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ABSTRACT: PHAs are a group of intracellular biodegradable polymer produced by (most) 
bacteria under unbalanced growth conditions. A series of enzymes are involved in different 
PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs 
are accumulated in bacterial cells from soluble to insoluble form as storage materials inside 
the inclusion bodies during unbalanced nutrition or to save organisms from reduces 
equivalents. PHAs are converted again to soluble components by another pathways and 
enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. 
This review is designed to give the non-specialists a condense background about PHAs 
especially for researcher and students in medicinal and pharmaceutical field.  

ABSTRAK: PHAs (polyhydroxyalkanoate) merupakan sekumpulan polimer 
terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan) bakteria di bawah keadaan  
tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, 
namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran.  PHAs 
dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di 
dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan  organisma 
daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen 
larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depolymerases (enzim 
yang memangkin penguraian makro molekul kepada molekul yang lebih mudah) merupakan 
enzim yang bertanggunjawab. Kajian semula ini direka untuk     memberi mereka yang 
bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam 
bidang peubatan dan farmaseutikal. 
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1. INTRODUCTION  

Perhaps, Beijerinck wrote the first report about lucent granules of PHAs in bacterial cells 
in 1888 (Reported in Chowdhury, 1963) [1, 2]. Poly-β -hydroxbutyrate (PHB) was firstly 
described as an important bacterial product by Lemoigne (1923). Later, Lemoigne (1927) 
characterized PHB chemically and observed that it was involved in the sporulation of Bacillus 

spp [3, 4]. Lemoigne and co-workers published 27 articles from 1923 to 1951 [5]. He was the 
first to observe that these storage materials were not ether soluble, as in lipids. Later, he 
reported that PHB is the major constituent of these granules. Using microscopic investigation, 
saponification numbers, and autolysis he proposed a polyester structure with the formula 
(C4H6O2)n- and reported that PHB could cast into film like cellulose nitrate material [3-7].  

The worldwide demand for degradable plastic is estimated to be 1.4 million metric tons 
per year by the year 2000, with much of this demand driven by legislation and environmental 
group [8]. A number of polymers are being developed to meet this demand, with the majority 
of these being petrochemical based and projected cost at $6.6 kg-1 [9, 10]. Natural products 
being developed as biodegradable plastics include starch blends, polylactic acid, and bacterial 
polyhydroxyalkanoates (PHAs). PHAs are described as natural polyesters [11]. Copolymers 
of poly(β-hydroxybutyrate-co- β -hydroxyvalerate) were produced on a large scale by the 
Imperial Chemical Industries in Billingham, United Kingdom [12, 13]. This copolymer is a 
thermoplastic which resembles polypropylene [14] and has been successfully test marketed as 
shampoo bottles in Europe [15]. Although this natural product has great promise, but its high 
cost is a limiting factor [10]. The large-scale production of bacterial PHA has a number of 
interesting problems. Major expenses in the production of PHA are determined by the cost of 
the fermentation substrate, and the extraction of the polymer from inside the cell [12]. Dunolp 
and Robards (1973) developed the first models for the structure of the inclusion with 
intriguing observation that this polymer was stretchable even at very low freeze -fracture 
temperature [16]. PHB was in fact a thermoplastic with properties much like polypropylene 
[14]. It was shown that PHB copolymers that contained an amount of β-hydroxyvalerate and 
designated P(HB-co-HV) could be formed by co-substrate feeding [17]. 3-Hydroxyvalerate 
synthesis is dependent on the presence of both glucose and propionate [18]. For PHAs 
nomenclature and abbreviation refer to Amara [2]. Many years have been lost after the first 
bulk interest with this polymer shown by Lemoigne and his group. However, minor 
researches have been made. Weibull had isolated the granules of Bacillus megaterium by 
dissolution of the cell wall with a lysozyme [21]. Doudoroff and Stanier and Stainer et al. 
found that PHB can be produced by photosynthetic assimilation of organic compounds by 
phototrophic bacteria [21, 22]. They described that the reaction involved in the metabolic 
pathway is responsible for the biosynthesis of PHB from acetic acid [22, 23]. Lusty and 
Doudoroff have shown a study on depolymerases, which were able to hydrolyze PHB [24]. 
Schlegal observed that Cupriavidus necator (formally Wautersia eutropha, Ralstonia 

eutropha and Alcaligenes eutrophus), could accumulate very large amount of PHB in a media 
with low nitrogen content [25]. The most challenging work on PHAs started when Schlegal 
working with C. necator and Dawes working with Azotobacter berjerinckii succeeded to 
isolate and characterize the enzymes catalyse the PHB monomer synthesis [26, 27]. Isolating 
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the PhaC synthases was the real step to facilitate the cloning of their responsible genes. The 
PHA synthase operon of C. necator were cloned in three labs nearly in a short span of time 
[28-30]. Wallen and Rohwedder reported heteropolymers of HB and 3-hydroxyvalerate in 
chloroform extracts of activated sewage sludge as major constituents with C6 and possibly C7 
3-hydroxyacids as minor components [31]. De Smet et al. characterized PHAMCL in 
Pseudomonas oleovorans during growth on octane [32]. Huisman et al. proved that PHAMCL 
accumulation was the common criteria of fluorescent pseudomonads [33]. PHAs are also 
produced by gram positive, negative and phototrophic bacteria as well as archaea [34-39]. 

