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ABSTRACT:   Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential 

replacement for fossil fuel. It is renewable and carbon neutral. The efficient management 

of this potential energy will help to deal with the problem associated with fossil fuels. 

However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in 

energy applications is the calorific value (CV). When this CV is low, then its potential 

utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add 

municipal solid waste to enhance energetic value. Thus, two major issues will be solved: 

managing solid residues and contributing an alternative energy source. This study aimed 

to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make 

clean energy that is conscious of the environment (climate change) and sustainable 

development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, 

were mixed, with EFB at various ratios. Proximate analysis was used to determine 

moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to 

determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element 

was also measured. The research revealed a significant increase in the calorific value of 

EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 

1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 

28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing 

of EFB with MSW promoted the increase in the CV of EFB to an average of 

23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the 

low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 

wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel 

(RDF) in a pyrolysis or gasification process with little to no environmental effects.  

ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi 

sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. 

Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah 

melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan 

mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). 

Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, 

kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai 

tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah 

sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah 

kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari 
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sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri 

daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. 

Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, 

ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan 

CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap 

elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori 

EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 

1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 

masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB 

dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara 

potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori 

rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 

wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan 

bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses 

gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran. 

KEYWORDS: municipal solid waste; empty fruit bunch; calorific value; energy;  

refuse derived fuel 

1. INTRODUCTION  

Until now, fossil fuels account for almost 84% of global energy demand [1],  and are 

the most reliable sources of energy. Global production of solid waste increases with an 

increase in population, leading to environmental pollution [2-4]. According to Massarutto 

[5] the world energy consumption in 2020 amounts to 196 terawatts (TW) of which 76 for 

electricity and 120 for heat, and that the potential production of energy from waste maybe 

double the actual figures. The production of solid waste in the world in 2011 amounted to 

2 billion tons of waste during the year. And by 2025, it is estimated that there will be 2.2 

billion tons of waste per year, after which 9.5 billion tons of waste will be produced per 

year in 2050  [3,6,7].  

Biomass gasification has a high potential for waste treatment compared to other 

existing techniques, such as soil filling, incineration, etc., because it can accept a wide 

range of inputs and may produce multiple useful products. Biomass gasification is an 

intricate process involving the drying of the feedstock followed by pyrolysis, partial 

combustion of the intermediates, and finally gasification of the resulting products [7]. The 

calorific value (CV) is the key parameter for assessing the quality of the feedstock (EFB) 

as fuel in energy applications. However, this calorific value for EFB is low. In order to 

improve this calorific value, it must be mixed with other raw materials such as MSW. 

Municipal solid and biomass wastes are among the most sustainable sources of 

energy. Vaish et al. [8], reported that the complexity and the increasing quantity of solid 

waste had made MSW management  a challenging task worldwide. Biomass waste is 

abundant in many countries over the world, like Malaysia, Indonesia, Guinea Conakry, 

etc. Among all, biomass waste offers significant opportunities for major, renewable, and 

suitable environmental-friendly energy sources. These residua, instead of being sent to 

landfill, could be valorized as a source of energy.  Another means to manage MSW is by 

incineration. Heavy metals like mercury (Hg), cadmium (Cd), arsenic (As), chromium 

(Cr), and lead (Pb), etc., contained in fly ash can cause air pollution by incineration of 

MSW and soil and water pollution. The emissions of SOx, NOx, COx, and furans can 

pollute the environment likewise [2,9]. Moreover, greenhouse gases (GHG) emissions 

should be reduced by the use of suitable technologies. The third-largest source of GHG is 

MSW at almost 3-4% of the global anthropogenic methane, and 18% of global methane 
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emission came from total waste sectors [1]. As indicated in the study by Vaish et al. [8] to 

achieve the goal of sustainable development, the problem of climate change, and other 

environmental challenges, must be tackled. MSW is usually, managed through disposal at 

landfills, which experience severe environmental conditions, such as leachate, high 

salinity, and GHG generation [10]. Sikarwar et al. [7] estimate that the production of 

electricity from fossils contributes to pollution and the emission of GHGs. 

