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ABSTRACT:   Corrosion under insulation (CUI) is one of the challenging problems in 

pipelines used in the gas and oil industry as it is hidden and difficult to detect but can 

cause catastrophic accidents. Pulsed eddy current (PEC) techniques have been identified 

to be an effective non-destructive testing (NDT) method for both detecting and 

quantifying CUI. The PEC signal’s decay properties are generally used in the detection 

and quantification of CUI. Unfortunately, the well-known inhomogeneity of the pipe 

material’s properties and the presence of both cladding and insulation lead to signal 

variation that reduces the effectiveness of the measurement. Current PEC techniques 

typically use signal averaging in order to improve the signal-to-noise ratio (SNR), with 

the drawback of significantly-increasing inspection time. In this study, the use of 

Gaussian process regression (GPR) for predicting the thickness of mild carbon steel 

plates has been proposed and investigated with no signal averaging used. With mean 

absolute errors (MAE) of 0.21 mm, results show that the use of GPR provides more 

accurate predictions compared to the use of the decay coefficient, whose averaged MAE 

is 0.36 mm. This result suggests that the GPR-based method can potentially be used in 

PEC NDT applications that require fast scanning.  

ABSTRAK: Hakisan di bawah penebat CUI adalah salah satu masalah yang mencabar 

dalam saluran paip yang digunakan dalam industri gas dan minyak kerana tersembunyi 

dan sukar dikesan tetapi boleh menyebabkan bencana. Teknik Pulsed eddy current (PEC) 

telah dikenal pasti sebagai kaedah ujian bukan pemusnah yang berkesan (NDT) untuk 

mengesan dan mengukur CUI. Sifat kerosakan isyarat PEC umumnya digunakan dalam 

pengesanan dan pengukuran CUI. Malangnya, sifat tidak tepat yang terkenal dari sifat 

bahan paip dan kehadiran pelapisan dan penebat menyebabkan variasi isyarat yang 

mengurangkan keberkesanan pengukuran. Teknik PEC semasa biasanya menggunakan 

rata-rata isyarat untuk meningkatkan nisbah isyarat-ke-kebisingan (SNR), dengan 

kelemahan peningkatan masa pemeriksaan dengan ketara. Dalam kajian ini, penggunaan 

regresi proses Gauss (GPR) untuk meramalkan ketebalan plat keluli karbon ringan telah 

diusulkan dan diselidiki dan tidak ada rata-rata isyarat yang digunakan. Dengan ralat 

mutlak (MAE) 0,21 mm, hasil menunjukkan bahawa penggunaan GPR memberikan 

ramalan yang lebih tepat dibandingkan dengan penggunaan pekali peluruhan, yang rata-
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rata MAE adalah 0,36 mm. Hasil ini menunjukkan bahawa kaedah berasaskan GPR 

berpotensi digunakan dalam aplikasi PEC NDT yang memerlukan pengimbasan pantas. 

KEYWORDS: corrosion under insulation; pulsed eddy current; non-destructive testing; 

machine learning; fast scanning   

1. INTRODUCTION  

Industrial oil and gas infrastructures, including the transmission pipelines that are 

used in transportation and distribution, require regular inspection as stipulated by 

governmental safety regulations all around the world to prevent catastrophic accidents.  

Many of these structures are made of carbon steel materials and covered by insulation for 

their protection or maintaining the high temperature of the oil or gas flowing inside them. 

A thin cladding is usually placed outside the insulation to hold the insulation in place and 

to stop water from seeping into the insulation that may cause or accelerate the growth of 

corrosion on the outer surface of the pipe. Such structures, whose illustration can be seen 

in Fig. 1, will benefit from non-destructive inspection techniques that are able to penetrate 

through the insulation and cladding, and therefore, detect any presence of the corrosion 

under insulation (CUI). CUI is considered a crucial problem with these pipes [1,2]. The 

ability to detect and assess CUI in the pipes without the removal of the insulation is very 

beneficial [3]. Removal of the insulation takes time, which, in turn, would lengthen the 

downtime of the plant and would require new costly replacements of the insulation or 

coating. 
 

 

Fig. 1: Typical setting of insulated pipes with a probe sitting on its cladding. 

Pulsed eddy current (PEC) non-destructive testing (NDT) has been identified as one 

of the solutions with the most potential for non-contact evaluation of corrosion in carbon 

steel structures [4], which are either coated or otherwise. The low frequency components 

of the excitation field allow deep penetration into the ferromagnetic structure. For such 

structures, magnetic saturation has been proposed, although many have proposed the use 

of PEC without magnetically saturating the sample.  

There have been several different PEC signal features proposed by researchers [3]. 