 

 

  

Fig. 1: PHAs metabolic different pathways (modified after Amara [2, 19]). 

2.   PHAs PRODUCTION 

Examination of the enzymes leading to the formation of PHB has shown that the 
regulation of PHB synthesis is controlled by acetyl-Co-enzymes A (CoA) acyltransferase [26, 
40, 41]. Under balanced growth conditions, acetyl-CoA is fed into the tricarboxylic acid cycle 
and the resultant CoA inhibits acety-CoA acyltransferase and PHB synthesis. Under nutrient 
limitation (e.g., oxygen limitation) and carbon excess, NADH oxidase activity decrease, 
NADH increase and inhibits citrate synthase and isocitrate dehydrogenase, and acety-CoA 
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acyltransferase by CoA is overcome. The ensuing condensation reaction forms acetoacetyl-
CoA and initiates PHB synthesis [26, 40]. The high NADH/NAD ratio caused oxygen 
limitation rapidly readjusts as PHB synthesis starts, and PHB assumes the role of an 
alternative electron acceptor [40]. The polymer is normally accumulated in response to the 
limitation of an essential nutrient and much of the past work has concerned the control of the 
synthesis of PHB under in-balanced growth condition [26, 41]. PHB is the most broadly 
studied PHAs. The PHB biosynthesis pathway consists of three distinct enzymatic reactions, 
as depicted in Fig. 1. The regulation of PHB synthesis is controlled by acetyl-coenzymes A 
(CoA) acyltransferase [40, 42]. The first reaction comprises the condensation of two acetyl 
coenzyme A (acetyl-CoA) molecules into acetoacetyl-CoA by β-ketoacyl-CoA thiolase (β-
ketothiolase) (encoded by phaA). The second reaction is the reduction of acetoactyl-CoA to 
(R)-3-hydroxybutyryl-CoA by an NADPH-dependent acetoacetyl-CoA dehydrogenase 
(encoded by phaB). Finally, the (R)–3-hydroxybutyryl-CoA monomers are polymerized to 
P(3HB) by P(3HB) synthase (encoded by phaC). Synthesis of PHB is believed to be 
controlled by the first enzyme, 3-ketothiolase that is inhibited by coenzyme A (CoASH). 
Synthesis of PHAs other than P(3HB) which are not related to their growth substrates occurs 
relatively rare in nature [42]. Antonio et al. and Amara et al. produced 3HB-3HHX from 
cultivation of recombinant E. coli on fatty acid using PhaC class I and acrylic acid [44, 45]. 4-
hydroxybutyrate (4HB) was produced in recombinant E. coli using succinyl-CoA from the 
citric acid cycle, which is converted to 4-hydroxybutyryl-CoA, a precursor for PHA 
biosynthesis [46].  

Sixty years after the discovery of PHB, De Smet described the accumulation of the 
PHAMCL in Pseudomonas oleovorans grown on octane as sole carbon source [32]. PHA from 
pseudomonads rRNA homology group I were directly related to the structure of the alkane, 
alkene or fatty acid they used as carbon source [33, 47]. These substrates called ‘related 
substrates’. When the carbon source consists of fatty acids with 6 to 12 carbon atoms, 
monomers of the PHA are of the same length as the carbon source or are shortened by 2, 4 or 
6 carbon atoms. Pseudomonads are able to produce PHAMCL from sugar. These substrates, 
which do not resemble the monomers of the accumulated polymer, are named “unrelated 
substrates’’. Pseudomonads of the rRNA homology group I like Psudomonas putida KT2442, 
accumulate PHA that consists primarily of C10 and C8 monomers, when grown on sugars or 
gluconate [48, 49]. Experimental evidence suggests that these monomers are derived from 
intermediates of fatty acid biosynthesis and that the composition of the PHAs is most likely a 
reflection of the pool of fatty acid biosynthetic intermediates. Reush describes native low 
molecular mass PHB in yeast and many other eukaryotic cells [50].  

