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ABSTRACT:   Nanocomposites were prepared with Al-6065-Si and multi walled carbon 

nanotubes of 1 wt.% as reinforcement through the stir-casting method. Fabricated 

nanocomposites were machined on a lathe machine using a tungsten carbide tool. The 

study investigated the multi-objective optimization of the turning operation. Cutting 

velocity, feed, and depth of cut were considered for providing minimum Surface 

Roughness of the workpiece. Also, the power consumed by the lathe machine with 

maximum metal removal rate was examined by surface response methodology. The design 

of experiments was developed based on rotational central composite design. Analysis of 

variance was executed to investigate the adequacy and the suitable fit of the developed 

mathematical models. Multiple regression models were used to represent the relationship 

between the input and the desired output variables. The analysis indicates that the feed is 

the most influential factor that effects the surface roughness of the workpiece. Cutting 

speed and the depth of cut are two other important factors that proportionally influence the 

power consumed by the lathe tool as compared to the feed rate.  

ABSTRAK: Komposit nano disediakan bersama Al-6065-Si dan karbon nanotiub 

berbilang dinding sebanyak 1 wt.% sebagai bahan penguat melalui kaedah kacauan-

tuangan. Komposit nano yang terhasil melalui mesin pelarik ini menggunakan alat 

tungsten karbida. Kajian ini merupakan pengoptimuman pelbagai objektif operasi 

pusingan. Kelajuan potongan, suapan dan kedalaman potongan diambil kira sebagai 

pemberian minimum pada kekasaran permukaan bahan kerja. Tenaga yang digunakan bagi 

mesin pelarik dengan kadar maksimum penyingkiran logam diteliti melalui kaedah tindak 

balas permukaan. Rekaan eksperimen yang dibangunkan ini adalah berdasarkan rekaan 

komposit pusingan tengah. Analisis varian telah dijalankan bagi mengkaji kecukupan dan 

penyesuaian lengkap bagi model matematik yang dibangunkan. Model regresi berganda 

digunakan bagi menunjukkan hubungan antara input dan pembolehubah output yang 

dikehendaki. Analisis menunjukkan pemberian suapan merupakan faktor mempengaruhi 

keberkesanan kekasaran permukaan bahan kerja. Kelajuan pemotongan dan kedalaman 

potongan adalah dua faktor penting lain yang mempengaruhi kadar langsung ke atas 

tenaga yang digunakan oleh mesin pelarik dibandingkan kadar pemberian suapan. 

KEYWORDS: MWCNT (multi-walled carbon nanotube); power consumption; machining; 

cutting force; central composite design; response surface methodology    
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1. INTRODUCTION  

Carbon-nanotubes reinforced with AMMC’s in the recent technological era are gaining 

high importance among various classes of composites. Researchers have made attempts to 

produce MMCs with CNT as reinforcement material. Core research on metals such as 

aluminum and aluminum alloy materials [1,2], due to their light weight, high strength 

composites, are sought for dynamic mechanical systems like aerospace industries, robotics 

and automobiles [3]. Materials with high stiffness, modulus, strength, low density, and high 

specific surface are associated in carbon nanotubes as an ideal reinforcement [4].  

The presence of hard MWCNT reinforcement and its abrasive nature affects the quality 

of the workpiece resulting in difficulty of machining and wear of the cutting tool [5]. The 

traditional machining process, if adopted in composite materials with appropriate tool design 

and the optimal operating conditions can resolve this difficulty. These raw materials are very 

expensive. In order to reduce their wastage during the final conversion of the composites 

into engineering products and to obtain the required geometrical parts, it becomes necessary 

to investigate and study the basic manufacturing and machinability of the material at the 

time of design of material and selection [6,7]. The machining of composites depends mainly 

on their various reinforcements and diverse matrix properties. The cutting tool will be 

alternatively in contact with the base metal and the reinforcing materials and hence the 

response obtained by the machining of composite materials can be completely different. 

Thus, the cutting tool’s material, geometry, and wear resistance play critical roles for the 

machining of composite materials. Correspondingly, the different machine operating 

parameters like the feed, cutting velocity, depth of cut, and other factors such as tool 

geometry, machining system stability, lubrication, and proper cutting tool selection, all play 

crucial roles [8]. Considering these many factors, it becomes very difficult to attain fine 

surface finish and high metal removal rate (MRR). The feed, cutting speed and the depth of 

cut are those parameters that can be controlled, and proper selection of these parameters 

yields proper surface finish to the MMCs [9].  

