 

evaluated based on the methods assessed previously. To compare with the proposed system, 

some significant metrics are taken into account. To illustrate the performance of former 

resource allocation and network slicing schemes, the present approaches concentrate on 

dynamic flow migration (load balancing), resource allocation, or network slicing during 

network slicing. Thus, the present work focusing on all three procedures accompanied by 

security helps to avoid resource wastage in the control planes and data. A comparison was 

made on the performances of T-S3RA for three slices, URLLC, mMTC, and eMBB 

represented as S1, S2, and S3 respectively. 
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5.2.1 Effect on Throughput 

The throughput performance is demonstrated in Fig. 3 based on the number of slice 

requests. As seen, the network’s throughput possesses greater values in the presented T-

S3RA than the GRU-DNN [42]. 

 

Fig. 3: The throughput against the number of slice requests. 

5.2.2 Effect on Latency 

Figure 4 shows the comparison of latency performance. A lower latency was obtained 

by the presented T-S3RA since it utilizes fast algorithms as well as effective resource 

allocation and network slicing. More time is required to calculate the hyperparameters and 

tuning required for the DNN.  

 

Fig. 4: The latency against the number of slice requests. 

5.2.3 Effects on Response Time 

According to Fig. 5, the response time performance is improved, by minimizing the 

latency. The results of the response time comparison are presented in Fig. 5. A considerably 

small response time was obtained since T-S3RA is effective and end-to-end secure. An 

effective algorithm was not used in the present work.  
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Fig. 5: The response time and the number of slice requests. 

5.2.4 Effects on Transmission Ratio 

Utilizing the asymmetric queue model, the traffic is arranged at the 5G AP increasing 

the packet transmission ratio. Moreover, for all slice requests, resources are optimally 

allocated resulting in a higher packet transmission ratio. The highest packet transmission 

ratio was obtained for S2 since highly reliable responses are required by these services. 

5.2.5 Effects on Packet Loss Ratio 

To assess the packet loss performance, the number of devices is considered. According 

to Fig.11, the packet loss is lower in the considered T-S3RA than in the GRU-DNN.  

 

Fig. 6: The packet loss ratio versus the number of devices. 

5.2.6 Effects on Slice Capacity 

The comparison of the slice capacity vs. the number of devices is presented in Fig. 7. 

Based on the analysis of slice capacity, high performance is obtained by the proposed T-

S3RA. 
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Fig. 7: The slice capacity against the number of devices. 

5.2.7 Effects on Bandwidth Consumption 

The bandwidth consumptions of the estimated and present outlines are presented in Fig. 

8. Traffic offloading along with a multi-controller environment is used by the presented 

scheme, hence, the lower bandwidth is consumed. However, the higher bandwidth is used 

for GRU-DNN since there are no single controller problems and massive traffic handling. 

 

Fig. 8: The bandwidth consumption versus the number of slices. 

5.2.8 Effect on Slice Acceptance Ratio 

The acceptance ratios of the slice of T-S3RA and GRU-DNN are compared in Fig. 9. 

Using deep learning-based resource allocation and network slicing can result in a 

considerably higher slice acceptance ratio. In the former study, the best solution was not 

obtained using deep learning methods. Therefore, there were poor slice acceptance ratios. 

Particularly, limited parameters were considered by the problem for slice selection.  

Therefore, better efficiency is obtained by the presented T-S3RA compared to the GRU-

DNN for all network slices. Moreover, security is ensured by the presented T-S3RA while 

performing resource allocation and slicing the network.   
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Fig. 9: The slice acceptance ratio against the number of slice requests. 

5.   CONCLUSION 

In the present work, the QoS was enhanced in an SDN/NFV-permitted 5G network in 

terms of the presented architecture including T-S3RA incorporating the service and SLA 

necessities for requests arriving from a user or device. There are four planes in the presented 

architecture including device, local controller, data, and global controller. The users or 

devices are authenticated through the VA via 5G AP utilizing PBKDF2. For secure 

communication, the VA is made and authenticated to the 5G AP reducing the 

communication overhead. Then, the traffic from the 5G AP is categorized into two HP and 

LP queues. It is held by the asymmetric queue model utilizing Bernoulli’s theorem. Then, 

the HP request is forwarded to the LC for resource allocation and network slicing. SliceNet 

was proposed in this work for slicing, and resources were assigned utilizing HopFieldNet. 

Furthermore, to run dynamic flow offloading, FωBG was used. To prevent packet dropping 

and enrich the QoS, the flows were matched with underloaded switches. Furthermore, DDoS 

attackers were eliminated from the network through packet arrangement utilizing Renyi 

entropy. Ultimately, the system’s performance was assessed in terms of QoS metrics like 

throughput, latency, response time, packet loss ratio, packet transmission ratio, bandwidth 

consumption, slice capacity, as well as slice acceptance ratio. 
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