Expression of the C. necator PHB biosynthetic pathway was successfully achieved in the 
yeast Saccharomyces cerevisiae by Leaf et al. [51]. He reported that the expression of PHB 
synthase in the yeast cytoplasm is sufficient for PHB accumulation and that wild type yeast 
synthesis D-3HB-CoA could raise from intermediates in fatty acid synthesis or through β-
oxidation [51]. Yeast cells can be used as models to gain information about PHAs synthesis in 
eukaryotes [52]. It is confirmed that three thiolases exist in S. cerevisiae functioning in 
mitochdria, cytoplasm and peroxisomes [53, 54]. Safake et al. in their study succeeded to 
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isolate PHB producing wild type yeast strain from Kombucha tea and reported that the 
amount of PHB is less than that from prokaryotic and the PHB amount depend upon the type 
of culture and species [55]. Simple strategy for biosynthesis of polyhydroxyalkanotes in wild 
type yeasts has been described [56]. Synthesis of PHASCL was established in the peroxisome 
of a wild-type yeast strain by targeting the C. necator SCL polymerase to the peroxisome 
[57]. Other strategies for using yeasts other than S. cerevisiae have been reported [58, 59]. 
Plants are able to produce PHAs directly from CO2 and solar energy after being transgenic 
[50]. Steinbüchel and Füchtenbusch reported that the costs of the production of PHAs in 
transgenic plants could be of the same order of magnitude of their substrate costs (eg. sucrose, 
lipids and starch), if all the prerequisites are met [60]. PHB has been produced in transgenic 
Arabidopsis thaliana [61], Brassica napus [62], Gossypium hirsutum [63], Nicotiana tabacum 
[64] and Zea mays [52]. The copolyester PHB-co-PHV [65] and PHAs consisting of 3HAMCL 
[66] have been produced too. Recently Petrasovits et al. succeeded to produce of 
polyhydroxybutyrate in sugarcane [67]. 

3.   CLASSES OF PHA SYNTHASES  

PHA synthases were classified into four classes based on their substrate specificity and 
subunit composition. The multiple alignment of the primary structures of these PHA 
synthases show an overall identity with few conserved amino acids residues (Fig. 2). 
However, each synthase from the same class is clustered in one group as in Fig. 3. General 
model for each class can be performed as illustrated in Fig. 4. Only class IV is clustered with 
class III while class III is so close to it. Class I PHA synthases, with C. necator synthase as 
prototype, are composed of one single type of polypeptide chain and use mainly (R)-3-
hydroxybutyryl-CoA, (R)-3-hydroxyvaleryl-CoA and other short-carbon chain length 
hydroxyalkanoic acid CoA thioesters including 3-mercaptoalkanoic acid CoA thioesters as 
substrates [68, 69]. Class III PHA synthases, as represented by the Allochromatium vinosum 
enzyme, are composed of two different subunits each of about 40 kDa [70]. The substrate 
specificity of class III is similar to that of class I synthases, although some MCL 3-
hydroxyfatty acids are also incorporated [71]. Class II enzymes as well as class I PHA 
synthases are composed of only one type of subunit. Class I and II were purified, and there in 

vitro activities have been determined [72-74]. Class II mainly found in pseudomonades such 
as P. aeruginosa. One major difference between class II and both of class I and III, PHA 
synthases is the substrate specificity.  

Class II PHA synthases incorporate preferentially 3-hydroxyfatty acids of MCL (C6-
C14) into PHAs, and the resulting product is a latex-like polymer [74-76]. These substrates 
are mainly derived from intermediates of fatty acid β-oxidation or from fatty acid de novo 
biosynthesis provided fatty acids or simple non-related carbon sources [78, 80-83]. Class II 
PHA synthases were purified and in vitro activity was determined [83, 84]. A threading model 
of the A. vinosum PHA synthase was generated [85]. Accordingly, a threading model of the 
class II PHA synthase from P. aeruginosa was developed with the aid of the SAMT98 
algorithm and based on the homology to the structure of the lipase from B. cepacia [86]. 
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Amara and Rhem reported that H479 is not the general base catalyst that activates the 
nucleophilic C296 for covalent catalysis and that H452 plays a major role [87]. In the multiple 
alignment of PHA synthases only one cysteine residue (Cys-319) is highly conserved. 
Therefore, scientists have been searching for several years for the second thiol group. The 
essential role of Cys-319 of the C. necator PHA synthase (Class I) for the reaction mechanism 
was obtained from site specific mutagenesis [72]. The weakly conserved Cys-459 was 
supposed to be involved in the catalytic cycle, providing the second thiol group. However, site 
specific mutagenesis [72] clearly indicated that this amino acid residue is not essential for 
catalytic activity. In position 260 of the PHA synthase from C. necator a conserved serine 
residue was observed. Ser-260 was proposed as target for covalent posttranslational 
modification by 4-phosphopantetheine, which should provide the second thiol group similar 
to fatty acid synthase. In order to investigate posttranslational modification by 4-
phosphopantetheine, radiolabeling experiments were conducted, expressing PHA synthase 
gene from C. necator in E. coli SJ16 (panD). Since E. coli SJ16 is β-alanine auxotroph, 
specific radiolabeling of 4-phosphopantetheinylated proteins occurs, when cells were fed with 
2-14C-β-alanine. These experiments indicated that the PHA synthase was labeled by 4-
phosphopantetheine [72]. However, detailed analysis revealed that only a small portion of 
total PHA synthase was labeled [88]. Functional low level expression of PHA synthases from 
C. necator and P. aeruginosa, respectively, in E. coli SJ16 and also in β-alanine auxotrophic 
mutants of C. necator with subsequent analysis of 4-phosphopantetheinylated proteins gave 
no evidence for covalent posttranslational modification by 4-phosphopantetheine [89]. 
Exchange of amino acid residue Ser-260 against alanine and threonine, respectively, 
abolished in vivo and in vitro activity of PHA synthase from C. necator [89]. The model of 
active PHA synthase involves two subunits forming a homodimer considering class I and II 
PHA synthases, and forming a heterodimer (PhaC and PhaE) in case of class III PHA 
synthases. Accordingly, class I and II PHA synthases possess two thiol groups provided by 
conserved Cys-319, and in class III PHA synthases the second thiol group might be provided 
by conserved Cys-130 of subunit PhaE from A. vinosum [88]. A novel PHA synthase (class 
V) from Bacillus megaterium required PhaCBm and PhaRBm for activity in vivo and in vitro 
was reported [90]. PhaCBm showed greatest similarity to the PhaCs of class III in both size and 
sequence (Figure 3, 4). Unlike those in class III, the 40 kDa PhaE was not required, and 
furthermore, the 22 kDa PhaRBm had no homology to PhaE. 