Solid residues are an alternative to provide environmentally friendly and sustainable 

energy, that is economically profitable when properly managed and processed [6,11,12]. 

Solid refuse fuel (SRF) and refuse-derived fuel (RDF), can be manufactured in the form of 

pellets, bricks, etc. It is easy to transport and could contribute to the reduction of pollution 

problems related to discharge and provides much-needed energy, especially for people 

suffering a shortage of fuels. Previous studies had promoted  SRF and RDF technology, 

including its characteristics, composition, determination of high heating value, and other 

parameters [13-17]. In terms of thermal conversion, gasification is one of the many routes 

to produce clean and environmentally friendly fuel [18,19]. 

   The synthesis gas production by gasification is a process of recovering energy from 

solid fuels using a high temperature. The quality of RDF depends primarily on the 

composition of the raw material such as plastic and heavy polymer containers, textiles, 

foam, etc., which are the basis for the increase in the heating value of fuel oil [13,20-22]. 

In other words, a higher calorific value is associated, with the content of paper/cardboard, 

plastic, etc., and their presence in high quantities at (40-80% w/w; weight by weight) can 

promote the reduction of emissions of CO2. 

  This study aims to improve the EFB’s calorific value by adding specific amounts of 

MSW. It could be a promising cleaner alternative solution to polluted fossil fuels. The 

study focused on the quality of the calorific value and special importance was given to 

reducing the environmental pollution. 

2.   MATERIALS AND METHODS 

The data collected for this study was based on proximate and ultimate analysis of 

municipal solid waste and biomass, followed by a calorific value (CV) measurement. 

The analysis investigated the impact of moisture content, temperature, steam to 

biomass ratio, and particle size on gas composition, etc. Adequate heating values make the 

material promising for applications such as gasification as RDF and SRF technology 

[12,19].  

2.1  Feed Materials 

Municipal solid and biomass wastes are abundant in Malaysia; the estimated annual 

MSW generated is about 13.68 Mt per year, and about 1.17 kg average rate per capita per 

day of waste,  while the amount of EFB waste was estimated at 7.78 Mt per year [17]. 

Municipal solid waste (plastics, textile, paper/ cardboard, and foam) was collected at 

the Gombak MSW transportation station landfill and biomass waste (empty fruit bunch) 

was collected from Sime Darby Research Center at Carey Island, (Selangor). The samples 

were ground to an average particle size of approximately 0.5 -1 mm, and 0.5-1 g were 

used as feed material. 
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2.2  Preparation of Municipal Solid Waste Samples 

Municipal solid and biomass waste had been selected as feedstock for the experiment. 

Some samples (plastic, cardboard/paper, foam, and textile residue) were chosen and 

characterized. 

These components were selected because data and statistics from National Solid 

Waste Management Malaysia [17] indicated that they are the major constituents of MSW. 

Characterized samples were dried in the sun to remove moisture. The samples were 

prepared to a particle size at 0.5-1 mm for foam, plastic, textile, cardboard, and empty fruit 

bunch. 

Following these sizes, each sample was weighed into a certain scale to determine the 

amount needed for mixing. Then, five selected samples with different ratios were 

examined. 

2.3  Proximate Analysis 

Quantitative determination of moisture content, which has an impact on the calorific 

value; volatile matter, which represents the matter burns in a gaseous state; ash as 

inorganic waste material; and fixed carbon which amounts to the solid-state is determined 

using proximate analysis. 

2.4  Determination of Moisture Content  

Moisture content is considered an important factor that affects the fuel property, 

seeing that it has an impact on the combustion behavior of the material and its stability. 

So, the moisture content is determined using ASTM E 871 standards by measuring the 

weight difference after heating the sample in the oven. It is done by weighing a known 

mass of the samples in an alumina crucible container and placing them in the oven at a set 

temperature of 105 oC for 1 hour. The difference in weight was recorded and calculated as 

a percentage of the sample weight.  