The machining operations are classified under two important categories: cutting and 

grinding process. Process flexibility, yield time, high material removal rate and good surface 

finish are found to be salient features in the turning process. The proper prediction of cutting 

forces in the turning process is the primary task to achieve along with high dimensional 

accuracy and suitable machining system stability [10]. In the industry, metal removing 

processes are used to get the desired shape and dimension with precise quality. The process 

that removes metal at a higher rate and power consumed is considered to obtain an 

economical process [11].  Measuring the power consumption in the metal-removal-by-

cutting-tool operation helps for designing machine components, increasing the life of the 

tool for high productivity, and managing the capacity required by the motor for machine. 

The objective of the research is to analyze the percentage contribution of machining 

parameters like feed, cutting velocity, and the depth of cut of the developed MMC on surface 

roughness, material removal rate, and power consumed using RSM.  

2.   EXPERIMENTAL DETAILS 

2.1  Fabrication of MWCNT-Si-Al Matrix of 1 wt.% by Stir Casting Method 

The Al-6065 ingot-castings were placed in the electric furnace and the temperature of 

the crucible in the furnace was raised and maintained at a temperature of 750 oC for about 

20 minutes. This process was carried out to convert the material into a molten state. The 
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molten metal was stirred continuously for about 15 minutes. The CNT powder was slowly 

added into the molten metal. 

The stirring created a uniform mixture of the reinforced particle of 1 wt.% of MWCNT 

and 4% of silicon into molten mix. The molten metal was poured into the metal die and left 

for solidification. The sample of the specimen was considered for further machining 

processes [12]. 

2.2  Turning Machine and the Cutting Conditions 

The experiments were conducted on a heavy-duty precision lathe machine as shown in 

Fig. 1, with a tungsten carbide tool. The cutter being the single point cutting tool, fed right 

into the rotating workpiece and cut the material as chips. This process was carried out to 

create the desired shape.  

A full bridge strain gauge dynamometer was used to measure the cutting forces. This 

analog device is highly capable of measuring the cutting force while the turning operations 

are executed. This data of measured cutting force was utilized for further analysis [13]. The 

specimen of Ø25mm  Ø75mm size were used for the experimentation.  

 

Fig. 1: Heavy-duty precision lathe machine. 

2.3  Design of Experiment (DoE) by Response Surface Methodology (RSM) 

A group of statistical and mathematical techniques that helps in modelling and analysis 

of a problem is termed as RSM. The output or the response of it can be controlled and is 

affected by several input variables. The objective here is to determine the correlation 

between the responses and variables determined.  

RSM is one of several DoE methods, which is efficient for analyzing and planning the 

problem when certain independent variables will influence the dependent variables or when 

several obtained responses should yield valid and objective conclusions. Rotatable central 

composite design (CCD) and Box-Behnken design are the widely used and suitable types of 

RSM methods that are readily available for investigation purposes [14]. The embedded 

factorial design is not found in the Box-Behnken design and is an independent quadratic 

model. This design is normally incorporated while executing the non-sequential 

investigations. The design uses certain combinations for the treatment at the corners of the 

face center, the process space and at the center of the design body. The design requires three 

levels of each factor that are near to rotatable.  

As compared to the CCD methods, the Box-Behnken model has less capability for the 

orthogonal blocking [15]. Thus, CCD methodology is the most commonly used technique 



IIUM Engineering Journal, Vol. 22, No. 2, 2021 Puttaswamy and Venkatagiriyappa 
https://doi.org/10.31436/iiumej.v22i2.1640 

 

in case of the second-order response models. The CCD provides very few numbers of 

experiment and, with a rotatable feature, the optimal response can be obtained [16]. 

Experimental independent variables along with their coded levels for the central composite 

design (CCD) are represented in Table 1. 