4.   PHAs BIODEGRADATION 

Lusty and Doudoroff reported the presence of depolymerase activities in Pseudomonas 

lemoignei ans was able to degrade PHB [24]. While depolymerases have been studied for 
about 45 years, the first structural gene of a PHA depolymerase (Alcaliginus faecalis, phaZAf) 
was cloned and sequenced only in 1989 by Saito et al [91]. Depolymerases are highly specific 
for the polymers consisting of monomers in the (R) configuration [92]. PHAs depolymerase 
are carboxyesterases (EC 3.1.1) and hydrolyze the water insoluble polymer to water-soluble 
monomers and /or oligomers and lastly to water and carbon dioxide or methane. Early PHB 
degrading bacteria were isolated by selection for microorganisms able to utilize PHB as the 
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sole source of carbon and energy [1, 2]. PHAs degrading bacteria differ from each other 
depending on the type of PHAs they degrade, however some bacteria revealed a rather broad 
polyester specificity and are able to utilize a wide range of PHAs [93, 94]. Three intracellular 
PHA depolymerases (PhaZ1, PhaZ2 and PhaZ3) and a 3HB-oligomer hydrolase (previously 
designated PhaZ2), which hydrolyse PHAs and the cleavage products produced by PhaZs, 
were cloned and characterized in C. necator [94-97]. Molds also could degrade PHAs and 
their depolymerases have been characterized [98, 99]. PHAs depolymerases show a similar 
characteristic, they are stable at a range of pH, temperature, relatively small Mr (< 70 KDa), 
they are inhibited by reducing agent, e.g. dithioerythritol (DTT), which indicates the presence 
of essential disulfide bonds, and by serine hydrolase disulfide bonds, and serine hydrolase 
inhibitors such as diisopropyl-fluorylphosphate (DFP) or acylsulfonyl derivatives [99].  
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                                        280         *       300         *       320         *       340         *       360         *       380         *       400           

I-Pseudomonas-putida           : CINKFYILDLQPQSSLVAHALDAGHQVFILSWRNADQSIAHKTWDDYVQEGVLDPIEAVKAITGREQINTLGFCIGGTILATALSVAAARGEHP-AASMTLLTAMLDFSD---------TGVLDVFVDEAHVQMR : 384 
I-Burkholderia-ambifaria       : CINKFYILDLQPENSLVAHALSSGHQVFLVSWRNADASVAHKTWDDYMNEGLLAAIDAVQQVSGREQINTLGFCVGGTMLATALAVLAARGEHP-AASMTLLTAMLDFTD---------TGILDVFVDEAHVQMR : 376 
I-Ralstonia-eutropha           : CINKFYILDLQPEGSLVRYAVEQGHTVFLVSWRNPDASMAGCTWDDYIENAAIRAIEVVRDISGQDKINTLGFCVGGTIISTALAVLAARGEHP-VASLTLLTTLLDFTD---------TGILDVFVDEPHVQLR : 375 

I-Acidovorax-delafieldii       : CINKFYILDLQPENSLIRYAVEQGHRTFVVSWRNPDESLAHKTWDDYVEDGAMAAIDVVQNITGAEQINALGFCVGGTILCNALAVLAARGDEP-VASATFLTTLIDFTD---------TGILDVFIDEASVKFR : 349 
I-Alcaligenes-sp               : CINKFYILDLQPENSLIPYAVEQGHRTFEVSWRNPDDSLAHKTWDDYVEDGAMAAIDVVQNITGAEQINALGFCMGGTILSNALAVLAARGDEP-VASATFLTTLIDFSD---------TGILDVFIDEAFVKFR : 349 
I-Verminephrobacter-eiseniae   : CINKFYILDLQPGNSFIRYAVEQGHRSFVVSWRNPDDSLAHKTWDDYVADGAITAIDLVQRITGAGQINALGFCVGGTILSNALAVLAARGQEP-VASATFLTTLIDFSD---------TGILDVFIDEAFVKFR : 349 