2.5  Determination of Ash Content 

The experimental procedure includes preparation of MSW and EFB mixed to a well-

defined proportion, then the samples of sizes between 0.5 mm and 1 mm put in an alumina 

crucible. The muffle furnace Linn High Therm, type: (LM.212.26 DB006031) was 

initially purged to remove gaseous combustibles in the furnace. The experiment is 

performed from ambient temperature up to the maximum temperature of 700 oC at a 

constant heating rate of 10 oC/min for 30 minutes (Standard method ASTM D1102-84). 

The sample is then cooled in air, then in a desiccator, and finally weighed. 

2.6  Determination of Volatile Matter 

The experimental procedure includes preparation of MSW and EFB mixed to a well-

defined proportion, then, the samples of sizes between 0.5 mm and 1 mm were put in an 

alumina crucible. The muffle furnace Linn High Therm, type: (LM.312.06 DB004031) 

was initially purged to remove gaseous combustibles in a furnace. The experiment was 

performed from ambient temperature up to a maximum temperature of 925 oC at a 

constant heating rate of 10 oC/min, for seven minutes (Standard method ASTM E872). 

Then the sample was cooled in air, then in a desiccator, and weighed. Finally, calculations 

were performed to determine the percentage of volatile matter in the samples.  

The fixed carbon determined through the difference of the sum of the others with the 

total sample. Equations (1) and (2) are for the determination of fixed carbon and volatile 

matter, respectively. 
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FC= 1- MC- VM- Ash                                                                                      (1) 

where: FC, is the fixed carbon in the MSW and EFB that remain in the char during the 

pyrolysis process after devolatilization.  MC stands for moisture content, VM, volatile 

matter, and Ash is the solid residue of MSW and EFB. 

The volatile matter (VM) is determined by the equation:  

VM=
Loss in weight of sample at 925±20˚C

weight of sample taken
∗ 100                     (2) 

All analyses were performed in duplicate.   

2.7  Ultimate Analysis 

The ultimate analysis is used to determine the percentage of the following elements 

by standard methods, carbon (C), and hydrogen (H), by (ASTM E-777), nitrogen was 

performed by (ASTM E-778), chlorine, by (ASTM E- 776-87), and sulfur using (ASTM 

E-775). All these samples were analyzed in Leco Series 628 CHNS. Oxygen was 

determined by subtracting the sum of all others cited above from the total of samples. 

2.8  Heating Value  

To perform the calorific value of the MSW and EFB mixture, a Parr 1341 Oxygen 

Bomb Calorimeter was used for the analysis. It measures the energy released when the 

sample undergoes complete combustion in the presence of oxygen under a standard 

condition. 

2.9  Chemical Composition of MSW and EFB 

The chemical composition of MSW and EFB is shown in Table 1. Table 2 illustrates 

the ratio of the MSW and EFB mixture. 

Table 1: Chemical composition of MSW  

No Components MSW 

Percentage (%) 

EFB 

Percentage (%) 

1 C 52.96 41.2 

2 H 6.58 6.36 

3 O 36.78 47.70 

4 N 0.65 0.74 

5 S 0.028 0.09 

6 Cl 0.24 1.010 

 

Table 2: A mixing ratio of MSW and EFB 

Samples No Mixed elements wt.% 

1 20 (MSW) +80 (EFB) 

2 30 (MSW) +70 (EFB) 

3 40 (MSW) +60 (EFB) 

4 50 (MSW) +50 (EFB) 

5 60 (MSW) +40 (EFB) 
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3.   RESULTS AND DISCUSSION 

The analyses of MSW and EFB were carried out individually and for their mixtures in 

predetermined proportions. Then the calorific value was measured for each sample.  