Table 1: Experimental independent variables and their coded levels 

Independent variable Levels of variables 

Low Medium High 

Cutting velocity (m/min) 30 50 70 

Feed (mm/rev) 0.2 0.3 0.4 

Depth of cut (mm) 0.5 0.85 1.2 

 

2.4  Surface Roughness (Ra) and Its Measurement 

 Ra is a subjective property that indicates surface roughness. It is measured in 

micrometers, and has a crucial characteristic that quantifies high frequency deviations from 

that of an ideal surface. Ra is the arithmetic mean value. It is based on the mean of normal 

deviations from a nominal surface. It is generally specified over the “cut-off” length and is 

represented in Eq. (1). 

 
𝑅𝑎 =

1

𝑛
∑ 𝑦𝑖 

𝑛

𝑖=1

 (1) 
 

where, Ra is surface roughness,  

   n is number of measurement points and 

 yi is surface deviation at measurement point of ‘i’. 

From the observation, it is noted that the values obtained are affected by few factors and 

machining parameters. The commercially available surface profilometers feature a diamond 

stylus that travels over the workpiece surface to measure the surface roughness [17]. 

2.5  Power Consumption (Pc)  

A dynamometer is a measuring device used to measure tangential force from which 

power consumed by the machine can be calculated. The product of tangential force and the 

cutting velocity results in cutting power consumption (Pc). It is represented by Eq. (2). The 

experiments were conducted using CCD by RSM [18]. 

 P = Fz × v  (2)  

where, P is power in kilowatts, 

Fz is force in newton and  

v is cutting speed in meter per second.  

2.6  Metal Removal Rate (MRR) 

The metal that is removed per unit time is the MRR. The SI unit of MRR is mm3sec-1. 

For every revolution associated with the material, a ring-shaped chip of the material is 

taken out. The MRR can be obtained using Eq. (3). 

 MRR = v × f × d  (3)  

where, v is the cutting velocity in m/min,  

 f is the feed in mm/rev, and  

d is the depth of cut in mm.  
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3.   RESULTS AND DISCUSSION 

3.1  Validation for Surface Roughness by Response Surface Methodology 

The experiments were executed according to CCD, that was generated by response 

surface methodology (RSM) with three input variables: cutting speed (v), feed (f) and depth 

of cut (d). Twenty experimental runs were executed with 95% confidence level. The readings 

of trial runs were measured for the surface roughness using the surface roughness tester 

measuring machine and the cutting force using the lathe tool dynamometer. The response 

output obtained for MRR, experimental Ra, model Ra, and % of error is tabulated in Table 

2. Regression coefficients obtained from the experimental results are shown in Table 3 for 

polynomial regression equation of surface roughness (Ra). Table 4 shows the corresponding 

analysis of variance and is obtained using Minitab-14 software. 

Table 2: Experimental runs and surface roughness responses 

Sl. 

No 

Input Variables Output Responses 

Cutting 

velocity (v) 

Feed 

(f) 

Depth of cut 

(d) 

MRR 

(mm3 min-1) 

Exp. 

(Ra) 

Model 

(Ra) 

Ra 

(Diff.) 

% 

Error 

1 30 0.2 1.20 120.000 1.34 1.360 0.020 1.559 

2 70 0.2 0.50 116.667 1.68 1.865 0.185 11.058 

3 30 0.4 0.50 100.000 2.8 3.023 0.223 7.977 

4 70 0.4 0.50 233.333 3.12 3.324 0.204 6.543 

5 30 0.4 1.20 240.000 3.1 3.138 0.038 1.254 

6 30 0.2 0.50 50.000 1.93 1.935 0.005 0.278 

7 70 0.2 1.20 280.000 0.96 0.960 0.0008 0.093 

8 50 0.3 0.85 212.500 3.86 3.918 0.058 1.527 

9 50 0.3 0.85 212.500 3.91 3.918 0.008 0.229 

10 50 0.3 0.85 212.500 3.87 3.918 0.048 1.265 

11 70 0.4 1.20 560.000 2.89 3.109 0.219 7.587 

12 50 0.3 0.85 212.500 3.84 3.918 0.078 2.056 

13 17.34 0.3 0.85 73.695 2.86 2.786 0.073 2.583 

14 50 0.4633 0.85 328.171 3.64 3.391 0.248 6.830 

15 50 0.3 0.85 212.500 3.91 3.918 0.008 0.229 

16 82.66 0.3 0.85 351.305 2.82 2.705 0.114 4.073 

17 50 0.3 1.42155 355.388 2.41 2.407 0.002 0.088 

18 50 0.3 0.27845 69.613 3.26 3.052 0.207 6.368 

19 50 0.3 0.85 212.500 3.9 3.918 0.018 0.486 

20 50 0.1367 0.85 96.829 0.71 0.748 0.038 5.472 

 