I-Rhodoferax-ferrireducens     : CINKFYILDLQPDNSLIRYAVAQGHRTFVVSWRNPDASLAHKTWDDYIDDAVIKAITVTQDITGAKSINALGFCVGGTMLGTALAVLAARGEKP-VASATFLTSLLDFSD---------TGILDVFIDEAFVKYR : 358 
I-Polaromonas-naphthalenivoran : CINKFYILDLQPENSLIRYATAQGHRTFVMSWRNPDQSMSAKTWDDYIENAPIKAIEVVREITGADTINALGFCVGGTILGTALSVLAARGEKP-VESVTLLTSLLDFSD---------TGILDIFIDETSVKYR : 363 
I-Methylibium-petroleiphilum1  : CINKFYIMDLQPENSLVRYAVSQGHRVFMLSWVNADESLGDKTWDDYIEHAVIRAIREVQAISKQEQINTLGFCIGGTLLATALAVLAARGEHP-SASLTMLTSFLDFSD---------TGVLDLFVDEQMVSMR : 346 

I-Alcaligenes-latus            : CINKYYILDLQPDNSIIRYTIAQGHRVFVVSWRNPDASTADKTWDDYVEHGVIRAIRAIQQITGQDKLNALGFCVGGTILSTALAVLAARGEQP-VASLTLLTTLLDFSN---------TGVLDLFIDETGVRLR : 346 
I-Herminiimonas-arsenicoxydans : CINKYYILDLQPHNSFVRYAVEQGHTVFLISWRNADASIAHATWDDYVESGVLQAISVAQAISVQEKINVLGFCVGGTMLANALALACARGEKP-AASLTLLTTFLDFSD---------TGILDVYIDEAKIKET : 318 
I-Janthinobacterium-sp         : CINKYYILDLQAHNSFVRYAVEQGHTVFLISWRNADASIAHATWNDYIEDGVLQAMHVAKAITRQEKINVLGFCVGGTMLTNALALACARGEEP-AASLTLLTTFLDFSD---------TGILDVYIDEGKIKEI : 342 

I-Nakamurella-multipartita     : CINKYYILDLQPANSFVGHAVAQGHTVFLVSWRNAGPSQEKLTWDDYLQQGVFAAIEAALKISKADKLNALGFCIGGTLLASALSVLAAKGEHP-AASLTLLTTLLDFSD---------TGEIGLLVTKEGVAAR : 356 
I-Lutiella-nitroferrum         : CINKYYLMDLQPDNSMVRHFVAQGYRVFLISWRSATPEMKQFTWETYIEKGVIAAAEAVKKVTRQPSMNALGFCIGGVILTTALCVMQAKGMNW-IDSATFMTSLLDHTD---------PGEIKVFIDENVVRSR : 364 
II-Pseudomonas-fluorescens5    : QINKFYVFDLSPEKSLARFCLRNGQQTFIVSWRNPTKAQREWGLSTYIEA-LKEAVDVVTAITGSKDVNMLGACSGGITCTALLGHYAALGEKK-VNALTLLVSVLDTTL---------DTQVALFVDEQTLEAA : 347 

II-Comamonas-testosteroni      : QINKFYVFDLSPDKSLARFCLRNGQQTFIVSWRNPTKAQREWGLSTYIEA-LKEAVDVVTAITGSQDINMLGACSGGITCTALLGHYAALGEKK-VNALTLLVSVLDTTL---------DTQVALFVDEQTLEAA : 347 
II-Pseudomonas-chlororaphis    : QINKFYVFDLSPDKSLARFCLRNGVQTFIVSWRNPTKAQREWGLSTYIEA-LKEAVDVVTAITGSKDVNMLGACSGGITCTALLGHYAALGEKK-VNALTLLVSVLDTTL---------DTQVALFVDEQTLEAA : 347 
II-Pseudomonas-sp              : QINKFYVFDLSPDKSLARFCLSNNQQTFIVSWRNPTKAQREWGLSTYIDA-LKEAVDVVSAITGSKDINMLGACSGGITCTALLGHYAALGEKK-VNALTLLVSVLDTTL---------DSQVALFVDEKTLEAA : 347 

II-Pseudomonas-corrugata       : QINKFYVFDLSPDKSLARFCLRSNVQTFIVSWRNPTKEQREWGLSTYIEA-LKEAVDVVTAITGSKDVNMLGACSGGITCTALLGHYAALGEKK-VNALTLLVSVLDTTL---------DTDVALFVDEQTLETA : 347 
II-Pseudomonas-mediterranea    : QINKFYVFDLSPDKSLARFCLRSNVQTFIISWRNPTKEQREWGLSTYIEA-LKEAVDVVTAITGSKDVNMLGACSGGITCTALLGHYAALGEKK-VNALTLLVSVLDTTL---------DTDVALFVDEQTLEAA : 347 
II-Pseudomonas-syringae        : QINKFYVFDLSPEKSLARFCLRSNVQTFIISWRNPTKAQREWGLSTYIEA-LKEAVDVVLAITGSKDLNMLGACSGGITCTALLGHYAALGEKK-VNAMTLLVSVLDTTL---------DTEVALFVDEQTLETA : 347 