Figure 1 shows the results of the proximate analysis. The minimum value of volatile 

matter (2.96 wt.%) was found for EFB, while the maximum amount (3.50 wt.%) belonged 

to MSW. EFB has the highest moisture and ash content (15.4 wt.% and 3.9 wt.% 

respectively) and the lowest held by MSW (7.5 wt.% and 2.99 wt.% respectively). EFB 

gasification would incur an additional cost for drying due to high moisture content. EFB 

had the lowest fixed carbon value compared to MSW (77.74 wt.% and 86 wt.% 

respectively). The higher fixed carbon, low moisture content, moderate volatile matter, 

and ash, thus resulting in higher heating value for MSW. A similar result was reported by 

Afzanizam et al. [23]. 

 
Fig. 1: Proximate analysis of MSW and EFB. 

The effect of the mixture (MSW and EFB) ratio on proximate analysis is shown in 

Fig. 2. It can be seen that the MSW and EFB mixture of 60:40 % has the lowest ash (2.33 

wt.%). The highest ash yield (4.22 wt.%), moisture content (12.43 wt.%), volatile matter 

(3.5 wt.%), and fixed carbon (92.03 wt.%) belong to (50:50; 20:80; 20:80 and 60:40 

respectively). Moreover, the moisture content and volatile matter decrease as the quantity 

of MSW supplied in the mixture increases. Also, ash, fixed carbon, and the calorific value 

increase proportionally with the increase of MSW in the mixture.  

The ultimate analysis of pure MSW and EFB is shown in Fig. 3. The MSW has the 

highest percentage of carbon and hydrogen (52.96 wt.% and 6.56 wt.% respectively) and 

the lowest of oxygen and nitrogen (36.79 wt.% and 0.65 wt.% respectively). These two 

elements, carbon, and hydrogen are significant in the fuel because they increase the 

calorific value. Similar findings were observed by [23,24]. The high quantity of carbon 

and hydrogen implies that this raw material could be used as a fuel in thermochemical 

energy conversion like pyrolysis and gasification for syngas production. 

It appears that carbon-hydrogen and calorific value increase with the elevation of the 

amount of MSW in the mixture. In other words, the calorific value increases 

proportionally, with MSW due to higher carbon and hydrogen content. In contrast, a small 

amount of nitrogen promotes the quality of the fuel, because it has no calorific value. The 

highest value of sulfur found in EFB (0.0908 wt.%) followed by cardboard (0.0886 wt.%) 

and textile /foam (0.0594 wt.%) and the lowest in plastics (0.00751 wt.%) followed by 
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MSW (0.0287 wt.%). Sulfur also increases the value of fuel, but a large amount of sulfur 

leads to a smoky flame and it is harmful to the environment.  

 
Fig. 2: Proximate analysis of MSW and EFB mixture. 

 
Fig. 3: Ultimate analysis of MSW and EFB (Inset: A zoom in for elemental 

composition of nitrogen and sulfur for the same materials). 

When the proportion of MSW and EFB is (50:50), carbon, and hydrogen got the 

highest values (52.50 wt.%) and (7.95 wt.%) respectively, while Oxygen and nitrogen 

have the smallest concentration (34.71 wt.%, and 0.33 wt.% respectively) as seen in Fig. 4.  

The comparison of carbon concentrations in Fig. 3 and Fig. 4 demonstrates a gain of 

11 wt.% for EFB, which was 41 wt. % for pure EFB compared to 52 wt.% for MSW and 

EFB mixture of 50:50%. The carbon is one of the sources of the calorific value, the mix of 

MSW and EFB allows increasing the heating value of EFB.  Besides, the calorific value of 

the mixture gradually increases from 19.77 MJ/kg to 28.47 MJ/kg, as the added amount of 

MSW increases. It seems likely that these results are due, in fact, to the constituent 

elements of MSW including carbon, and hydrogen in the plastics portions (72.84 wt.% and 

9.46 wt.% respectively). Figure 5 shows the gradual increase in the calorific value of the 

MSW and EFB mixture. 
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Fig. 4: Ultimate analysis of MSW and EFB mixture (Inset: A zoom in for 

elemental composition of nitrogen, chlorine and sulfur for the same materials). 