Table 3: Estimated regression coefficients for Ra in µm 

Term Coeff. SE Coeff. T P 

Constant -8.1365 0.95560 -8.514 0.000 

v 0.1049 0.01682 6.237 0.000 

f 43.1855 3.57327 12.086 0.000 

d 4.7344 0.95350 4.965 0.001 

v2 -0.0011 0.00012 -9.384 0.000 

f2 -69.3314 4.73106 -14.655 0.000 

d2 -3.6393 0.38621 -9.423 0.000 

v x f 0.0463 0.03039 1.522 0.159 

v x d -0.0118 0.00868 -1.357 0.205 

f x d 4.9286 1.73676 2.838 0.018 

S = 0.171930   R2 = 98.53%    R2 (pred.) = 88.95%       R2 (adj.) = 97.21% 
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Table 4: Analysis of variance for Ra in µm 

Source DF Seq SS Adj SS Adj MS F P 

Regression 9 19.8663 19.8663 2.20737 74.67 0.000 

Linear 3 9.2669 4.6496 1.54985 52.43 0.000 

Interaction 3 10.2385 10.2385 3.41282 115.45 0.000 

Square 3 0.3610 0.3610 0.12032 4.07 0.040 

Residual Error 10 0.956 0.2956 0.02956   

Lack-of-Fit 5 0.2913 0.2913 0.05826 68.01 0.000 

Pure Error 5 0.0043 0.0043 0.00086   

Total 19 20.1619     

 

The model developed was investigated using the analysis of variance technique. The 

value of the determination coefficient (R2 = 95.00%) specified that only the values that are 

less than the 5% of total variations were not explained by the developed model and this 

indicated the quality of the model’s fit. The value of the adjusted determination coefficient 

(adj. R2 = 0.9500) was high and specifies that the obtained model was highly significant. If 

P-value is less than F-value (P<F), it indicates that the model is highly significant. The 

results of Ra as obtained using ANOVA is represented in Table 4. It describes the 

predictability of the obtained model for its surface roughness (Ra) to be at a 99% confidence 

level. This is due to the average value of ‘P’ which is less than 0.0001. Figure 2 shows that 

the experimental output, surface roughness (Ra) is closer to the regression model obtained 

using RSM method. The R2 was found to be 98.53% and shows that the regression equation 

is highly reliable [21]. The lower value of ‘P = 0.01’ indicates the statistic significance of 

the model and concludes that the proposed model is a correct one.  
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Fig. 2: Residual plots for Ra in µm. 

Residual plots for Ra shown in Fig. 2 have been analyzed and are discussed. The 

probability plot was used to check for the data normality. The distribution of the data points 

all along the normal line with very few outliers indicated that the data is normally distributed. 

The residual versus fitted values, as shown in the second plot, do not show any subsequent 

trends. This indicates the chosen RSM model fits well within the given dataset. The third 

plot of frequency verses residual illustrates the normal distribution of residuals that are 

produced by the model and assures that the assumptions made are reasonable and the choice 

of the model is appropriate. The residue verses observation order as depicted in the last plot 
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highlights the presence of random data points. The randomness in the plot shows the 

insignificant experimental order in comparison to first surface response (Ra). A confidence 

level of 95% has been applied to RSM for Ra. The statistical significance of the surface 

roughness has been measured and concluded based on all the factors and respective 

interactions which has a probability value or P-Value to be less than 0.05.  

3.2  Optimized Solution for Surface Roughness 

The lower values, the upper values and the final target values of Ra responses are fed to 

the response optimizer tool of Minitab by giving equal weightages. The description of the 

same is given in Table 5.  

Table 5: Response optimization 

Goal Lower Target Upper Weight Import 

Optimization of Ra 0.71 1.1 3.91 1 1 

Cur
High

Low1.0000
D

Optimal

d = 1.0000

Targ: 1.10

Ra

y = 1.1000

1.0000

Desirability

Composite

0.2784

1.4215

0.1367

0.4633

17.340

82.660
f dv

[50.0] [0.2214] [1.4215]

 

Fig. 3: Predicted response for Ra in µm. 