II-Pseudomonas-putida          : QINKFYVFDLSPEKSLARFCLRSHQQTFIISWRNPTKAQREWGLSTYIDA-LKEAVDAVLAITGSKDLNMLGACSGGITCTALVGHYAALGEKK-VNALTLLVSVLDTTL---------DTQVALFVDEQTLESA : 347 
II-Aeromonas-hydrophila        : QINKFYVFDLSPEKSLARYCLRSQQQTFIISWRNPTKAQREWGLSTYIDA-LKEAVDAVLAITGSKDLNMLGACSGGITCTALVGHYAAIGENK-VNALTLLVSVLDTTM---------DNQVALFVDEQTLEAA : 347 
II-Pseudomonas-entomophila     : QINKFYVFDLSPEKSLARFCLRSQQQTFIVSWRNPTKAQREWGLSTYIDA-LKEAVDAVLAITGSKDLNMLGACSGGITCTALVGHYAALGEKK-VNALTLLVSVLDTTV---------DTQVALFVDEQTLEAA : 347 

II-Burkholderia-caryophylli    : QINKFYVFDLSPEKSLARFCLRSNVQTFIVSWRNPTKAQREWGLSTYIDA-LKEAVDAVLAITGCKDLNMLGACSGGITCTALLGHYAALGENK-VNALTLLVSVLDTTL---------DNQVALFVDEQTLEAA : 347 
II-Pseudomonas-mendocina       : QINKFYVFDLSPDKSLARFLLRSQVQTFVVSWRNPTKAQREWGLSTYIEA-LKEAIDVICAITGSKDVNMLGACSGGLTTASLLGHYAALGQPK-VNALTLLVSVLDTQL---------DTQVALFADEKTLEAA : 347 
II-Pseudomonas-stutzeri        : QINKFYVFDLSPDKSLARFLLRSQVQTFVVSWRNPTKAQREWGLSTYIAA-LKEAIEVICAITGSKDVNMLGACSGGLTTASLLGHYAALGEQK-VHALTLLVSVLDTQL---------DTQVALFADEKTLEAA : 347 

II-Pseudomonas-fluorescens     : QINKYYIFDLSPTNSFVQYALKNGLQVFMVSWRNPDVRHREWGLSTYVEA-AEEALNVTRAITGSREVNLVGACAGGLTIAALQGHLQAKRQLRRVSSATYMVSLLDSQM---------DSPATLFADEKTLEAA : 348 
III-Bacillus-weihenstephanensi : LINKPYIMDLTPGNSLVEYLVDRGFDVYMLDWGTFGLEDSHLKFDDFVFDYIAKAVKKVMRTAKSDEISLLGYCMGGTLTSIYAALHPDMPIRN----LIFMTSPFDFS---------ETGLYGPLLDEKYFNLD : 199 
III-Bacillus-mycoides          : LINKPYIMDLTPGNSLVEYLVDRGFDVYMLDWGTFGLEDSHLKFDDFVFDYIAKAVKKVMRTAKSDEISLLGYCMGGTLTSIYAALHPDMPIRN----LIFMTSPFDFS---------ETGLYGPLLDEKYFNLD : 199 

III-Bacillus-thuringiensis     : LINKPYIMDLTPGNSLVEYLVDRGFDVYMLDWGTFGLEDSHLKFDDFVFDYIAKAVKKVMRTAKSDEISLLGYCMGGTLTSIYAALHPHMPIRN----LIFMTSPFDFS---------ETGLYGPLLDEKYFNLD : 215 
III-Bacillus-megaterium        : LINKPYILDLTPGNSLVEYLLNRGFDVYLLDWGTPGLEDSNMKLDDYIVDYIPKAAKKVLRTSKSPDLSVLGYCMGGTMTSIFAALNEDLPIKN----LIFMTSPFDFS---------DTGLYGAFLDDRYFNLD : 200 
IV-Bacillus-megaterium         : LINKPYILDLTPGNSLVEYLLNRGFDVYLLDWGTPGLEDSNMKLDDYIVDYIPKAAKKVLRTSKSPDLSVLGYCMGGTMTSIFAALNEDLPIKN----LIFMTSPFDFS---------DTGLYGAFLDDRYFNLD : 200 

III-Rubrobacter-xylanophilus   : LINRPYVLDLIPGNSFIEYLVGEGFDVYMLDWGIPGDEDAEMSFEHYVLDYLPRAARKVMRTSGTEDYTLFGYCMGGTMSAMYAALFP-ERMRN----LVLLTAPIAFPK------E-HLGLYALFTDSKYLDPG : 196 
III-Syntrophomonas-wolfei      : LINRPYVLDLTPGSSLVEYLVNEGFDVYLLDWGEFEWEDRDITYADLVYDYIATAARKVARSAGSKEISIIGYCMGGTMSTLYAALFDRPVLKN----LVYLAAPIDFN---------RAGTYDVWLKAPGYDPD : 201 
III-Roseiflexus-castenholzii   : LINKPYIFDLRPGNSFVEYMVQQGYDVYLVDWGAPGPEDAHLTFDDYALEYLPRAVRRMQMHSGQRDFSMLGWCIGATLAAIYAAMRPDDGLRN----LILLTAPIDFSN------KGAMGPFPKWLKEEYFNLD : 210 