The signal features also depend on the type of the sensing device, whether it is an 

inductive coil or a magnetic field sensor. Mostly, the features are related to the decay 

properties of the signals, especially the gradient of the later stage of the decay, thanks to 

its high correlation to the thickness of the tested structure and its insensitivity to the 

variation in the distance between the probe and the sample, which is known as the stand-

off or lift-off. There have been promising results reported, although most of these have 

been applied on signals obtained by using inductive coils. A technique based on the 

signal’s inverse time derivative |∇|−1 is shown to allow in-situ calibration and improved 

estimation compared to the τ0 feature, which is the time at which the induced current’s 
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diffusion phase ceases [1]. An accuracy of 0.67 mm has been achieved with averaging of 

16 signals. Time to peak as a feature was proposed and its performance was shown to be 

good on simulation data, while no experimental data were reported [4]. Other time domain 

features have also been discussed in other reports, such as [5-7]. The use of a magnetic 

sensor, instead of an inductive coil, offers benefit in terms of the spatial resolution. 

However, relatively less studies have been reported where a magnetic sensor was used. 

Cheng et al. used anisotropic magnet resistance (AMR) sensors and the feature used was 

the decay coefficient, which is the reciprocal of the decay rate of the magnetic field 

density in the logarithmic scale [8].  

PEC signals are known to be noisy. Some noise reduction techniques have been 

presented [9,10], and the testing gets even more challenging due to inhomogeneity in 

ferromagnetic materials [11]. The use of signal averaging is effective to some extent, 

however it increases the measurement time significantly, depending on the number of 

signals used. This will prevent fast scanning applications using the PEC. In this paper, 

machine learning is used to predict the thickness of the insulated ferromagnetic sample 

without applying signal averaging. Machine learning, including its latest development 

known as deep learning, has embraced countless applications in various sectors of 

industry. Non-destructive testing (NDT) is not an exception to this current trend, and eddy 

NDT current techniques have also seen the applications of machine learning, such as the 

works reported in [12,13]. In this study, the use of machine learning in processing PEC 

signals obtained without signal averaging is presented.   

2.   MODELLING OF PEC AND CUI 

An axisymmetric 2D model, as shown in Fig. 2,  was built using COMSOL 

Multiphysics which consists of a few layers, namely the carbon steel sample, the 

insulation, and the cladding. The inner and outer radii of the excitation coil were 100 mm 

and 110 mm respectively, while the height of coil was 6 mm. In this work, the model is 

used to verify the trends in the magnetic field density that will be sensed by the sensor 

when the lift-off and sample thickness are varied. It is not intended to find the actual 

magnitudes of the field. 
 

 

Fig. 2: 2D-axisymmetric finite element model of the PEC system on an insulated sample 

with a cladding. The model was developed on COMSOL software. 

The conductivity and relative permeability of the sample were set to 5 x 106 S/m and 

100, respectively. The thickness was varied from 9 mm to 12 mm with an increment of 1 
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mm. For the cladding, its thickness was 0.5 mm and two different sets of permeability and 

conductivity values were used to simulate stainless steel and aluminium materials.  

The model was run for both different sample thicknesses and different insulation 

thicknesses. The results were plotted in the graphs shown in Fig. 3 and they verify that the 

slope of the signals is affected by the sample thickness but not by the lift-off, as has been 

reported by other researchers.  

 

(a) 

 

(b) 

Fig. 3: Typical signals obtained by using the developed PEC models, (a) for different 

thicknesses and (b) for different lift-offs. 

3.   METHODOLOGY  

In this study, the thickness approximation techniques using the gradient coefficient 

and machine-learning-based regression techniques will be compared on PEC signals that 

have been obtained without any signal averaging.  

3.1  Experimental Setup 

A PEC system was built, consisting of a probe, a data acquisition, and a laptop 

running LabView. The probe consisted of an excitation coil and a Hall-effect device. A 

ferrite core was used for concentrating the magnetic flux and strengthening the Hall 

device’s output signal. Through the LabView code, the signal sampling was set at 100 

kS/s and the pulse width was 25 ms. The LabView code saved the acquired data to be 
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analysed. The inner and outer diameters of the coil were 100 mm and 110 mm, 

respectively. Its height was 6 mm and it had 200 turns. A MOSFET was used to switch the 

high excitation currents on and off with a pulse width of 25 ms driven to the excitation 

coil. Fig. 4 shows the block diagram of the PEC setup used in this work.  

 

 

Fig. 4: The block diagram of our PEC system. 

Corrosion or wall loss was simulated by thicknesses that were less than the thickness 

of the sound structure. Square plate samples with surface dimensions of 300 mm × 300 

mm were used and they had different thicknesses, which were 9.12, 10.02, 11.06, and 

12.08 mm. The stand-off was also varied at 3, 5, 8, 10, and 13 mm. Fifty signals were 

obtained for each combination of thickness and stand-off. Two different materials were 

used for the cladding, which were aluminium and stainless steel. The thickness of the 

cladding was 0.5 mm. 