A significant solution of about 100% composite desirability is provided by the software. 

This is concluded from the analysis of data of experiments. About 50 m/min cutting velocity, 

0.2214 mm/rev of feed rate, and 1.4215 mm of DOC along with 1.1 µm of minimum surface 

roughness is reached. Lower half of Fig. 3 shows the of variation of Ra  along with focused 

input variables. The blue dotted lines indicate the pin-pointing desired optimal points [19]. 

3.3  Validation for Power consumption by RSM 

The experiments were conducted using three input variables such as cutting speed (v), 

feed rate (f), depth of cut (d) for 20 experimental run and obtain the output responses as 

cutting forces (Fz) in z direction, power consumption (Pc), difference of power consumption 

and percentage error are shown in the Table 6. The output of the experiments was measured 

using tool dynamometer for cutting forces and calculated the power consumption. 

Regression coefficients are as shown in Table 7 for polynomial regression equation of power 

consumption (Pc) and Table 8 shows the corresponding analysis of the variance. 

The ANOVA results of the Pc is shown in Table 8.  It indicates the obtained model for 

the surface roughness having probability of 99% confidence level. This is due to the average 

value of P-value, which is less than 0.0001. The R2 is 99.40% and provides a highly reliable 

regression equation [21].   
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Table 6: Experimental run and power consumption results 

Sl. 

No 

Input Parameters Output Responses 

Cutting 

velocity (v) 

Feed 

(f) 

Depth of 

cut (d)  

 Fz (in N) Pc  

(in W) 

Y 

(Pc) 

 Pc.    

(Difference) 

% Error 

1 30 0.2 1.2 107.910 53.955 51.12824 2.82676 5.239107 

2 70 0.2 0.5 49.050 57.225 55.38798 1.83702 3.21017 

3 30 0.4 0.5 78.480 39.240 38.20172 1.03828 2.645973 

4 70 0.4 0.5 88.290 103.005 107.0857 4.08072 3.961672 

5 30 0.4 1.2 166.770 83.385 86.47904 3.09404 3.710547 

6 30 0.2 0.5 49.050 24.525 27.37598 2.85098 11.62479 

7 70 0.2 1.2 117.720 137.340 139.6482 2.30824 1.680676 

8 50 0.3 0.85 127.530 106.275 105.5303 0.74475 0.700776 

9 50 0.3 0.85 137.340 114.450 105.5303 8.91975 7.793578 

10 50 0.3 0.85 127.530 106.275 105.5303 0.74475 0.700776 

11 70 0.4 1.2 186.390 217.455 215.871 1.58396 0.728408 

12 50 0.3 0.85 127.530 106.275 105.5303 0.74475 0.700776 

13 17.34 0.3 0.85 137.340 39.691 39.13672 0.5545442 1.397144 

14 50 0.4633 0.85 147.150 122.625 117.5362 5.088793954 4.149883 

15 50 0.3 0.85 117.720 98.100 105.5303 7.43025 7.574159 

16 82.66 0.3 0.85 127.530 175.694 167.6571 8.0367482 4.574292 

17 50 0.3 1.42155 176.580 147.150 144.282 2.868011577 1.949039 

18 50 0.3 0.27845 49.050 40.875 36.06505 4.809945647 11.76745 

19 50 0.3 0.85 127.530 106.275 105.5303 0.74475 0.700776 

20 50 0.1367 0.85 58.860 49.050 46.46107 2.588926864 5.278138 

Residual Plots for Pc shown in Fig. 4 has been analyzed and is discussed. The probability 

plot is used to check for the data normality. The distribution of the data points all along the 

normal line with very few outliers indicates that the data is normally distributed. The residual 

versus fitted values, as shown in the second plot, do not show any subsequent trends. This 

indicates the chosen RSM model fits well within the given dataset. The third plot of 

frequency verses residual illustrates the normal distribution of residuals that are produced 

by the model and assures that the assumptions made are reasonable and the choice of the 

model is appropriate. The residue versus observation order, as depicted in the last plot, 

highlights the presence of random data points. The randomness in the plot shows an 

insignificant experimental order in comparison to first power consumption (Pc). A 

confidence level of 95% has been applied to RSM for Pc. 