III-subunit-Thioalkalivibrio   : LVNRPYMTDLQENRSTVRGLLEAGLDVYLIDWGYPDRADRFLGLDDYINGYIDRCVDVIRRRHKLDAINILGICQGGTFSLCYSALHP-EKVKN----LVTMVTPVDFHT----PDNMLSRW------VRHVDVD : 194 
III-Allochromatium-vinosum     : LVNRPYMTDIQEDRSTIKGLLATGQDVYLIDWGYPDQADRALTLDDYINGYIDRCVDYLREAHGVDKVNLLGICQGGAFSLMYSALHP-DKVRN----LVTMVTPVDFKT----PDNLLSAW------VQNVDID : 195 
III-Synechococcus-sp.          : LVNRPFMVDLQEDRSLVANLLKLGLDIYLIDWGYPTRADRWLTLDDYINGYINNCVDFIRKKHDLDKINLLGICQGGTFSLCYSAIYP-EKVKN----LIVMVTPVDFQI----SDSLLYMRGGCTLGAEALDID : 203 

III-Cyanothece-sp              : LVNRPFMVDLQEGRSLVANLLKLGLDVYLIDWGYPTRADRWLTLDDYINGYINNCVDFIRKQHNLDKINLLGICQGGTFSVCYSAIYP-EKVKN----LIVMVAPIDFRM----PGTLLNMRGGCTIGAEALDVD : 203 
III-Microcystis-aeruginosa     : LVNRPYMVDLQEGRSLVANLLKLGLDIYLIDWGYPTRSDRWLTLDDYINGYVDNCVDFIRQSHHLDKINLLGICQGGTFSLCYSSLYP-DKIKN----LVTMVTPVDFYQ----TETLLNMRGGCSLGAEALDID : 203 
III-Synechocystis-sp.          : LVNRPYMVDLQEGRSLVANLLKLGLDVYLIDWGYPSRGDRWLTLEDYLSGYLNNCVDIICQRSQQEKITLLGVCQGGTFSLCYASLFP-DKVKN----LVVMVAPVDFEQ----PGTLLNARGGCTLGAEAVDID : 216 

III-Xanthomonas-campestris     : LVNRPYMVDLQADRSLVKGLLSHGQDVYVLDWGYPDRSERYLTLEDYLLRYIDGAVDHLRAQSGLEAVDVLGICQGGTFSLCYAALQR-DKVRN----LITMVTPVDFHT----PDNMLSNW------ARMVDVD : 194 
III-Rhizobium-leguminosarum    : LVGRYTIADLQSDRSLVRSLLAEGTDLWLIDWGKPGRTERWLTMDDYVDDYIHEAVHRICRETGHDKVTLLGICEGGVFTTCYAALHP-EKVKN----LVLTITPIDFHADIDDPAAIQGLLNIWMRSLAPEDID : 206 
III-Nitrosopumilus-maritimus   : LINRFHILDIQPEKSWVRNLLQQGFDVYMLDWGTPTSMDKYLDFDDYVNGYLDAYVEYIKNESSTEKISLQGYCTGATIATTYASLHP-ESVKN----YIATAPVIDGWR----DTTVISNL------AKHMDVD : 193 

III-Cenarchaeum-symbiosum      : LINRFHILDIHPRRSWVRNLLSQGFDVYMVDWGTPTRMDRYLDFDDYVNGYLDNCIQFAKRESGAPSVSLQGYCTGGTLAAVYAALHP-GSVRN----LVATAPVIDGWK----DTTVVSNI------AKHVDVD : 172 
III-Ferroglobus-placidus       : LINKPYILDLHPERSVVRKFLDAGFDVYLIKWGDATIADQ-FGLSGYIDIFMYDFIEYLKDYAGVEKISILGYCMGGGLSAIYTSLYP-ENVKN----LLLLAATLYFDK--------EVGGLVTLSDKRFFDPE : 202 
                                  7 4    D     S                W                                       G C G                                                  

 

Fig. 2: Part of the multiple amino acids alignment of different PhaC synthases, shaded lines show different conserved regions.
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Fig. 3: Phylogenic tree for Class I, II, III and IV PhaC synthases. 

 

 

Fig. 4: PhaC synthase Class I model (left) and its conserved amino acids (right). 

Depolymerases have three strictly conserved amino acids: serine, aspartate and 
histidine. The serine is part of the lipase-box pentapeptide Gly-Xaa1-Ser-Xaa2-Gly [100]. 
The oxygen atom of the serine side chain is the nucleophile that attacks the ester bond 
[93]. Many strategies were describing using depolymerases in the biotechnological 
products using efficient microbial strains [19, 101, 102]. Ihssen et al. show a study for 
using extracellular PHAMCL depolymerase for targeted binding of proteins to artificial 
Poly[(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate)] granules [103].  