Hydrogen sulfide reacts with metals to produce the corresponding metallic sulfide. 

Thus, chlorine is deposited and poses a technical (i.e. corrosion of the wall of the device) 

and environmental problem during the gasification process. The concentration of chlorine 

in these samples varied from (0.154 wt.% cardboard to 1.010 wt.% EFB). The average 

concentration of each component namely cardboard (0.154 wt.%), plastics (0.166 wt.%), 

textile and foam (0.531 wt.%), municipal solid waste (0.249 wt.%), and empty fruit bunch 

(1.010 wt.%) was measured.  

The finding shows the mixtures of EFB and MSW have high potential to produce 

RDF or SRF fuel. Based on the European standard EN 15359, the components used in this 

study show that MSW with 0.249 wt.% of Cl, and 29.74 MJ/kg as low heating value 

(LHV) is class 1, textiles (0.531 wt.% Cl) class 2, EFB (1.010 wt.% Cl) and 15.09 MJ/kg 

as low heating value (LHV) is class 3, thus the mixture EFB and MSW (0.21 wt.% Cl), 

and (0.041 wt.% S) is class1 [16] as shown in Table 3.   

The high heating value (HHV) can be converted into the low heating value (LHV) using 

the following formula: 

LHVi = HHVi – We. (9.Hi +Wi)                                               (3) 

with LHVi : LHV of ith waste fraction, HHVi: HHV of ith waste fraction, We: standard 

heat of evaporation of water (2.441 MJ/kg), Hi: hydrogen content of ith waste fraction and 

Wi : moisture content of ith waste fraction [12]. From the result of Fig. 5, where the 

calorific value was expressed in HHV and the Table 3 where the calorific value was 

expressed in LHV, formula (3) was used for the calculation of LHV. 

The mixture having a ratio of 60 (MSW) and 40 (EFB) has proven to be the best 

among others as it has the greatest calorific value (28.47 MJ/kg) and lowest concentrations 
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of chlorine (0.21 wt.%) and sulfur (0.041 wt.%). Thus, in terms of energy and 
environment, this mixture can be a promising raw material in the gasification process. 

Compared to the European standard, the results of this study show that significant 
pollutant components such as mercury (Hg), arsenic (As), bromine (Br) are not found in 
these raw materials. Sulfur (S) and chlorine are lower, hence their compliance with the 
environmental standard to be used as feedstock in the gasification process. Furthermore, in 
this study, mercury is not found, being an added advantage for this promising fuel 

Fig. 5: The high heating value of MSW and EFB mixture. 

Table 3: Waste classification criteria as SRF, according to EN 15359 [16] 
Parameter UNIT CLASSES CURRENT STUDY 

1 2 3 4 5 MSW EFB 60 (MSW) + 
40 (EFB) 

Lower heating value MJ/kg ≥25 ≥ 20 ≥ 15 ≥ 10 ≥ 3 29.74 15.1 26.98 
Chlorine content %(w/w) ≤0.2 ≤ 0.6 ≤ 1.0 ≤ 1.5 ≤ 3 0.249 1.01 0.21 
Mercury content Mg/MJ ≤0.02 ≤0.03 ≤0.08 ≤0.15 ≤0.5 0 0 0 

4. CONCLUSIONS
The goal of this investigation was to assess the efficacy of mixing municipal solid

waste and biomass to improve the calorific value. The materials establish that the 
concentrations of carbon, hydrogen, nitrogen, and oxygen obtained from the analyses 
carried out are sufficient to produce a fuel of high calorific value. Moreover, the 
environmental parameters (Cl and S) are within the prescribed standards. These findings 
show that the calorific value (CV) of EFB which is 16.86 MJ/kg can be enhanced 
depending on the quantity of added MSW and can reach up to 28.47MJ/kg. This potential 
energy can be used as a raw material in a pyrolysis or gasification process with little to no 
environmental impacts.    
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