Table 7: Estimated regression coefficients for Pc in watts 

Term Coeff. SE Coeff. T P 

Constant -43.838 29.576 -1.482 0.169 

v -1.202 0.521 -2.308 0.044 

f 342.726 110.593 3.099 0.011 

d 13.983 29.511 0.474 0.646 

v2 -0.002 0.004 -0.429 0.677 

f2 -882.428 146.426 -6.026 0.000 

d2 -47.010 11.953 -3.933 0.003 

v x f 5.109 0.941 5.432 0.000 

v x d 2.161 0.269 8.039 0.000 

f x d 175.179 53.753 3.259 0.009 

S = 5.32124    R2 = 99.40%    R2 (pred.) = 97.00%   R2 (adj.) = 98.86% 
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Table 8: Analysis of variance for 𝑃𝑐 in watts 

Source DF Seq. SS Adj. SS Adj. MS F P 

Regression 9 46840.3 46840.3 5204.47 183.80 0.000 

Linear 3 42495.3 575.7 191.90 6.78 0.009 

Interaction 3 1379.0 1379.0 459.68 16.23 0.000 

Square 3 2965.9 2965.9 988.65 34.92 0.000 

Residual Error 10 283.2 283.2 28.32   

Lack-of-Fit 5 149.5 149.5 29.90 1.12 0.453 

Pure Error 5 133.7 133.7 26.73   

Total 19 47123.4     
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Fig. 4: Residual plots for Pc in watts. 

3.4  Optimized Solution for Power Consumption 

The lower values, the upper values and the final target values of Pc responses are fed 

to the response optimizer tool of Minitab by giving equal weightages. The description of 

the same is given in Table 9.  

Table 9: Response optimization for power consumption 

Goal Lower Target Upper Weight Import 

Optimization of Pc 24.525 40 217.455 1 1 

 

Fig. 5: Predicted response for Ra in µm. 
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Minimum power consumption (Pc) of 40 watts is obtained for a cutting velocity of 

17.3407 m/min, feed rate of 0.3172 mm/rev and depth of cut of 1.4215 mm, as shown in the 

Fig. 5. The lower half of Fig. 5 shows the of variation of Pc along with focused input 

variables [19]. 

3.5  Development of Empirical Models 

The relation between the input machining parameters and the output responses is 

developed by the mathematical models and thereby optimization of the machining process. 

RSM is an optimization procedure that produces a multi objective function model which can 

solve the optimization problem. The present study concentrates on the development of 

Empirical models for the output responses, Surface roughness (Ra) and power consumption 

(Pc) with regards to the input machining parameters in actual factors by using RSM. [20]. 

Any further optimization of the machining process can be carried out using the developed 

models. The second order regression equations of the model that was developed are 

estimated by regression analysis. The following equations for Ra and Pc were obtained in 

terms of actual factors. 

The polynomial optimization equation of surface roughness (Ra): 

 

The polynomial optimization equation of power consumption (Pc): 

 

4.   CONCLUSION 

This study presents an effective method for estimating the optimal turning operation 

parameters for surface roughness and power consumption using response surface 

methodology. The investigation shows that the control factors had varying effects on the 

response variable. The use of central composite design of response surface methodology 

was considered successful to obtain optimal responses. The results of power consumption 

(Pc) as obtained using ANOVA is represented in Table 8. The average value of ‘P’ was less 

than 0.001 and hence the model obtained for power consumption to be at a 99% confidence 

level. Fig. 4 shows that the output response is closer to the regression model obtained using 

RSM method. The surface roughness was mainly affected by the feed and the cutting speed. 

Also, an increase in the feed rate resulted in higher surface roughness. It was also observed 

that the cutting speed varies inversely along with surface roughness, thereby increasing the 

surface finish of the workpiece. The observed ANOVA response of the cutting velocity and 

depth of cut majorly influenced the power consumed by the machine. Minimum surface 

roughness along with minimum power consumption was estimated using the optimized 

solution parameters. This demonstrates that the RSM can be successfully applied to obtain 

a maximum amount of information with the least number of experimental runs. This can be 

successfully implemented to obtain an effective second order polynomial and for optimizing 

the machining process.   
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