5.   PROTEIN ENGINEERING OF PHAC SYNTHASE 

Tha PhaC synthases show a great homology (as in Fig. 2) to each other and the 
conserved amino acids have been highlighted (Fig. 2). Aiming to change the PhaC 
substrate specificity, improve their activities’, determine their active sites’ and discover 
new futures, different tools of genetic and protein engineering tools have been 
implemented to the genes encoded different PhaC synthases [2]. Aiming to enhance the 
PhaC synthase activity Amara et al. establish a protocol for in vivo random mutagenesis of 
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the phaCAp (Aeromonac punctata) [44, 45]. Four mutants exhibited enhanced in vivo and 
in vitro PHA synthase activity. The in vitro activities of the overproducing mutants ranged 
from 1.1 to 5-fold of the wild type activity, whereas the amounts of accumulated PHA 
ranged from 107%-126% to that of the wild type [44, 45]. A list of mutants and their site 
in the phaCCn have been described in details by Rehm et al. and their related effect on 
PhaCCn structure/activity have been discussed [86]. An attractive observation (in the work 
done by Amara et al.  was the increase in weight average molecular mass of the PHA 
synthesized by the modified PHA synthase, which suggest a higher processivity of the 
enzymes with less frequently occurring chain transfer reactions [44, 45]. Slight preference 
of C4 over C6 was observed in the mutants as compared to the wild-type which keep the 
door open for the possibility of changing the substrate specificity [44, 45].  

Taguchi et al. have been used another strategy based on in vitro mutagenesis for 
phaCCn using PCR [105, 106]. Seven site directed mutations have been performed in 
PhaCPa where five conserved residues were replaced by site directed mutagenesis in order 
to identify the function of these amino acids in catalysis. The substitution of W398 by 
alanine abolished PHAMCL synthase activity indicating that W398 is essential for enzyme 
activity [87]. The substitution of H479 by glutamine did not affect the PHAMCL activity, 
which indicates that H479 is not the general base catalyst that activates the nucleophilic 
C296 for covalent catalysis. The substitution of C296 with serine, which is the general 
base catalyst in lipases, did not abolish PHAMCL synthase activity while still exhibiting 
20% activity in comparison to the wild type. Substitution of C296 with alanine abolished 
PHAMCL synthase activity which is a strong evidence that serine may be able to replace 
cysteine as catalytic nucleophile for changing substrate specificity of PHA synthase. For 
further investigation, another site directed mutagenesis has been done in another 
conserved histidine (H452), which was replaced with glutamine. The H452Q mutant was 
highly impaired in PHAMCL activity, which indicates that H452 plays a major role as a 
general base catalyst instead of H479 [87]. Hu et al. (2007) reported an improve for 
fractions by using site directed mutagenesis. The recombinant E. coli harboring plasmid 
pETJ1 (L65A), pETJ2 (L65V) or plasmid pETJ3 (V130A) synthesized the enhanced 
3HHx fractions of PHBHHx from dodecanoate, indicating that Leu-65 and Val-130 of 
PhaJ(Ah) play an important role in determining the acyl chain length substrate specificity. 
The mutated PhaJ (Ah) (L65A, L65V, or V130A) provided higher 3HHx precursors for 
PHA synthase, resulting in the enhanced 3HHx fractions of PHB-co-HHx [107]. Fusion 
proteins composed of the N terminal part of the PHA synthase from P. aeruginosa and the 
C terminal part of the PHA synthase from C. necator indicated that fusion points located 

in the �/β-hydrolase fold region are not tolerated. Furthermore, these fusion points were 
located in predicted and structurally conserved α-helical regions [104].  

Matsumoto et al. reported a chimeric enzyme composed of polyhydroxyalkanoate 
(PHA) synthases from C. necator and Aeromonas caviae enhances production of PHAs in 
recombinant E. coli. [107]. An P. putida mutant was isolated which is able to grow 
normally on any carbon source tested and which synthesized PHAMCL from fatty acids but 
not from gluconate or glucose [78]. Biochemical studies on the affected enzyme revealed 
that this enzyme catalyses the transfer of (R)-3-hydroxydecanoyl moieties from the acyl 
carrier protein: coenzyme A transferase. The respective gene, which complemented the 
mutant, was referred to as phaG [78]. which has been also identified and cloned from P. 

aeruginosa [81] and P. oleovorans [82]. The PhaG protein overproduced in E. coli as a C-
terminal His6-tagged fusion protein. The His6x-tagged PhaG was purified to homogeneity 
by refolding of PhaG obtained from inclusion bodies, and a new enzyme assay was 
established. Gel filtration chromatography analysis in combination with light scattering 
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analysis indicated substrate-induced dimerization of the transacylase. In the presence of 
the substrate (R)-3-hydroxyacyl-CoA the transacylase appeared in apparent molecular 
weights of 45.4, 83.7 and 102 kDa, which indicated substrate-induced conformational 
changes and oligomerization of the transacylase [108]. A threading model of PhaG was 
developed based on the homology to an epoxide hydrolase (1cqz). In addition, the 
alignment with the α/β-hydrolase fold region indicated that PhaG belongs to α/β-hydrolase 
superfamily [108]. Accordingly, CD analysis suggested a secondary structure composition 
of 29% α-helix, 22% β-sheet, 18% β-turn and 31% random coil that support the PhaG 
protein model. Using hanging drop methods Amara, (2003) obtain crystals from the 
purified PhaG [20]. PhaG is responsible for diverting intermediates of fatty acids to PhaC 
synthase to produce new polymers of PHASCL/MCL. 
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