3.2  Signal Processing (Data Pre-processing) 

The falling edge of the Hall effect signal and its decay properties were used to predict 

the thickness. In order to improve the signal-to-noise ratio (SNR), a median filter was 

applied to reduce the high-frequency noise. The logarithmic values of the signal were used 

to find the decay coefficient. Normalization to unity was employed to reduce the effects of 

the variation in the magnitude of the magnetic field that was induced by the excitation 

coil, which may be caused by the sample’s inhomogeneity and the change in the excitation 

coil’s temperature, among others. Fig. 5 shows typical signals that have been averaged in 

order to increase the clarity of the shape of the signals. For the purpose of determination of 

the decay coefficient, part of the signal that has been used is 10 ms ≤ t ≤ 35 ms.  

 

Fig. 5: Typical averaged signals for different sample thicknesses. 
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3.3  Machine-Learning-based Regression 

Based on preliminary observation, the Gaussian process regression (GPR) model 

consistently provided the best result among other regressions.  GPR is a non-parametric 

and non-linear kernel-based model, and it uses a Bayesian approach to model the 

uncertainty of the prediction. It has been widely used in various applications, thanks to its 

simplicity and its good performance when small datasets are available, among others. The 

kernel function that models the similarity between similar predictors was chosen to be the 

exponential kernel, which is defined by [14], 

 

(1) 

where σl is the characteristic length scale and r is the Euclidean distance between 

predictors xi and xj, and θ is the vector containing the parameters for the kernel. 

The decay of the magnetic field that is sensed by the Hall device is set as the predictor 

variables for the regression model.  

3.4  Model Validation and Testing 

Validation was performed on machine leaning models in order to test their 

performance after training, including the generalization of the model. Due to the limited 

quantity of data and to avoid overfitting the model, a cross validation technique known as 

k-fold was employed in this work. In this technique, the data were split into k groups and 

the model was trained and validated k times. In every iteration, one different group was 

excluded from the training and used only in the validation, therefore each and every group 

of data was used for validation. In this work, 5-fold was used meaning that the data was 

split into commonly used 5 groups. Seventy percent of the overall data that were chosen 

randomly were used for this training and validation exercise. The remaining 30% of the 

dataset were used to test and compare the model against the performance of the approach 

that uses the 1/gradient feature. 

The performances of both methods, namely decay coefficient and GPR, were 

evaluated and compared using the following metrics: root mean squared error (RMSE), R-

squared, mean squared error (MSE), and mean absolute error (MAE). All these metrics are 

already well known and widely used for evaluating performances of both measurement 

systems and machine learning models. 

4. RESULTS AND DISCUSSION 

Fig. 6 exhibits the plots of the predicted thickness generated using both methods with 

the experimental data obtained from all different lift-offs, sample thicknesses, and 

cladding materials. The error bars in the plots represent the standard deviation. The 

performance metrics are shown in Table 1.  

Table 1: Performance metrics of both methods 

Method Cladding RMSE 

(mm) 

R-squared MSE   

(mm) 

MAE        

(mm) 

Decay 

coefficient 

Stainless steel 0.4611 0.825 0.213 0.373 

Aluminium 0.420 0.856 0.177 0.346 

GPR 

Exponential 

Stainless steel 0.298 0.928 0.089 0.215 

Aluminium 0.266 0.942 0.071 0.198 
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    (a)                                                                  (b) 

Fig. 6: The averaged predicted thickness with error-bars representing the standard 

deviation of the measurement error, (a) aluminum cladding, (b) stainless steel cladding. 

Both the plots and the table demonstrate that the GPR exponential model 

outperformed the approach using the decay coefficient in terms of both the nominal error 

and the spread of errors. The averaged RMSE, R-squared, MSE and MAE of the GPR 

model are better by 36.0%, 11.2%, 59.0% and 42.6% respectively than those of predicted 

thicknesses using the decay coefficient. 

5. CONCLUSION 

In recent years, machine learning - a subset of artificial intelligence - has developed 

very rapidly and seen applications in various sectors, with deep learning being the latest 

development. Insulated industrial pipes develop corrosion or wall thinning that is hidden 

and challenging to be detected. This work proposed the use of machine learning for 

processing PEC signals, especially when the SNR was relatively high (as no signal 

averaging was used in order to improve the scanning speed), and therefore reducing the 

inspection time. The experimental data analysis shows that the GPR exponential model 

generated better results with both lower nominal errors and lower error variances, 

represented in the improvements in the RMSE, R-squared, MSE and MAE, by 36.0%, 

11.2%, 59.0%, and 42.6%, respectively. This suggests that the machine learning method 

can potentially be used in the applications where fast scanning is required. 
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